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Abstract We propose a new model-independent strategy
to calibrate the distance relation in Type Ia supernova (SN)
observations and to probe the intrinsic properties of SNe
Ia, especially the absolute magnitude MB , basing on strong
lensing observations in the upcoming Large Synoptic Sur-
vey Telescope (LSST) era. The strongly lensed quasars can
provide the Time Delay Distances (TDD) and the Angular
Diameter Distances (ADD) to the lens galaxies. These abso-
lute distance measurements can model-independently anchor
the SNe Ia at cosmological distances. We simulated 55 high-
quality lensing systems with 5% uncertainties for both TDD
and ADD measurements basing on future observation con-
ditions. For the time delay distances and the angular diam-
eter distances as the calibration standards, the calibrated 1σ

uncertainties of MB are approximately 0.24 mag and 0.03
mag, respectively. Besides, we also consider an evolving dis-
tance relation, for example, caused by the cosmic opacity. In
this case, the 1σ uncertainties of MB calibrated with TDD and
ADD are approximately 0.31 mag and 0.06 mag, respectively.
The results show that the ADD method will be a promising
tool for calibrating supernovae.

1 Introduction

Over the past decades, the number of observed Type Ia super-
novae (SNe) have increased dramatically with the develop-
ment of large surveys. Cosmography is therefore better set up.
SNe Ia are extremely luminous explosions and have almost
the same peak absolute magnitude (MB) on the basis of
a reasonable physical mechanism [1]. For most “ normal ”
SNe Ia, their peak absolute magnitudes have small disper-
sion [2]. They are therefore taken as ideal standard candles
in determining extra-galactic and cosmological luminosity
distances. However, the value of the peak absolute magni-
tude (i.e., intrinsic brightness) is unknown and considered as
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a free parameter, which needs to be calibrated by the local
distance ladders.

In practice, the way to calibrate the SNe Ia is through
Cepheid variable stars at local Universe whose luminosities
are related with periods [3]. This distance ladder method
has led to good results in cosmological studies [4,5]. How-
ever, there are some uncertainties in this approach. Firstly,
it mainly depends on the period-luminosity relationship of
Cepheid variables [6]. The effect of metallicity on both the
zero-point and slope of this relationship is highly controver-
sial in different theories. The effects of photometric contam-
ination and a changing extinction law on Cepheid distances
are also uncertain factors that cannot be ignored [7]. Sec-
ondly, with the development of the SN theory, many new fac-
tors have been found to be related to the absolute magnitude
of supernovae. For example, Host galaxies in different evo-
lutionary stages have different roles in the accretion process,
resulting in the absolute luminosity of supernovae dependent
on environments [8]. For the formation of supernovae, there
are many possibilities for the nature of the companion star
of the white dwarf. The single-degenerate path has been suc-
cessful in explaining the observations of the SNe Ia [9]. But
in the case of a double-degenerate path, subluminous SNe
Ia that are dimmer than their typical counterparts are pro-
duced [10]. Thirdly, the Cepheid variable stars are measured
locally, and the calibration needs to be extrapolated to high
redshifts. Considering that a high redshift supernova is redder
and more massive than a low redshift supernova [11], some
relations between the properties of supernovae may change
as the redshift increases. Therefore, it cannot be checked
whether this extrapolation method is effective in the case
of high redshifts. Due to the potential absorption, scattering
of the photons or other mechanisms that transfer photons to
other particles [12], the cosmic opacity could make the SNe
Ia dimmer, equivalently making MB appear to evolve with
redshift.

Recently, the community is puzzled by the Hubble con-
stant (H0) tension issue. The H0 measured from Cepheid
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variable stars and SNe Ia at local Universe has 4.4σ mismatch
with that constrained from Cosmic Microwave Background
(CMB) observations in the standard ΛCDM model [13].
This contradiction would either manifest unknown system-
atic errors in local distance measurements and CMB obser-
vations measurements or imply new physics beyond the stan-
dard cosmological model. Note that besides the Cepheid cal-
ibration, one can use a cosmological model to calibrate the
SNe Ia at high redshifts by simultaneously fitting the param-
eters in the model and parameters of SNe Ia, for example,
MB [14].

