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Abstract We construct a class of counterexamples to cos-
mic censorship in four dimensional Einstein–Born–Infeld
theory with asymptotically anti-de Sitter boundary condi-
tions, and investigate the effect of the Born–Infeld parameter
b in comparison with the counterpart of Einstein–Maxwell
theory. When a charged massive scalar field is included into
the action, we find that this class of counterexamples to cos-
mic censorship would be removed if the charge of scalar fields
is above the bound of charge qw. In particular, the bound of
charge required to preserve cosmic censorship increases with
the increasing of Born–Infeld parameter. Meanwhile, we also
show the lower bounds on charge-to-mass ratio with the dif-
ferent values of Born–Infeld parameter.
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1 Introduction

The study of black hole singularities has been an interesting
subject since the original work on the weak cosmic censor-
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ship conjecture (WCCC) [1,2], which states naked singular-
ities arising in the solutions of Einstein’s equations [3] must
be hidden within event horizons of black hole, and could not
be observed from future null infinity. Although the concrete
proof for the validity of WCCC has not been established,
there exist lots of works of testing the validity of WCCC
through the gedanken experiment [4], which was firstly pro-
posed by Wald to destroy an extremal Kerr–Newman black
hole by throwing a massive particle. Moreover, by consid-
ering the gravitational collapse of a scalar field, the authors
in [5] firstly found that the final fate of a continual collapse
would be a naked singularity. See [6] for a review. It’s worth
noting that time evolution of the matter field leads to for-
mation of a naked singularity in finite time. Obviously, it is
an interesting question to ask whether there exists a region
of arbitrarily large curvature that is time-independent and
observed to distant observers. It is well known that because in
higher dimensions the event horizon of a class of black holes
is not necessarily the case of topologically spherical surface,
black holes would be unstable under gravitational perturba-
tions in the region of the Gregory–Laflamme instability [7]
and could produce a naked singularity, which implies the vio-
lation of cosmic censorship [8–10]. Besides, by analysing the
non-linear evolution of black holes [11,12], one found that a
naked singularity should form in finite time. In four dimen-
sions, it is more difficult to construct the naked singular-
ity. By investigating the model of Einstein gravity coupling
to a Maxwell field with a negative cosmological constant
[13,14], one obtained a class of counterexamples to cosmic
censorship with asymptotically anti-de Sitter (AdS) bound-
ary for the first time. Furthermore, considering the above
model with a vanishing Maxwell field, the authors in Ref.
[15] constructed smooth stationary solutions with differen-
tial rotation to the boundary metric, which also provides a
possible vacuum counterexample to weak cosmic censorship
in AdS spacetime.
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Recently, by introducing a charged scalar field to the
Einstein–Maxwell solutions [16], the authors found that
when the charge of the scalar field was sufficient large, the
static solution of Einstein–Maxwell action would become
unstable and a new stable solution could appear with nontriv-
ial charged scalar field, which is analogous to the instability
of a charged black hole to develop scalar condensation in the
study of holographic superconductor [17–19]. Meanwhile,
there exists a minimum value of charge required to remove
the counterexamples and preserve cosmic censorship. It is
surprising that the minimum value of charge appears to agree
precisely with that proposed in the weak gravity conjecture
[20], which states that any consistent quantum theory of grav-
ity must have a stable state whose charge-to-mass ratio q/m
is equal to or larger than that of an extremal black hole. In the
case of Einstein–Maxwell model, the bound of q/m is equal
to 1. To further test the weak gravity - cosmic censorship con-
nection, the authors in [21] also studied the static solutions
in Einstein theory with a dilaton field and the multi-charged
scalar field case.

Considering that Maxwell theory is only the theory of
linear electrodynamics, we would like to know whether or
not there exists a class of counterexamples to cosmic cen-
sorship and the charge-to-mass ratio bound in four dimen-
sional Einstein-nonlinear electrodynamics theory. The Born–
Infeld electrodynamics [22–24] is a nonlinear generalization
of the Maxwell’s theory, which can remove the divergence
of self-energy of a point-like charge in Maxwell electrody-
namics. Moreover, the Lagrangian of Born–Infeld can arise
from the low-energy effective theory describing electromag-
netism [25,26]. Many works on the black holes solutions in
Einstein–Born–Infeld theory have been studied in [27–34].

