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Abstract We present a first, consistent combination of
measurements from top-quark and B physics to constrain
top-quark properties within the Standard Model Effective
Field Theory (SMEFT). We demonstrate the feasibility and
benefits of this approach and detail the ingredients required
for a proper combination of observables from different
energy scales. Specifically, we employ measurements of
the t t̄γ cross section together with measurements of the
B̄ → Xsγ branching fraction to test the Standard Model and
look for new physics contributions to the couplings of the top
quark to the gauge bosons within SMEFT. We perform fits of
three Wilson coefficients of dimension-six operators consid-
ering only the individual observables as well as their com-
bination to demonstrate how the complementarity between
top-quark and B physics observables allows to resolve ambi-
guities and significantly improves the constraints on the Wil-
son coefficients. No significant deviation from the Standard
Model is found with present data.

1 Introduction

The experiments at the Large Hadron Collider (LHC) con-
duct various searches for physics beyond the Standard Model
(BSM). The searches for direct production of new particles
have not yet resulted in any discovery of BSM physics. A
complementary approach are indirect searches, where pre-
cise measurements of total rates and kinematic distributions
are compared to their Standard Model (SM) predictions. If the
new particles are heavier than the experimental energy scale,
the Standard Model Effective Field Theory (SMEFT) can be
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applied to parametrize potential deviations from the SM in a
model-independent way [1–3]. For energies below the scale
of BSM physics, Λ, effects of new particles and interactions
can be described in a series of higher-dimensional operators
constructed from SM fields.

The top quark plays a special role in SMEFT analyses
and a large number of precision measurements regarding top-
quark physics have been performed at the LHC. As the top
quark is the only fermion with an O(1) Yukawa coupling,
it is of special interest in BSM scenarios explaining the ori-
gin of electroweak symmetry breaking (EWSB). For these
reasons, numerous SMEFT analyses in the top-quark sector
have been performed during the recent past, for example [4–
18]. In particular, first global studies have been presented in
Refs. [13–18].

Additional constraints on BSM contributions to top-quark
physics come from B physics (see e.g. Refs. [19–21]). Espe-
cially flavor-changing neutral currents are excellent probes of
BSM physics due to suppression by the Fermi constant, small
CKM matrix elements and loop factors. The Weak Effective
Field Theory (WET) Lagrangian describing b → s transi-
tions is not invariant under the full SM gauge group due to
EWSB at the scale v. Since the scale Λ has to be above v,
BSM physics needs to be integrated out before EWSB. To
constrain SMEFT coefficients using low-energy observables,
the effective Lagrangian must be matched onto the WET
Lagrangian by integrating out all particles heavier than the b
quark [19–23].

Matching and renormalization group equation (RGE) evo-
lution enable to combine measurements at different energy
scales in one analysis that allows to investigate the impact
of measurements from top-quark and B physics on the top-
quark sector of SMEFT.

In this paper, we consider t t̄γ cross sections and the
B̄ → Xsγ branching fraction to perform a first consistent fit
of SMEFT Wilson coefficients using a combination of top-
quark and B physics observables that have a common set
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of relevant dimension-six operators. Similar analyses have
been performed for top-Higgs couplings in Refs. [24,25].
We present the steps necessary for such a combined analysis
of BSM contributions to top-quark interactions and highlight
possible pitfalls in this procedure. We determine the depen-
dence of the observables on the Wilson coefficients and com-
pare our computations to results obtained with existing tools.
We estimate the gain in the sensitivity for BSM contributions
when considering top-quark and B physics observables in a
combined fit.

The outline of this paper is as follows. In Sect. 2 we intro-
duce the SMEFT and WET Lagrangians and introduce con-
ventions used throughout this paper. In Sect. 3 we discuss
the steps necessary to calculate low energy observables in
dependence of SMEFT Wilson coefficients. The measure-
ments used to constrain the SMEFT Wilson coefficients are
presented in Sect. 4. In Sect. 5 we describe the correspond-
ing computations of the SM and BSM contributions. In Sect.
6 we determine constraints on the SMEFT Wilson coeffi-
cients. We investigate the individual impact of top-quark and
B observables and demonstrate how the combination of these
observables improves the constraints. In Sect. 7 we conclude.
Auxiliary information is given in several appendices.

2 Effective field theories at different scales

In this section we describe the effective field theory approach
to t t̄γ production and b → sγ transitions, for which a set of
common dimension-six operators exists. In Sect. 2.1 we give
the SMEFT operators considered in our analysis. In Sect. 2.2
we introduce the effective theory for b → sγ transitions.

2.1 Effective Lagrangian for t t̄γ production

The effects of heavy BSM particles with mass scale Λ can
be described at lower energies E � Λ in a basis of effective
operators with mass dimension d > 4 [1,2]. Such higher-
dimensional operators are constructed from SM fields and
are required to be Lorentz invariant and in accord with SM
gauge symmetries. The SMEFT Lagrangian LSMEFT is an
expansion in powers of Λ−1. Higher-dimensional operators
O(d)
i of dimension d are added to the SM Lagrangian together

with the corresponding Wilson coefficients C (d)
i and a factor

Λd−4. The effective Lagrangian reads

LSMEFT = LSM +
∑

i

C (6)
i

Λ2 O(6)
i + O

(
Λ−4

)
. (1)

Operators of dimension d = 5 and d = 7 are not consid-
ered in this work since they violate lepton and baryon num-
ber conservation [26,27]. In the following, we only consider

operators with mass dimension d = 6, which are the leading
BSM contributions to LHC physics.

A complete basis containing 59 independent operators for
one generation (2499 for three generations [28]) of fermions
is presented in Ref. [3] in the Warsaw basis, which is used in
the following. Fortunately, for any class of observables only
a small subset of operators has to be considered.