Therefore, due to the issues about both systematic errors
in observations and the standard cosmological model men-
tioned above, it is necessary to explore new model-indepen-
dent calibration methods (even at cosmological distances to
achieve the cross-check). It should be emphasized here that
there are at least three benefits to do this: (1) understand the
properties of SNe Ia themselves at any redshifts directly and
cosmological-model-independently; (2) provide new ways to
anchor SNe Ia and then apply them in cosmological studies;
(3) the newly calibrated SNe Ia may shed light on the H0

tension issue.
In the literature, the effective absolute magnitude M(z)

was calibrated by using the Etherington’s distance-duality
relation and the angular baryonic oscillation (BAO) scale
observed at any redshifts [16]. The disadvantage of this
method is that it produces the quantity that cannot be directly
compared with SN simulations. The inverse distance ladder
technique can not only determine H0 but also calibrate super-
novae. Some articles use this method to calibrate the intrin-
sic magnitude of supernovae by combining supernovae and
BAO [17,18]. However, BAO relies on the scale of the sound
horizon at recombination rs to convert angular measurements
into angular-diameter distance [19]. This means that once the
rs is fixed the H0 has already been determined. Recently, the
value of H0 was determined by using the inverse distance
ladder method in combination with supernovae and gravita-
tional lenses [20], though it depends on a specified cosmo-
logical model. Another study used three time-delay lenses to
calibrate the distance ladder at low-redshifts, combined them
with relative distances from SNe Ia and BAO, leaving rs com-
pletely free [19]. This method calibrates supernovae from a
new perspective and is promising in the future. Moreover, the
discovery of a coalescing gravitational wave (GW) signal of
a compact binary system and its electromagnetic counterpart
provides a new method for calibrating supernova absolute
magnitudes [21,22]. It is expected that the third generation
of gravitational wave detectors will provide more abundant
data in the future.

Strong gravitational lensing has become an effective tool
in astrophysics and cosmology [23]. When light from a dis-
tant object passes through an elliptical lens galaxy, multiple
images of AGN can be observed and time delays exist among

them due to the geometric and Shapiro effects for different
paths. Distances can be obtained by analyzing the imaging
and time delays. There are two methods to extract distance
information. One is to measure the “ time delay distance ”
(TDD) consisting of three angular diameters distance [24].
The other is to measure the angular diameter distance (ADD)
of the lenses, which can be obtained by measuring the time
delays and the velocity dispersion of the lens galaxy [25,26].
The current and upcoming large surveys are bringing us a
large number of lensed quasars, making time delay measure-
ments of strong lensing systems very promising for cosmol-
ogy.

In this work, we propose to use two kinds of lensing dis-
tances for calibrating the SNe Ia at cosmological distances. It
should be noted that the lensing observations are angular sep-
aration and spectroscopy measurements, thus the distances
measured should be free of cosmic opacity [27]. The structure
of the paper is as follows. In Sect. 2 we introduce the angu-
lar diameter distance and time delay distance, respectively.
We also introduce the mock catalog of the strong lensing
systems. In Sect. 3 we introduce the method for calibrating
SNe Ia with or without the consideration of cosmic opacity.
In Sect. 4 we present our analysis and results. Finally, we
summarize our work in Sect. 5.

2 Distances from strong lensing

Thousands of lensed quasars will be detected by the upcom-
ing wide-field synoptic surveys. In particular, the Large Syn-
optic Survey Telescope (LSST) [28] will find more than
8000 lensed quasars, of which a considerable part have well-
measured time delays [29]. With ancillary data consisting
of high-quality imaging from next generation space tele-
scope, the central velocity dispersion of the lens galaxies and
the line-of-sight (LOS) measurements, we can measure the
TDD and ADD. We introduce both of them in the following.
To make it clearer, we take the Singular Isothermal Sphere
(SIS) [30] as the model of the lens for example, although
realistic lenses are much more complicated.

Firstly, The time delay between two images of the lensed
AGN can be expressed by an equation containing TDD as:

Δt = DΔt

c
Δφ, (1)

where c is the light speed. Δφ is the difference between
Fermat potentials at different image positions, which can be
inferred by high resolution imaging observations of Einstein
ring (or arcs). In the SIS model, Δφ = (θ2

i −θ2
j )/2 [26]. The

TDD is defined by:
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DΔt = (1 + zl)
DA
l DA

s

DA
ls

, (2)

which is the combination of three different angular diameter
distances [31]. DA

l , DA
s , DA

ls are the angular diameter dis-
tances between observer and lens, observer and source, and
lens and source, respectively. zl is the lens redshift. There-
fore, if we obtain the time delay through monitoring the light
curves and model the potential of the lens, we can get the
TDD.