In the present paper, we show how to construct a class of
counterexamples to cosmic censorship in four dimensional
Einstein–Born–Infeld theory with asymptotically anti-de Sit-
ter boundary. Furthermore, comparing with the counterpart
of Einstein–Maxwell theory, we investigate the counterex-
ample of Einstein–Born–Infeld theory for several values of
Born–Infeld parameter b. Besides, introducing a charged
massive scalar field into Einstein–Born–Infeld theory, we
find that this class of counterexamples to cosmic censorship
would be removed, and we also study the value of the lower
bound on the scalar field charge required to preserve cosmic
censorship in the case of Born–Infeld action.

The paper is organized as follows. In Sect. 2, we introduce
the model of Einstein–Born–Infeld coupling to a complex,
charged scalar field and the numerical DeTurck method. In
Sect. 3, we explore the ansatz of metric and matter field, and
analyze the boundary conditions. Numerical results of a class
of counterexamples to cosmic censorship and static solutions
with charged scalar condensation are shown in Sect. 4. The
conclusion and discussion are given in the last section.

2 Set up

Let us begin with the action of the Born–Infeld field and a
charged complex scalar field in the four-dimensional Ein-
stein gravity spacetime with a negative cosmological con-
stant, which is written as

S = 1

16πG

∫
d4x

√−g

[
R + 6

L2 + LBI

−4 (Da�)(Da�)† − 4m2��†
]
, (2.1)

where LBI = 4
b (1 −

√
1 + bF

2 ) with the field strength of the

U(1) gauge field F = FabFab, and L is the radius of asymp-
totic AdS spacetime. The constants m and q represent the
mass and the charge of the complex scalar field , respectively.
The constant b is the Born–Infeld parameter and the Born–
Infeld field will reduce to the Maxwell case when b → 0.
Where Da = ∇a − iq Aa is the gauge covariant derivative
with respect to Aa . Note that the values of m2 must satisfy
the Breitenlohner–Freedman (BF) bound m2 ≥ −9/4 [35]
for the (3+1)-dimensional spacetime.

The motion equations can derived from Eq. (2.1)

Rab + 3

L2 gab = Tab, (2.2a)

∇a(−F Fa
b) = i q

[
(Db�)�† − (Db�)†�

]
, (2.2b)

DaDa� = m2�, (2.2c)

with the energy-momentum tensor of matter field

Tab = 2
(
−F F c

a Fbc + gab
4

LBI

)
+ 2(Da�)(Db�)†

+2(Da�)†(Db�) + 2m2gab��† ,

where F ≡ ∂LBI
∂F , and it equals to -1 in Maxwell condition.

If the complex, massive scalar field ψ vanishes, the solu-
tion of Einstein equations (2.2), which can describe the
asymptotically spherically black hole with charge, is the
well-known Born–Infeld AdS black hole. In terms of spher-
ical coordinates, the metric of Born–Infeld AdS black hole
is the following form

ds2 = − f (r)dt2 + f −1(r)dr2 + r2(dθ2 + sin2 θdφ2),

(2.3)

with

f (r) = 1 − 2M

r
+ r2

L2 + 4Q2
2F1(

1
4 , 1

2 ; 5
4 ;− bQ2

r4 )

3r2

+2r2

3b

⎛
⎝1 −

√
bQ2

r4 + 1

⎞
⎠ , (2.4)

where M and Q are the ADM mass and the electric charge of
BI AdS black hole, respectively, and 2F1 is a hypergeometric
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function [37]. The gauge potential is

A = −Q2F1(
1
4 , 1

2 ; 5
4 ;− bQ2

r4 )

r
dt. (2.5)

When there exists a non-trivial configuration of the com-
plex scalar field, it is obvious that we should solve the equa-
tions of motion (2.2) numerically instead of seeking the ana-
lytical solutions. We will use DeTurk method to solve these
equations, which provides a good tool for solving Einstein
equations in these papers. By adding a gauge fixing term
to Einstein equation (2.2a), we could obtain a set of elliptic
equations, which are known as Einstein–DeTurk equation

Rab + 3

L2 gab − ∇(aξb) = Tab, (2.6)

where ξa = gbc(	a
bc[g] − 	a

bc[g̃]) is the Levi–Civita con-
nection associated with a reference metric g̃, which should
be choose to be as same boundary and horizon structure as g.