We study the dimension-six operators affecting t t̄γ pro-
duction at the LHC. Examples for lowest order Feynman
diagrams with both gluons and quarks as initial states are
shown in Fig. 1. We consider only operators involving third-
generation quarks and bosonic fields, including the Higgs
field. The corresponding operators can be written as

OuB = (
q̄LσμνuR

)
ϕ̃Bμν,

OuG =
(
q̄LσμνT AuR

)
ϕ̃GA

μν,

OuW =
(
q̄Lσμντ I uR

)
ϕ̃W I

μν, (2)

with qL the SU (2) doublet, uR the up-type SU (2) sin-
glet, the gauge field strength tensors Bμν , W I

μν and GA
μν of

U (1)Y , SU (2)L and SU (3)C and the generators T A and τ I

of SU (3)C and SU (2)L , respectively. The Higgs-doublet is
denoted by ϕ and ϕ̃ = iτ 2ϕ∗. Contributions from dipole
operators with right-handed b quarks, which contribute to
top-quark decay and via one-loop diagrams to b → s transi-
tions, are suppressed by a factor mb/mt relative to the ones
with right-handed top quarks, and therefore neglected. Gen-
erally, the effective operators in Eq. (2) are non-hermitian
which leads to complex-valued Wilson coefficients. In this
analysis, we assume all Wilson coefficients to be real val-
ued. Four-quark operators can in principle also affect t t̄γ
production. As t t̄ production at the LHC is dominated by
the gg channel (∼ 75 % and ∼ 90 % at 8 TeV and 13 TeV,
respectively [14]), we neglect contributions from four-quark
operators. We allow for BSM effects in top-quark decay via
OuW , see Fig. 1.

2.2 Effective Lagrangian for B̄ → Xsγ decays

Rare b → sγ processes can be described by the Weak Effec-
tive Field Theory (WET) Lagrangian [29]

LWET = 4GF√
2
V ∗
tsVtb

8∑

i=1

C̄i Qi , (3)

where Vi j are elements of the CKM matrix, GF is the Fermi
coupling constant, Qi are effective operators and C̄i are the
corresponding Wilson coefficients including both SM and
BSM contributions. The effective operators relevant for the
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Fig. 1 Examples for Feynman diagrams contributing to t t̄γ production in pp-collisions in the SM (top) and including dimension-six operators
(bottom). The black dot denotes the insertion of an effective operator from Eq. (2)

processes considered here are the four-fermion operators

Q1 = (s̄LγμT
acL)(c̄Lγ μT abL),

Q2 = (s̄LγμcL)(c̄Lγ μbL),

Q3 = (s̄LγμbL)
∑

q

(q̄γ μq),

Q4 = (s̄LγμT
abL)

∑

q

(q̄γ μT aq),

Q5 = (s̄LγμγνγσbL)
∑

q

(q̄γ μγ νγ σq),

Q6 = (s̄Lγμγνγσ T
abL)

∑

q

(q̄γ μγ νγ σ T aq),

(4)

as well as the dipole operators

Q7 = e

16π2 mb(s̄LσμνbR)Fμν,

Q8 = gs
16π2 mb(s̄LσμνT abR)Ga

μν,
(5)

with chiral left (right) projectors L (R) and the field strength
tensor of the photon Fμν . We neglect contributions propor-
tional to the small CKM matrix element Vub and to the
strange-quark mass.

3 Matching at one-loop level

To describe BSM physics at energies below the elec-
troweak scale μW , the SMEFT Lagrangian in Eq. (1) has
to be matched onto the WET Lagrangian as illustrated in
Fig. 2. Top-quark measurements allow to constrain the val-
ues of Wilson coefficients at the scale μt ∼ mt . At the scale
μb ∼ mb, B measurements can be used to constrain the val-
ues of the WET coefficients. To express B observables in
terms of SMEFT Wilson coefficients at the scale μt , the fol-
lowing steps have to be performed, extending the procedure
described in Ref. [22]: first, RGE evolution of the SMEFT

Wilson coefficients from the scale μt to μW has to be per-
formed. As a next step,LSMEFT has to be matched ontoLWET.
Finally, the RGE evolution of the WET Wilson coefficients
from μW to μb has to be carried out. These three steps allow
the computation of observables, such as BR(B̄ → Xsγ ), at
the scale μb in dependence of the SMEFT Wilson coeffi-
cients Ci (μt ) at the scale μt . In the following, we describe
each of the three steps for the b → sγ process considered in
this work.

3.1 RGE evolution in SMEFT

The computation of the RGEs in SMEFT is based on Refs.
[28,30,31]. To describe the RGE evolution of the operators
in Eq. (2) at O(αs), the following SMEFT operators have to
be included due to mixing:

Ouϕ =
(
ϕ†ϕ

)
(q̄LuR ϕ̃) ,

OϕG =
(
ϕ†ϕ

)
GA

μνG
Aμν,

O
ϕG̃ =

(
ϕ†ϕ

)
G̃ A

μνG
Aμν,

(6)

with G̃ A
μν = 1

2εμναβGAαβ (ε0123 = +1). To compute the a-
nomalous dimension matrix at O(αs), the effective operators
have to be rescaled [32]:

O ′
uB = yg′ (q̄LσμνuR

)
ϕ̃Bμν,

O ′
uϕ = y

(
ϕ†ϕ

)
(q̄LuR ϕ̃) ,

O ′
uG = ygs

(
q̄LσμνT AuR

)
ϕ̃GA

μν,

O ′
ϕG = g2

s

(
ϕ†ϕ

)
GA

μνG
Aμν,

O ′
uW = yg

(
q̄Lσμντ I uR

)
ϕ̃W I

μν,

O ′
ϕG̃

= g2
s

(
ϕ†ϕ

)
G̃ A

μνG
Aμν,

(7)

where g′, g and gs are the coupling constants corresponding
to U (1)Y , SU (2)L and SU (3)C , respectively, and y denotes
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Fig. 2 Illustration of the energy
scales and effective theories. At
the high energy scale Λ, the UV
theory is matched onto SMEFT.
For measurements of the top
quark, the dimension-six Wilson
coefficients in LSMEFT are
evolved to the scale μt ∼ mt
using the SMEFT RGE. For
comparison with measurements
of B physics, SMEFT is
matched at a scale μW ∼ mW
onto WET. For measurements at
the scale μb ∼ mb, the
coefficients in LWET are evolved
using the WET RGE

a Yukawa coupling. The Wilson coefficients change with
inverse powers of the couplings. In terms of the rescaled
coefficients, the RGEs in SMEFT read

d

d ln μ

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C ′
uG

C ′
uW

C ′
uB

C ′
uϕ

C ′
ϕG

C ′
ϕG̃

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= αs

4π

4

3

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 −3 −3i
2 2 0 0 0 0
10
3 0 2 0 0 0

−24 0 0 −6 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C ′
uG

C ′
uW

C ′
uB

C ′
uϕ

C ′
ϕG

C ′
ϕG̃

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(8)

This matrix is not closed at O(αs): The operators O ′
ϕG

and O ′
ϕG̃

give contributions to the running of

O ′
dG = ygs

(
q̄LσμνT AdR

)
ϕGA

μν (9)

and O ′
uG contributes to the running of the four-quark opera-

tors

O ′(1)
quqd = (qiLuR)εi j (q

j
LdR), (10)

O ′(8)
quqd = (qiLT

AuR)εi j (q
j
LT

AdR), (11)

where i, j are isospin indices and ε12 = +1. These contribu-
tions are suppressed by small down-type Yukawa couplings
and neglected in Eq. (8). Further more, we see from Eq. (8)
that C ′

ϕG and C ′
ϕG̃

do not change their values due to running

at O(αs). Since OϕG and O
ϕG̃ have no sizable effect on t t̄γ

production [14] and b → sγ transitions, we neglect O ′
ϕG

and O ′
ϕG̃

under the assumption that only operators includ-

ing the top quark are generated at the scale Λ. The operator
O ′
uϕ does not directly affect the observables we study but is

needed to absorb the UV divergence in the top-quark mass
corrections from O ′

uG in SMEFT NLO computations [33].
We compute the BSM contributions at LO QCD and neglect
O ′
uϕ .

b s
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Fig. 3 Examples of one-loop diagrams for b → sγ and b → sg
transitions. The black dots denote the insertion of a SMEFT operator

3.2 Matching SMEFT onto WET

In Fig. 3 we give examples for one-loop diagrams includ-
ing contributions from operators in Eq. (2) to LWET. The
matching conditions have been calculated in Ref. [22] and
read

ΔC̄ (0)
7 =

√
2mt

mW

[
C̃uW EuW

7 (xt ) + C̃∗
uW FuW

7 (xt )

+ cos θw

sin θw

(
C̃uB E

uB
7 (xt ) + C̃∗

uB F
uB
7 (xt )

) ]
, (12)

ΔC̄ (0)
8 =

√
2mt

mW

[
C̃uW EuW

8 (xt ) + C̃∗
uW FuW

8 (xt )

− g

gs

(
C̃uG E

uG
8 (xt ) + C̃∗

uG F
uG
8 (xt )

) ]
, (13)

where xt = m2
t /m

2
W and ΔC̄ (0)

i denotes BSM contribu-
tions at order α0

s to the coefficients in LWET. The C̃i denote
rescaled Wilson coefficients

C̃i = Ci
v2

Λ2 , (14)

where v = 246 GeV is the Higgs vacuum expectation value.
Explicit expressions for the xt -dependent functions EuW

7 ,
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FuW
7 , EuW

8 and FuW
8 can be found in Ref. [22] and are given

in Appendix B.

3.3 RGE evolution in WET

At the scale μW , both the SM and BSM contributions are
matched onto LWET. The RGEs are then used to evolve the
coefficients C̄i from μW to μb. By doing so, large logarithms
are resummed to all orders in perturbation theory. Instead of
the original coefficients C̄i it is convenient to use the effective
coefficients [34,35]

Ceff
i =

⎧
⎪⎪⎨

⎪⎪⎩

C̄i for i = 1, . . . , 6

C̄7 + ∑6
j=1 y j C̄ j for i = 7

C̄8 + ∑6
j=1 z j C̄ j for i = 8

. (15)

One finds y = (0, 0,−1/3,−4/9,−20/3,−80/9) and z =
(0, 0, 1,−1/6, 20,−10/3) [29] in the MS scheme with fully
anticommuting γ5. The RGEs for the effective coefficients
read

d

d ln μ
Ceff
i (μ) = γ eff

j i (μ)Ceff
j (μ), (16)

with the anomalous dimension matrix γ eff. The perturbative
expansion of this matrix is given as

γ eff(μ) = αs(μ)

4π
γ (0)eff+α2

s (μ)

(4π)2 γ (1)eff+α3
s (μ)

(4π)3 γ (2)eff+· · · .

(17)

The matrices γ (0)eff and γ (1)eff are given in Ref. [29]. The
matrix γ (2)eff is specified in Ref. [36]. Analogously, the coef-
ficients expanded in powers of αs read

Ceff
i (μ) = C (0)eff

i (μ) + αs(μ)

4π
C (1)eff
i (μ)

+ α2
s (μ)

(4π)2 C
(2)eff
i (μ) + · · · .

(18)

The SM values of the effective coefficients at the scale μW

are known at NNLO QCD [37–39].
Obviously, performing the matching of C̃i to ΔC̄ (0)

i with-
out running in SMEFT and WET only by setting μW = μb in
Eqs. (12) and (13) leads to a completely different dependence
of the SMEFT coefficients. The impact of the C̃i on ΔC̄ (0)

i
can become larger by factors up to ≈ 40 and contributions
due to mixing are not included.