Secondly,the random motion of stellar in an elliptical
galaxy produces Doppler shift on the spectra corresponding
to each stellar, and the velocity dispersion σ can be obtained
by observing the integrated spectrum of the whole galaxy.
From the Virial theorem, σ is related to the mass Mσ in
radius R, σ 2 ∝ Mσ /R [25]. In a gravitational lens system,
the relationship between Einstein angle θE and mass MθE is
as follows:

θE =
√

4GMθE

c2

DA
ls

DA
l DA

s

, (3)

where the radius of the Einstein ring can be expressed as

R = DA
l θE . Therefore, it can be deduced that: σ 2 ∝ DA

s

DA
ls
θE .

In the SIS model, velocity dispersion is given by [26]

σ 2 = θE
c2

4π

DA
s

DA
ls

. (4)

Considering that Δt is proportional to
DA
s DA

l

DA
ls

and the velocity

dispersion σ 2 is proportional to DA
s

DA
ls

, the angular diameter dis-

tance DA
l to the lens can be obtained by the ratio Δt/σ 2 [25].

In a SIS lens, angular diameter distance DA
l can be written

as

DA
l = c3

4π

Δt

σ 2(1 + zl)
. (5)

The Time Delay Challenge (TDC) program tested the
accuracy of current algorithms [46]. And with the first chal-
lenge (TDC1), the average precision of the time delay mea-
surement was approximately ∼ 3%, which was comparable
to the uncertainty of current lens modeling [48]. Consider-
ing that the metric efficiency was about 20%, TDC1 gave
at least 400 well-measured time delay systems [46]. Since
the TDD and ADD are sensitive to the mass distribution
of the lens, auxiliary data such as high-resolution imaging
and stellar velocity dispersion observations are required for
accurate lens modeling, so that reasonably accurate distance
information can be obtained. By setting the selection crite-
ria: (1) the angular separation of lensed images is > 1′′ [32],

Fig. 1 The lens and source redshift distributions of the lens systems
with well-measured time delay light curves observed by LSST plus
excellent auxiliary data such that the measured distances have 5% pre-
cision. For visualization, we show it in the form of probability density

(2) the third brightest quasar image has an i-band magni-
tude mi < 21 [32], (3) the lens galaxy has mi < 22 [32],
(4) considering the quadruple imaging lens systems that pro-
vide more information than the double imaging systems, for
example, the general Source-Position Transformation (SPT)
does not conserve the time delay ratios in some cases [50,51]
(note the Mass-Sheet Transformation conserves the ratios).
One can see this clear in the H0LiCOW samples [52]. SDSS
1206+4332 is a double-imaged system which yields weaker
constraint on H0 even though the host galaxy is quadruply-
imaged providing additional constraints for the lens mod-
eling. In the end, we will have ∼ 55 high-quality quad-
image the angular separation of lensed images in the mock
catalog[32]. As in Jee et al., we set 5% uncertainties for both
TDD and ADD (see also [24,49]). We plot the redshift dis-
tributions of the lenses and sources that match the selection
criteria in Fig. 1, and randomly generate 55 samples from it.

3 Methodology

For SN Ia data, we use a catalog of direct SN Ia observations:
a joint analysis of SN Ia observations obtained by the SDSS-
II and SNLS collaborations. The catalog includes several
low-redshift samples, three seasons from SDSS-II 0.05 <

z < 0.4, and three years of data from SNLS (0.2 < z < 1).
It contains in total 740 spectroscopically confirmed type Ia

123



94 Page 4 of 9 Eur. Phys. J. C (2020) 80 :94

supernovae with high quality light curves. This data set is
called “ joint light curve analysis ” (hereinafter referred to as
JLA) [14].

A modified version of the Tripp formula can transform
SALT2 light-curve fit parameters to distance modulus [53]:

μ(α, β, MB) = mB − MB + αx − βc, (6)

where mB is the rest-frame peak magnitude in the B band, x
is the stretch determined by the shape of the SN Ia light curve
and c is the color measurement. α and β are nuisance parame-
ters that characterize stretch-luminosity and color-luminosity
relationships. MB is also a nuisance parameter standing for
the B band absolute magnitude. Further, we use a proce-
dure mentioned in Conley et al. (C11) [15] that can approx-
imately correct the effect of the host stellar mass (Mstellar )

on the intrinsic luminosity of the SNe Ia by a simple step
function [14]:

MB =
{
M1

B, if Mstellar < 1010M�.

M1
B + ΔM , otherwise.