3 Ansatz and boundary conditions

Motived by the coordinate systems used in [13,16,21,36], we
also consider Poincaré coordinates for pure AdS spacetime,

ds2 = L2

z2

[
−dt2 + dr2 + r2dφ2 + dz2

]
. (3.1)

When we use the new coordinate system,

z = y
√

2 − y2

1 − y2 (1 − x2) , (3.2a)

r = y
√

2 − y2

1 − y2 x
√

2 − x2 , (3.2b)

the metric (3.2) can become the following form:

ds2 = L2

(
1 − x2

)2

[
−

(
1 − y2

)2
dt2

y2
(
2 − y2

) + 4 dx2

2 − x2

+ 4 dy2

y2
(
1 − y2

)2 (
2 − y2

)2 + x2
(

2 − x2
)
dφ2

]
,

(3.3)

where x and y are polar-like coordinates. The Poincaré hori-
zon is now located at y = 1, and the axis of rotation is located
at x = 0. The conformal boundary is located at x = 1, and y
= 0 denotes the intersection of the conformal boundary with
the axis of symmetry.

In order to construct static, axisymmetric solutions with a
timelike Killing vector and an axisymmetric Killing vector,
we adopt the following ansatz of metric

ds2 = L2

(
1 − x2

)2

[
−

(
1 − y2

)2
U1 dt2

y2
(
2 − y2

)
4U4

2 − x2

(
dx + U3

1 − y2 dy

)2

+ 4U2 dy2

y2
(
1 − y2

)2 (
2 − y2

)2

+x2
(

2 − x2
)
U5 dφ2

]
, (3.4)

where the functions Ui (i = 1, 2, 3, 4, 5) depend on the
variables x and y. Both of variables take values in [0, 1].
When U1 = U2 = U4 = U5 = 1 and U3 = 0, the ansatz
(3.4) can reduce to the pure AdS metric (3.3), which is the
reference metric g̃ we take in DeTurk method.

Considering the above metric (3.4), an ansatz of matter
fields should be described as below

A = LU6dt, � =
(

1 − x2
)


y

(

2 − y2
)


2
U7 (3.5)

with


 ≡ 3/2 +
√

9/4 + m2, (3.6)

where the function U6 and U7 are the function of x and y.
According to AdS/CFT duality, we take 〈O2〉 = (1− y2)2U7

to describe the scalar condensation. To simplify, we only
choose m2 = −2 in our paper.

Next, we will discuss the boundary conditions. At confor-
mal boundary, located at x = 1, the metric must reduce to
pure AdS spacetime, so we must take

U1(1, y) = U2(1, y) = U4(1, y) = U5(1, y) = 1,

U3(1, y) = 0, (3.7)

and the boundary condition of scalar field is

∂xU7(1, y) = 0, (3.8)

which can be obtained by expanding the equations of motion
near x = 1 as a power series in (1 − x). For the gauge field
at the boundary, we take

U6(1, y) = a(1 − y2)n, n = 2, 4, 6, . . . , (3.9)

where the constant a is the amplitude. This kind of profile
for gauge field has been studied in [13,16,21,36].

The asymptotic behaviors of the equations of motion near
x = 0 give the conditions at x = 0:

∂U1

∂x
= ∂U2

∂x
= ∂U4

∂x
= ∂U5

∂x

= ∂U6

∂x
= ∂U7

∂x
= 0,

U3(0, y) = 0, U4(0, y) = U5(0, y). (3.10)
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At y = 0, i.e. the intersection of the conformal boundary
with the axis of symmetry, we set the boundary conditons

U1(x, 0) = U2(x, 0) = U4(x, 0) = U5(x, 0) = 1,

U3(x, 0) = ∂yU7(x, 0) = 0,

U6(x, 0) = a, (3.11)

and at Poincaré horizon y=1, Dirichlet boundary conditions
are imposed on

U1(x, 1) = U2(x, 1) = U4(x, 1) = U5(x, 1) = 1,

U3(x, 1) = U6(x, 1) = U7(x, 1) = 0. (3.12)

4 Numerical results

In this section, we will numerically solve the coupled sys-
tem of nonlinear partial differential equations (2.2) with the
ansatzs (3.4) and (3.5). We employ finite element methods
in the integration region 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 defined
on non-uniform grids, allowing the grids to be more finer
grid points near the boundary of y = 0 and y = 1. Our iter-
ative process is the Newton–Raphson method. The relative
error for the numerical solutions in this work is estimated to
be below 10−5. In order to keep good agreement with the
aforementioned error, the grid size has to be increased and
typically a 120 × 200 to 120 × 300 grid was used.