4 Measurements

In this section, the measurements of the t t̄γ production cross
section and of the B̄ → Xsγ branching fraction that we use
for constraining the Wilson coefficients are described.

4.1 Measurements of the t t̄γ cross section

Cross sections of t t̄γ production have been measured at dif-
ferent center-of-mass energies by the ATLAS [40–42] and
CMS [43] experiments. For our fits, we consider the cross
sections determined in the 13 TeV analysis performed by the
ATLAS collaboration using 2015 and 2016 LHC data corre-
sponding to an integrated luminosity of 36.1 fb−1 [42]. In this
analysis, the t t̄γ production cross section is reported as a fidu-
cial cross section for final states containing one or two leptons
(in the following referred to as single-lepton or dilepton chan-
nel, respectively), where the leptons can be either electrons
or muons (or their corresponding antiparticles). The fiducial
regions for both channels are defined in Sec. 7.1 of Ref. [42].
The measured values of the single-lepton and dilepton fidu-
cial cross sections are reported as

σ fid
ATLAS(t t̄γ, 1�) = 521 ± 9 (stat.) ± 41 (syst.) fb,

σ fid
ATLAS(t t̄γ, 2�) = 69 ± 3 (stat.) ± 4 (syst.) fb .

Within uncertainties, the measurements agree well with the
SM predictions at NLO QCD [42,44]:

σ fid
SM,NLO(t t̄γ, 1�) = 495 ± 99 fb,

σ fid
SM,NLO(t t̄γ, 2�) = 63 ± 9 fb .

4.2 Measurements of BR(B̄ → Xsγ )

For the branching fraction of B̄ → Xsγ multiple measure-
ments, performed by the BaBar [45–47], Belle [48–50] and
CLEO [51] experiments, are available. A combination of
these measurements has been performed by the Heavy Flavor
Averaging Group (HFLAV) [52], taking into account the dif-
ferent minimum photon energy requirements applied in the
respective analyses. The differences are corrected for by per-
forming an extrapolation according to the method described
in Ref. [53]. For our fits we use the most recent result of the
combination of BR(B̄ → Xsγ ) measurements [54],

BR(B̄ → Xsγ ) = (332 ± 15) × 10−6,

with a minimum photon energy requirement of Eγ >

1.6 GeV. This value agrees well with the NNLO SM pre-
diction [55]

BRSM(B̄ → Xsγ ) = (336 ± 23) × 10−6 .
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5 Modeling observables

In the following we describe the computation of the SM and
BSM contributions to the observables. In Sect. 5.1 we discuss
how to model the fiducial t t̄γ cross section and in Sect. 5.2
we describe the computation of BR(B̄ → Xsγ ).

5.1 Computation of σ(t t̄γ )

The t t̄γ production cross section can be computed at LO
QCD for any given configuration of Wilson coefficients using
Monte Carlo (MC) simulations. Since the MC simulations
take too long to be directly interfaced to the fit of Wilson
coefficients, we determine a parametrization of σ(t t̄γ ) in
terms of the Wilson coefficients. By squaring the matrix
element of processes including dimension-six operators, the
cross section in the presence of Wilson coefficients C̃i can
be expressed as

σ = σ SM +
∑

i

C̃iσ
interf.
i +

∑

i≤ j

C̃i C̃ jσ
BSM
i j , (19)

where σ interf.
i are terms coming from the interference between

SM and EFT diagrams and σBSM
i j are purely BSM contri-

butions. Using cross sections computed with MC simula-
tions for different configurations of Wilson coefficients as
sampling points, an interpolation to Eq. (19) can be per-
formed, yielding numerical values for the σi terms and thus
a parametrization of the cross section as a function of the
Wilson coefficients that can be used in the fit.

To parametrize the impact of the dimension-six operators
OuB , OuG and OuW on the t t̄γ production cross section, we
perform simulations using MadGraph5_aMC@NLO [56]
with the dim6top_LO UFO model [16]. We generate MC
samples similar to the signal sample described in Ref. [42]
to make sure that the simulations are suitable for a fit to
the fiducial measurements. The samples are generated using
2 → 7 processes for both, the single-lepton and the dilepton
channel, allowing for BSM contributions from OuW in top-
quark decay. For the BSM contributions only one insertion
of a dimension-six operator is allowed at a time and the BSM
energy scale is set to Λ = 1 TeV. The dimension-six oper-
ators we consider in this paper are OuB , OuG and OuW , as
given in Eq. (2). In the dim6top_LO UFO model different
degrees of freedom are chosen than in this analysis, so that it
is not possible to directly specify the value of the coefficient
C̃uB but only the value of the linear combination

C̃uZ = cos θWC̃uW − sin θWC̃uB, (20)

where θW is the Weinberg angle (in the notation of Ref. [16]
CtZ is used instead of CuZ ). Thus, we generate sampling
points in the space of the Wilson coefficients C̃uG , C̃uW and

C̃uZ and use the equivalent representation in terms of C̃uB ,
C̃uG and C̃uW for determining constraints on the coefficients
hereinafter. We choose 201 different sampling points, where
up to two Wilson coefficients at a time can take non-zero
values. For each of the sampling points, 50 000 events are
generated. Comparing the SM value obtained with the cross
section of the LO signal sample described in Ref. [42], we
find good agreement with a relative deviation of less than
4%.

We determine the parametrization of the t t̄γ cross sections
as a function of the Wilson coefficients C̃uG , C̃uW and C̃uZ

by performing an interpolation according to Eq. (19). For the
interpolation we apply a least squares fit with the Levenberg–
Marquardt algorithm provided by the LsqFit.jl package
[63].