We would study the following two cases with scalar field
� = 0 and � �= 0, respectively. For convenience, in the
following results, we will set L = 1.

4.1 With charged scalar field � = 0

In this subsection, we will analyze the solutions with
charged scalar field � = 0 and present the evidence for
counterexample to cosmic censorship. When one obtains a
solution of Einstein equations, it is important to investigate
whether or not the spacetime of solution is regular. In general,
one of the most useful ways is to check for the finiteness of
the Kretschmann scalar, which is also called Riemann tensor
squared and written as

K = Rαβγ δR
αβγ δ, (4.1)

where Rαβγ δ is the Riemann curvature tensor. Therefore,
Kretschmann scalar is a sum of squares of tensor components
and a quadratic invariant.

Numerical results are presented in Fig. 1. In the left panel
we present the distribution of Kretschmann scalar K as a
function of x and y coordinate with b = 0.25, n = 8 and
a = 6. It is obvious that the spacetime is not flat, and the
value of the Kretschmann scalar in the purple area is about to
24/L4, which means it recovers the result of AdS4 spacetime.
In addition, the maximum of the Kretschmann scalar appears

Table 1 Maximum amplitude
amax for several values of n and
b

amax

b n

4 6 8 10

0.00 4.95 6.53 8.06 9.13

0.25 4.22 5.51 6.56 7.45

0.5 3.82 4.99 5.94 6.76

1 3.35 4.36 5.20 5.91

at the boundary x = 0. In the right panel, we exhibit the max-
imum of the Kretschmann scalar K versus the amplitude a
with the fixed Born–Infeld parameters b = 0, 0.25, 0.5,
represented by the black, blue and green lines, respectively.
The vertical black, blue and cyan dashed gridlines indicate
amax = 8.06, 6.56 and 5.94, respectively, and the horizonal
red line is the value of K = 24 for AdS4 spacetime. From
the figure, we could find that when the Born–Infeld param-
eters b �= 0, there still exists the growth of the maximum of
Kretschmann scalar with the increasing of a, which indicates
the formation of a curvature singularity similar to the case of
Maxwell action in [16].

When the amplitude reaches to a maximum value, there
will appear a singularity, which means producing arbitrarily
large curvature in spacetime. This maximum depends on both
n and b. We show our results in the following table.

From Table 1, we could see that the maximum ampli-
tude amax increases with the increasing of n. Meanwhile, it
decreases with the increasing of the Born–Infeld parameter
b. When Maxwell field is extended to Born–Infeld model, the
static solutions could still become singular at a finite value
of a.

4.2 With charged scalar field � �= 0

In the last subsection, we obtain a family of Einstein–
Born–Infeld solutions with charged scalar field � = 0. We
would like to know whether or not there exist the charged
static solutions with no-vanished scalar field, which is anal-
ogous to the case of holographic superconductor studied in
[17,19,38,39]. When fixed the parametes b and a, there is
a minimal value of q, below which the scalar field vanishes
and the solution is the simple planar. Above this value, the
charged static solution becomes unstable to develop scalar
hair. To obtain the minimal value of the charge q, we could
use the method in [16,40] to treat the equation of motion of �

perturbatively. Therefore, before numerically solving the full
dynamic equations of motion including scalar field in Eqs.
(2.2), we solve the time-independent scalar field equations
to search for zero mode at the fixed background constructed
in Sect. 4.1,

(∇a∇a − m2)� = q2 Aa A
a �, (4.2)
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Fig. 1 Left: The distribution of Kretschmann scalar as a function of x
and y coordinate with b = 0.25, n = 8 and a = 6. Right: The maximum
of the Kretschmann scalar as a function of a with the fixed Born–Infeld
parameters b = 0, 0.25, 0.5, represented by the black, blue and cyan

lines, respectively. The vertical black, blue and cyan dashed gridlines
indicate amax = 8.06, amax = 6.56 and amax = 5.94, respectively, and
the horizonal red line is the value of K = 24 for AdS4 spacetime

which one could recognize as an eigenvalue problem with
the eigenfunction � and eigenvalue q2. We will use qmin to
denote the smallest eigenvalue of zero-mode, which is the
minimal charge and is also a function of the amplitude a.