The sampling points and the result of the interpolation
are shown in Fig. 4 as slices of the phase space where only
one Wilson coefficient is varied at a time, while the others
are set to zero. We find that the simulated cross sections
are well described by the interpolation, as the relative dif-
ferences between the simulated values and the interpolation,
calculated at all sampling points, have a standard deviation
of only 0.2%.

To obtain fiducial acceptances, we apply parton showering
to the events using PYTHIA8 [57] and perform a particle-
level event selection with MadAnalysis [58–60]. For the
clustering of particle jets, the anti-kt algorithm [61] with a
radius parameter R = 0.4 is applied usingFastJet [62]. At
each sampling point we determine the fiducial acceptances
for the single-lepton and dilepton channels using an event
selection that is similar to the definition of the fiducial regions
described in Ref. [42]. Comparisons of the fiducial accep-
tances for the SM sampling point with the values given in
Ref. [42] show that we obtain the same fiducial acceptance
for the dilepton channel and only a small deviation of 3% for
the single-lepton channel.

It should be noted that performing a parton-level simula-
tion and applying the fiducial cuts at this level, which might
be considered as a first approximation, is not sufficient as the
resulting LO fiducial cross sections deviate from the LO SM
predictions in Ref. [42] by about 50% for the single-lepton
and 25% for the dilepton channel.

The dependence of the fiducial acceptance A on the Wil-
son coefficients C̃i can be parametrized as

A = ASMσ SM + ∑
i C̃i Ainterf.

i σ interf.
i + ∑

i≤ j C̃i C̃ j ABSM
i j σBSM

i j

σ SM + ∑
i C̃iσ

interf.
i + ∑

i≤ j C̃i C̃ jσ
BSM
i j

,

(21)

where the denominator is the parametrization of the cross
section σ as given in Eq. (19). The acceptances Ai account
for changes in kinematics due to BSM contributions. With
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Fig. 4 Sampling points and interpolation result for the t t̄γ cross section, represented as slices of the phase space where only one of the Wilson
coefficient is varied at a time, while the others are set to zero

Fig. 5 Sampling points and interpolation result for the fiducial acceptance of the single-lepton channel A(1�), represented as slices of the phase
space where only one of the Wilson coefficient is varied at a time, while the others are set to zero

the parameters σi already determined in the previous inter-
polation of the cross section, we perform a least squares fit
of the fiducial acceptances to Eq. (21) in each channel using
the acceptances from the event selection as sampling points.
The result of the interpolation and the sampling points for the
fiducial acceptance of the single-lepton channel are shown in
Fig. 5. It is observable that the Wilson coefficients C̃uW and
C̃uZ have a stronger impact on the acceptance than C̃uG .
Compared to the SM value, the former coefficients can both
change the acceptance by up to a factor of 2.5, while the latter
changes it only by up to a factor of 1.3. For the fiducial accep-
tances of the dilepton channel a comparable behavior can be
observed. The corresponding plots are shown in Appendix C.
In both channels, fluctuations in the simulated acceptances
are present. The standard deviation of the relative difference
between simulation and interpolation is 1.3% in the single-
lepton channel and 3.9% in the dilepton channel, indicating
that both interpolations are sufficient.

We obtain the dependence of the fiducial cross sections
on the Wilson coefficients by multiplying the interpolation
of the total cross section with the interpolations of the fidu-
cial acceptances. As our simulations are performed at LO
QCD and NLO calculations of the SM fiducial cross sec-
tions are available, we apply a SM k-factor by setting the SM

contributions to the according values of the NLO predictions
presented in Sect. 4.1.

In Fig. 6 the resulting parametrizations of the fiducial
t t̄γ cross sections as functions of the Wilson coefficients
C̃uB , C̃uG and C̃uZ are shown for the single-lepton and
dilepton channels. The dependence on C̃uB is determined
using Eq. (20). Shown are slices of the phase space where
only one Wilson coefficient is varied at a time, while the
others are set to zero. In both channels, we observe a com-
parable behavior of the fiducial cross sections and similar
sensitivities to the Wilson coefficients.

5.2 Computation of BR(B̄ → Xsγ )

The most recent estimate of the B̄ → Xsγ branching fraction
at NNLO QCD has been presented in Ref. [55], following the
algorithm described in Ref. [39]. We adapt this procedure in
our computation of BR(B̄ → Xsγ ) and extend it to LO
BSM contributions. Applying the notation of Ref. [64], the
branching fraction can be expressed as

BR(B̄ → Xsγ ) = BR(B̄ → Xceν̄)exp

×
∣∣∣∣
V ∗
tsVtb
Vcb

∣∣∣∣
2 6αe

πC
(P(E0) + N (E0)),

(22)
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Fig. 6 Parametrizations of the fiducial t t̄γ cross sections for (left) the
single-lepton channel and (right) the dilepton channel, represented as
slices of the phase space where only one of the Wilson coefficient is

varied at a time, while the others are set to zero. Also indicated are the
corresponding ATLAS measurements

where αe is the fine structure constant, E0 = 1.6 GeV is the
photon energy cut and P(E0) and N (E0) denote perturbative
and non-perturbative corrections, respectively. The factor C
is given as

C =
∣∣∣∣
Vub
Vcb

∣∣∣∣
2

Γ (B̄ → Xceν̄)

Γ (B̄ → Xueν̄)
, (23)

with an experimental value Cexp = 0.568 ± 0.007 ± 0.01
[65]. The quantity P(E0) is given as

P(E0) =
8∑

i, j=1

Ceff
i (μb)C

eff
j (μb)Ki j (E0, μb), (24)

where the matrix K (E0, μb) expanded in αs reads:

Ki j (E0, μb) = δi7δ j7 + αs(μb)

4π
K (1)
i j

+ α2
s (μb)

(4π)2 K (2)
i j + O(α3

s (μb)) .