The results are shown in Fig. 2. In left panel, with the
fixed n = 8, we plot minimal charge qmin as a function of
the amplitude a for the corresponding values of b = 1, 0.5,
0.25 and 0, represented by cyan, blue, red and black lines,
respectively. The vertical dashed gridlines indicate the maxi-
mum amplitude amax = 8.06 (black), 6.56 (red), 5.94 (blue)
and 5.20 (cyan), respectively, which corresponds to the val-
ues of n = 8 shown in Table 1. For each curve, the minimal
charge qmin decreases with the increasing of amplitude a.
We see that for the fixed amplitude a, the critical charge qmin

increases with the increasing of Born–Infeld parameter b.
Furthermore, when the amplitude a decreases, the minimal
charge qmin tends to the same value for several values of b.

In the right of Fig. 2, with the fixed b = 0.25, we plot
minimal charge qmin as a function of the amplitude a for the
corresponding values of n = 10, 8, 6 and 4, represented by
cyan, blue, red and black lines, respectively. For each curve,
the minimal charge qmin decreases with the increasing of
amplitude a, which is similar to the behavior in the left panel.
For the fixed amplitude a, the minimal charge qmin increases
with the increasing of n.

Next, we could solve the coupled equations of motion
(2.2) to find the solutions for the above critical charge qmin .
We show the profiles of the expectation value for the operator
dual to � as a function of the boundary radial coordinate r
in Fig. 3. In the left panel, with the fixed n = 8 and q = 2.7,

the curves from top to bottom correspond to b = 0, 0.5, 1,
represented by black, red and blue lines, respectively. For
each curve, the scalar condensation 〈O2〉 decreases with the
increasing amplitude of r . When the amplitude r increases,
the scalar condensation tends to zero value for several values
of b. Moreover, at the origin r = 0, there exists the largest
value of the scalar condensation. Furthermore, for the fixed
amplitude r , the scalar condensation 〈O2〉 decreases with the
increasing value of Born–Infeld parameter b.

In the right of Fig. 3, with the fixed b = 0.25 and q =
2.22, we plot the scalar condensation 〈O2〉 as a function of
r for several values of a. The curves from top to bottom
correspond to a = 10, 9, 8, 7 and 5.8, represented by
black, red, blue, cyan and purple lines, respectively. For each
curve, the scalar condensation decreases with the increasing
of r , which is similar to the behavior in the left panel. For
the fixed amplitude b, the scalar condensation 〈O2〉 increases
with the increasing value of the parameter a.

In order to further understand how increasing the ampli-
tude a affects the maximum of the condensation with the
different values of b, we show in the left panel of Fig. 4
the condensate 〈O2〉 at r = 0 as a function of the ampli-
tude a with the fixed parameters n = 8, q = 2.7. From top
to bottom, the curves correspond to the values of b = 0,
b = 0.5, and b = 1, respectively. In addition, the vertical
dashed gridlines indicate the critical amplitude ac = 4.74
(black), ac = 4.82 (red) and ac = 4.98 (blue), respectively.
As one can see that there exists a critical amplitude ac above
which the condensate appears, then rises as the system is
imposed with much larger amplitudes a. This behaviour of
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Fig. 2 The minimal charge qmin as a function of the amplitude a. Left: For the fixed n = 8, the curves from top to bottom correspond to
b = 1, 0.5, 0.25, 0, respectively. Right: For the fixed b = 0.25, the curves from top to bottom correspond to n = 10, 8, 6, 4, respectively

Fig. 3 The condensation as a function of radial coordinate r at conformal boundary with different b (left) and n (right). At both of these two figures
we take the value of n = 8

b �= 0 is qualitatively similar to that in Maxwell theory with
b = 0.

After obtaining the numerical solution with charged scalar
condensate, we want to know what happens to the solutions
with � �= 0 as the decreasing of charge q when a > amax .
We present in the right panel of Fig. 4 the typical maximal
value of Kretschmann scalar K as a function of the charge
q with b = 0.5, n = 8 and a = 6 > amax , and the verti-
cal black dashed gridlines indicate the qmin = 2.276. From
this plot, we can see that the full nonlinear solutions with the
scalar condensate are in the range of q > qmin . It is obvious
that there exists the growth of the maximum of Kretschmann
scalar with the decreasing of q, which indicates the forma-
tion of a curvature singularity outside Poincaré horizon at

some minimal values q = qmin , and is similar to the case of
Maxwell case.