(25)

The coefficients K (1)
i j can be derived from the NLO results

given in Ref. [66]. For the computation of P(E0) at approx-
imate NNLO we include the effects of charm and bottom
masses in K (2)

77 [67], K (2)
78 [68] and K (2)

1(2)7 [69] as well as the

complete computation of K (2)
78 [70] and the NNLO compu-

tation of K (2)
1(2)7 [39]. Contributions of three-body and four-

body final states to K (2)
88 [71,72] and K (2)

1(2)8 [72] are included
in the Brodsky–Lepage–Mackenzie (BLM) approximation
[73]. For the computation of non-perturbative corrections we
include results from Refs. [74–76]. The scales are chosen to
be μW = mW and μb = 2 Gev. For the SM central value we
find BRSM(B̄ → Xsγ ) = 336 × 10−6, matching the results
in Ref. [55].

Fig. 7 Dependence of BR(B̄ → Xsγ ) on the SMEFT coefficients
C̃i (μ = mt ). Only one coefficient is varied at a time while the other
two are set to zero. The grey band denotes the experimental average

In Fig. 7 we give the dependence of BR(B̄ → Xsγ ) on
the SMEFT coefficients at the scale μ = mt . Only one
coefficient is varied while the other two are set to zero.
We also indicate the averaged measurements described in
Sect. 4.2. The branching fraction BR(B̄ → Xsγ ) shows the
strongest dependence on C̃uB , whereas the dependence on
C̃uG and C̃uW is weaker. Numerically, Eq. (12) reads for real-
valued Wilson coefficients ΔC̄ (0)

7 (μW ) = 0.093C̃uW (μW )−
2.354C̃uB(μW ) and C̃uG is of higher order in αs .

As a cross check for our computation, we apply flavio
[77] together with wilson [78] and Eqs. (12) and (13) to
compute the branching fraction. Since wilson provides
only tree-level matching between SMEFT and WET, the
matching conditions in Eq. (12) and Eq. (13) are not included.
We therefore apply wilson only for the RGE evolution in
WET. For the SM prediction we find good agreement with
the result obtained using flavio, BRflavio(B̄ → Xsγ ) =
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(326±23)×10−6. The deviation of the central value is only
2% and thus smaller than the theory uncertainties. For the
dependence on the Wilson coefficients we find very similar
behavior and obtain only deviations smaller than the theory
uncertainties in the range −1 ≤ C̃i ≤ 1.

6 Constraining Wilson coefficients

With the parametrizations of the t t̄γ cross sections and of
the B̄ → Xsγ branching fraction determined in Sect. 5,
we perform fits to the measurements described in Sect. 4 to
constrain the Wilson coefficients C̃uB , C̃uG and C̃uW . We use
a new implementation of the EFTfitter tool [79] based on the
Bayesian Analysis Toolkit—BAT.jl [80,81]. This allows to
perform fits of Wilson coefficients in a Bayesian reasoning,
yielding (marginalized) posterior probability distributions of
the parameters.

We include both the experimental uncertainties and the
SM theory uncertainties given in Sect. 4 in the fit. Focusing on
the combination of observables from different energy scales,
we make the simplifying assumption that the uncertainties
of the measurements included are gaussian distributed [79]
and uncorrelated. This assumption seems reasonable for the
correlations between top-quark and B physics measurements
and also for the correlation between the statistical uncertain-
ties of the two channels contributing to σ(t t̄γ ). The sys-
tematic and theoretical uncertainties of both channels can
in principle be correlated in a non-negligible manner. As no
information about the correlations is available, we investigate
their impact afterwards by performing several fits varying the
corresponding correlation coefficients.

To illustrate the benefit of combining observables from
top-quark and B physics, we first constrain the Wilson
coefficients using only one set of measurements at a
time (Sects. 6.1, 6.2) before performing the combined fit
(Sect. 6.3).

6.1 B physics only

Considering only BR(B̄ → Xsγ ), we perform a fit to the
HFLAV average described in Sect. 4.2 using the description
of the branching fraction given in Sect. 5.2. Treating C̃uB ,
C̃uG and C̃uW as free parameters of the fit and providing
no prior knowledge about their distributions, we assign uni-
form prior probability distributions in the range of [− 1, 1]
to them. Larger values of the rescaled Wilson coefficients C̃
would not be reasonable and would lead to a breakdown of
the EFT expansion.

When performing the fit, we observe that only C̃uB can be
constrained using this setup. No constraints on the other two
coefficients can be obtained, as the resulting marginalized
posterior probabilities of C̃uG and C̃uW are uniformly dis-

Fig. 8 Marginalized posterior probability distribution of C̃uB from the
fit of all three Wilson coefficients to BR(B̄ → Xsγ ) only. The smallest
interval containing 90% of the posterior probability and the SM value
(dashed line) are indicated

tributed. As can be seen from Fig. 7, C̃uB is the Wilson coeffi-
cient with the largest impact on the B̄ → Xsγ branching frac-
tion, thus receiving stronger constraints than C̃uG and C̃uW

in a fit with three free parameters and a single observable.
The marginalized posterior distribution of C̃uB is shown

in Fig. 8. Two regions for C̃uB are favored by the fit. Compar-
ing with Fig. 7, the two regions with the highest probability at
about C̃uB ≈ − 0.5 and C̃uB ≈ 0.0 are reasonable since the
quadratic shape of BR(B̄ → Xsγ ) as a function of C̃uB leads
to an agreement with the measurement in these two regions.
Apparently, without further information, neither of them can
be rejected. Indeed, as is well-known, this ambiguity can be
resolved by studies of semileptonic b → s�+�− decays [82],
notably, angular distributions thereof, whose measurements
support the close-to-the-SM branch [83]. Since the purpose
of this work is to demonstrate complementarity and feasi-
bility of a joint bottom and top SMEFT-analysis rather than
performing a most global fit, we leave the study of further
observables beyond BR(B̄ → Xsγ ) and σ(t t̄γ ) for future
work.