To study the properties of the bound on charge-to-mass
ratio, we exhibit the phase diagram of the minimal charge
qmin versus the amplitude a with several values of Born–
Infeld parameter in Fig. 5, where we add the curves of mini-
mal charge with a > amax to previous plot for a < amax

in the left panel of Fig. 2. The Born–Infeld parameters
b = 0.25, 0.5, 1 are represented by the red, blue and
orange lines, respectively. The black line represents the curve
in the Maxwell model which has been discussed in [16].
We can see that there exists an asymptotical value qw of
qmin as a increases. The asymptotical value qw increases
with the increasing of Born–Infeld parameter b. More details
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Fig. 4 Left: The condensation against a with different values of b at r = 0. Right: The typical maximal value of Kretschmann scalar K as a function
of the charge q with b = 0.5, n = 8 and a = 6

are shown in the inset, and the horizonal black, red, blue
and orange dashed gridlines indicate the values of qw =
2, 2.23, 2.43, 2.708, respectively. If we consider scalar
field with q < qw, there still exists a singularity outside
the Poincaré horizon as a increases to a finite value. But for
keeping q > qw, there would not exist a singularity when
one increases the amplitude a to an arbitrarily large value.

It is noteworthy that for the curve of Maxwell model in
the solutions with � �= 0, the minimal charge qmin decreases
firstly with the decreasing of the amplitude a, and then it
reaches a minimal point. Further increasing a to amax , the
value of qmin continues to decrease, and a second branch
with lower qmin is obtained. When the curve with lower qmin

moves toward amax , the numerical error begins to increase
and a finer mesh is required to calculate. It is difficult to
handle numerical calculation near the value of amax , so we
could not get the curve connecting the solutions of � = 0
and � �= 0. However, for larger value of b, it is relatively
easy to obtain the connected curve near the value of amax .

5 Conclusions

In this paper, we have presented a class of counterexamples
to cosmic censorship in four-dimensional Einstein–Born–
Infeld theory. The maximum of Kretschmann scalar goes
to infinite when the amplitude a increases to amax , which
means there appears a singularity outside Poincaré horizon.
If we consider the charged scalar field in this model, we found
there exists a minimal value of charge qmin , below which the
static solution with zero scalar condensation is stable. How-
ever, when the charge of the scalar field was above qmin ,
the static solution of Born–Infeld action will become unsta-

1 2 3 4 5 6 7 8 9 10
1
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4

5

6

7

8

9

10

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

q m
in

a

 b=1
 b=0.5
 b=0.25
 b=0

n=8

Fig. 5 The full phase diagram of qmin against a with the Born–Infeld
parameters b = 0.25, 0.5, 1, represented by the red, blue and orange
lines, respectively. The black line corresponds to the case of the Maxwell
model

ble and a new stable solution with nontrivial charged scalar
field could appear, which is analogous to the instability of
a charged static solution to develop scalar condensation in
the case of Maxwell theory [16]. Meanwhile, there exists
the asymptotical value of charge qw required to remove the
counterexamples and preserve cosmic censorship. Compar-
ing with the Einstein–Maxwell model, the bound of charge-
to-mass ratio q/m is larger than 1 and increases with the
Born–Infeld parameter b.

In the case of Maxwell theory [16], it is surprising to find
that the bound of the charge to mass ratio which is necessary
to preserve weak cosmic censorship is precisely equal to the
weak gravity bound. For the nonlinear Born–Infeld theory,
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we also obtain the the bound of the charge to mass ratio
necessary to preserve weak cosmic censorship, but, because
now the weak gravity conjecture in Born–Infeld electrody-
namics is still not clear, one could not determine whether
bound of charge-to-mass ratio is equal to weak gravity con-
jecture. However, it is sure that a class of static solution with
charged scalar condensate could prevent the violation of the
weak cosmic censorship, and the bound of charge-to-mass
ratio could also be obtained in the case of Born–Infeld elec-
trodynamic.

It will be interesting to investigate the several further
researches. First, since we have studied the static solution
with a free scalar condensate in Born–Infeld electrodynamic,
we would like to investigate how self-interactions of the
scalar field to prevent the violation of the weak cosmic cen-
sorship and the bound of charge-to-mass ratio. The second
extension of our study is to construct generalized multi-
scalar hair configurations, such as two coexisting states of
the charge scalar field presented in Born–Infeld electrody-
namic. Finally, we are planning to study the model of the
Einstein–Born–Infeld-vector model and construct the static
solution with charged vector hair necessary to preserve weak
cosmic censorship in future work.
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