6.2 Top physics only

We perform a fit of the Wilson coefficients using σ(t t̄γ ) only.
We apply the parametrizations of the single-lepton and dilep-
ton channel fiducial cross sections obtained in Sect. 5.1 and
fit to the corresponding measurements described in Sect. 4.1.
Again, all three Wilson coefficients are free parameters of the
fit, having uniform prior probability distributions within the
range [-1, 1]. The resulting marginalized posterior distribu-
tion of C̃uB and the smallest area containing 90% of the pos-
terior probability of the 2D marginalized distribution of C̃uG

vs. C̃uW are shown in Fig. 9. With a fit to σ(t t̄γ ) all three Wil-
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Fig. 9 Posterior probability distributions for the fit of all three Wilson
coefficients using only the measurements of σ(t t̄γ ). Shown are (left)
the marginalized posterior probability distribution of C̃uB together with
the corresponding smallest interval containing 90% of the probability

and (right) the smallest interval containing 90% of the posterior prob-
ability for the 2D marginalized distribution of C̃uG vs. C̃uW . The SM
values are indicated

son coefficients can be constrained to a similar extent. The
posterior probability distributions of the coefficients have
similar shapes and the 90% intervals are of comparable size.
These results are compatible with what is observed in the
parabolas shown in Fig. 6. When performing the fit consid-
ering only the single-lepton or only the dilepton channel mea-
surements as a cross check, very similar results are obtained.
This is also expected from Fig. 6 as it indicates that both
channels have similar sensitivity to the Wilson coefficients.

6.3 Combined analysis

For the combined fit, we apply the same uniform priors as
in the individual fits and constrain C̃uB , C̃uG and C̃uW using
both BR(B̄ → Xsγ ) andσ(t t̄γ ). The resulting smallest areas
containing 90% of the posterior probability are shown in
Fig. 10 for the 2D marginalized distributions. The plots also
include the corresponding 90% regions from the previously
described fits including only one set of observables at a time.

In Fig. 10 it is noticeable that the ambiguity in C̃uB , which
is observed in the fit including only the BR(B̄ → Xsγ )
measurement, is resolved in the combined fit. It is recogniz-
able that even though the branching fraction measurement
alone constrains only C̃uB , in the combination with the t t̄γ
cross sections the constraints on all three Wilson coefficients
improve as the sizes of the areas containing 90% of the prob-
ability decrease in all plots. The 90% area of the fit using
only BR(B̄ → Xsγ ) in the upper left plot of Fig. 10 has a
size of 12% of the total parameter space C̃uB ∈ [−1, 1] and
C̃uG ∈ [−1, 1] specified by the priors. For the fit considering
only σ(t t̄γ ) the corresponding area is of a similar size, taking

up about 11% of the allowed space. Due to the orthogonality
of the observables, combining top and bottom measurements
gives, on the other hand, a 90% posterior region reduced by
more than an order of magnitude, yielding an area that cor-
responds to only about 1% of the allowed parameter space.
The same numbers apply also for the upper right plot of C̃uB

vs. C̃uW . Even in the bottom plot of Fig. 10, which does not
directly depend on C̃uB and is thus not directly constrained by
the branching fraction measurement, the 90% area is reduced.
In combination with the BR(B̄ → Xsγ ) measurement, the
90% area decreases by a factor of 1.9 compared to the fit
considering only the σ(t t̄γ ) measurements. This is a con-
sequence of the reduction of allowed regions in the three-
dimensional parameter space.

A different representation of the same fit results is given in
the left plot of Fig. 11, where the smallest intervals containing
90% probability of the 1D marginalized posterior distribu-
tions are shown for the combined fit as well as for the fits
using only one of the measurements.

In the right plot of Fig. 11 the smallest intervals containing
90% probability of the 1D marginalized posterior distribu-
tion are shown for individual fits in which only one of the
Wilson coefficients is allowed to vary at a time, while the
other two are fixed to zero. Overall, a similar behaviour of
the results can be observed compared to the fits with three
free parameters. As there are fewer degrees of freedom in
the fits, stronger constraints on the Wilson coefficients can
be obtained. It is noticeable that in the individual fits not
only the ambiguity in C̃uB can be resolved by the t t̄γ mea-
surement but that also an ambiguity in the top-measurements
interval of C̃uW can be resolved by BR(B̄ → Xsγ ).

123



Eur. Phys. J. C (2020) 80 :136 Page 11 of 15 136

Fig. 10 Comparison of the smallest intervals containing 90% of the 2D marginalized posterior probability distributions for the fits of all three
Wilson coefficients using only the measurement of BR(B̄→Xsγ ), only the measurements of σ(t t̄γ ) and for the combination. The SM values are
indicated

As mentioned above, we study the impact of correlations
between the systematic and theoretical uncertainties of the
single-lepton and dilepton channels of σ(t t̄γ ). For this pur-
pose, we perform the combined fit assuming different cor-
relations between the two channels for these uncertainties.
We vary the correlation coefficient of the systematic uncer-
tainties between values of − 0.9 and 0.9 as negative cor-
relations are conceivable. The correlation coefficient of the
theory uncertainties is varied up to a value of 0.9 since we
do not expect negative correlations for these uncertainties.
When comparing the sizes of the areas containing 90% of
the marginalized posterior probability to the results assuming
uncorrelated uncertainties, we observe only minor changes
for the two distributions of C̃uB vs. C̃uG and C̃uB vs. C̃uW .
We find relative changes in the size of the areas of about 4%
at maximum and no changes in the general shape or positions
compared to the combination shown in the two upper plots
of Fig. 10. As the distribution of C̃uG vs. C̃uW is dominantly
constrained by the σ(t t̄γ ) measurements, we observe larger
changes due to variations of the correlation coefficients. The

size of the 90% area can change by up to 30% for this dis-
tribution. Again, the general shape and the positions are not
affected but only the width of the ring in the bottom plot of
Fig. 10 varies. Therefore, we conclude that even in the pres-
ence of correlations between the systematic or theoretical
uncertainties of the single-lepton and dilepton channels our
previously presented findings are valid.

It should be noted that our focus is to demonstrate how
observables from B and top-quark physics can be com-
bined in a single fit of the SMEFT Wilson coefficients.
Using only two observables, we do not obtain the most
stringent constraints on the coefficients considered. Includ-
ing further observables would certainly improve the con-
straints. For example, the Wilson coefficients C̃uG and C̃uW

are strongly constrained by the t t̄ production cross section
and W -boson helicity-fraction measurements, respectively
[14,17], whereas measurements of semileptonic b → s�+�−
decays, especially B → K ∗μ+μ− angular distributions
[83], exclude values C̃uB ≈ −0.5 which are allowed by
BR(B̄ → Xsγ ).
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Fig. 11 Comparison of the smallest intervals containing 90% proba-
bility of the 1D marginalized posterior distribution for the fits using only
BR(B̄ → Xsγ ), only σ(t t̄γ ) and using their combination. Shown are
the intervals for (left) the 1D marginalized posterior distributions for

the fit of all three Wilson coefficients at a time and (right) for individual
fits of each Wilson coefficient, while the other two coefficients are fixed
to zero

7 Conclusions

Effective theories provide a systematic toolbox to exploit
multi-observable systems and probe the SM in a model-
independent way. The SMEFT-framework allows to combine
data from the precision flavor and the high energy frontiers.
We exploited synergies between top-quark and B-physics
measurements from the LHC and precision flavor factories.

Specifically, we performed an exploratory study combin-
ing data on the B̄ → Xsγ branching ratio and on fiducial
t t̄γ production cross sections within SMEFT, after detailing
the ingredients required to connect measurements from dif-
ferent energy scales. We pointed out that for the processes
considered in this work it is necessary to perform a dedi-
cated matching that goes beyond the tree-level matching that
is currently available in tools. Using MC simulations and a
particle-level event selection, we performed interpolations of
the total t t̄γ production cross section and the fiducial accep-
tances to parametrize the dependence of the fiducial cross
sections on the Wilson coefficients.

We demonstrated that due to the different sensitivities of
the observables to the SMEFT operators, a combination of
the fiducial t t̄γ cross section with the B̄ → Xsγ branching
fraction improves the constraints on the Wilson coefficients
(Sect. 6). The complementarity of the different observables
used in the fit allows to resolve ambiguities and to reduce
posterior regions in the marginalized parameter space by up
to an order of magnitude.

Further, more global analyses of combined top-quark and
flavor physics measurements should be pursued in the future

with more precise data expected from LHCb [84] and Belle II
[85] and the high-pT -experiments [86], to decipher physics
at higher energies and pursue the quest for BSM physics.
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Appendix A: Parameters and experimental input

The parameters used for numerical computations are given
in Ref. [87]

mt = (173.1 ± 0.4) GeV,

mt (mt ) =
(

160+5
−4

)
GeV,
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mb(mb) =
(

4.18+0.04
−0.03

)
GeV,

mc(mc) =
(

1.275+0.025
−0.035

)
GeV,

ms(2 GeV) =
(

0.095+0.009
−0.008

)
GeV,

mZ = 91.188 GeV,

mW = 80.4 GeV,

αs(mZ ) = 0.1181,

αe = 7.29735257 × 10−3,

sin2 θw(mZ ) = 0.2313,

GF = 1.166379 × 10−5 GeV−2 .

The relevant CKM Matrix elements are given in Refs. [88,89]

Vtb = 0.999097 ± 0.000024,

Vts = (−0.04156 ± 0.00056) exp[(1.040 ± 0.035)◦],
Vcb = 0.04255 ± 0.00069 .

The experimental input for the computation of BR(B̄ →
Xsγ ) reads [65,90]

C = 0.568 ± 0.007 ± 0.01 ,

BR(B̄ → Xceν̄)exp = 0.1061 ± 0.0017 .

Appendix B: Matching condition

The functions EuW
7 , FuW

7 , EuW
8 and FuW

8 are given by

EuW
7 (xt ) = −9x3

t + 63x2
t − 61xt + 19

48 (xt − 1)3

+
(
3x4

t − 12x3
t − 9x2

t + 20xt − 8
)

ln (xt )

24 (xt − 1)4

+ 1

8
ln

(
m2

W

μ2
W

)
,

FuW
7 (xt ) = xt (2 − 3xt ) ln (xt )

4 (xt − 1)4 − 3x3
t − 17x2

t + 4xt + 4

24 (xt − 1)3 ,

EuB
7 (xt ) = −1

8
ln

(
m2

W

μ2
W

)
− (xt + 1)2

16 (xt − 1)2

− x2
t (xt − 3) ln (xt )

8 (xt − 1)3 ,

FuB
7 (xt ) = −1

8
,

EuW
8 (xt ) = 3x2

t − 13xt + 4

8 (xt − 1)3 + (5xt − 2) ln (xt )

4 (xt − 1)4 ,

FuW
8 (xt ) = x2

t − 5xt − 2

8 (xt − 1)3 + 3xt ln (xt )

4 (xt − 1)4 ,

EuG
8 (xt ) = EuB

7 (xt ),

FuG
8 (xt ) = FuB

7 (xt ) .

Appendix C: Fiducial acceptance of the dilepton channel

See Fig. 12.

Fig. 12 Sampling points and interpolation result for the fiducial accep-
tance of the dilepton channel A(2�), represented as slices of the phase
space where only one of the Wilson coefficient is varied at a time, while
the others are set to zero
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