(7)

For robustness and simplicity, we only consider the statistical
uncertainties. The error of the distance modulus μ can be
expressed as:

σμ =
√

σ 2
mB

+ α2σ 2
x + β2σ 2

c , (8)

where σmB , σx , and σc are the errors of the peak magnitude
mB and light curve parameters (x, c) of the SNe Ia, respec-
tively.

The luminosity distance of SN Ia in Mpc can be obtained
by

DL
SN = 10μ/5−5. (9)

To compare distances of SNe Ia with lensing distances, we
need to use the corresponding angular diameter distances
DA

SN from SNe Ia which can be easily obtained through the
Distance Duality Relation (DDR) [54]:

DA
SN = DL

SN

(1 + z)2 , (10)

where the error of DA
SN can be expressed as

σDA
SN

= (ln 10/5)DA
SNσμ. (11)

By using Eq. 10, the angular diameter distances from the
observer to the lens (DA

SN ,l) and from the observer to the

source (DA
SN ,s) can be obtained, respectively. Considering

that in the flat universe case, the comoving distance r =

(1 + z)DA between the lens and the source can be written as
rls = rs − rl [33]. Thus, the angular distance from the lens
to the source DA

SN ,ls is given by:

DA
SN ,ls = DA

SN ,s − 1 + zl
1 + zs

DA
SN ,l . (12)

Then we can construct the TDD from SN Ia observations

DΔt,SN = DA
SN ,l D

A
SN ,s

DA
SN ,ls

, (13)

with the corresponding error being

σDΔt,SN =
√√√√

σ 2
DA
SN ,s

(
∂DΔt,SN

∂DA
SN ,s

)2

+ σ 2
DA
SN ,l

(
∂DΔt,SN

∂DA
SN ,l

)2

.

(14)

In order to perform the calibration, in principle, the dis-
tances from two kinds of data should correspond to the same
redshift. However, their redshift cannot always be matched
perfectly. One solution is to select nearby data pair whose red-
shift difference is small enough to be considered the same.
In this paper, we use redshift difference Δz < 0.005 as the
screening criterion [27]. If there are more than one point in
the range of screening criterion, the one with the smallest Δz
is chosen.

We consider that this work does not attempt to give an
accurate constraint on parameters of SNe from the realistic
data, but to propose a new method and give an estimate of
the precision level based on data simulated by future obser-
vation conditions. In the actual data, the bias is assessed by
the non-Gaussian effect, which has to start from the origi-
nal observations, that is, the pixel values of the host imag-
ing, the velocity dispersion, the AGN positions, and the time
delays taken as Gaussians [31,35]. However, the details of
the observational uncertainty set up for the LSST lens are not
yet known. The current published data shows the inference
of DΔt and H0 approximation follow the Gaussian distribu-
tion [34]. Therefore, in this paper, we only consider normal
distribution for mock data. This assumption would not affect
our main conclusion. More detailed discussions can be found
in [35,36].

We now give the statistics for constraining MB , α and β

in the two methods, respectively. In the ADD method, the
statistical quantity can be expressed by using χ2:

χ2 =
N∑
i=1

⎡
⎣DA(i)

SN ,l − DA(i)
GL ,l

σ i
DA
l

⎤
⎦

2

, (15)
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where DA(i)
SN ,l is the ith ADD term obtained from the SNe Ia

data. DA(i)
GL ,l is the ith data of ADD obtained from the strong

lensing observations. N is the number of matched pairs that
meet the screening criteria. The ith total error σ i

DA
l

can be

written as

σ i
DA
l

=
√

σ 2
DA(i)
GL ,l

+ σ 2
DA(i)
SN ,l

, (16)

where σ
DA(i)
GL ,l

and σ
DA(i)
SN ,l

are ADD errors from gravitational

lensing and SNe Ia, respectively. Note that the latter depends
on the parameters (MB, α, β).

In the TDD method, the statistical quantity can be written
as

χ2 =
N∑
i=1

[
D(i)

Δt,SN − D(i)
Δt,GL

σ i
Δt

]2

, (17)

where D(i)
Δt,SN is the ith time delay distance term calculated

from the supernova data according to Eq. 13 and D(i)
Δt,GL is

the ith data of time delay distance obtained through observing
gravitational lensing. N is the number of matched pairs that
meet the screening criteria. The ith total error σ i

Δt can be
written as

σ i
Δt =

√
σ 2
D(i)

Δt,GL

+ σ 2
D(i)

Δt,SN

, (18)

where σ
D(i)

Δt,GL
and σ

D(i)
Δt,SN

are the time delay distance errors

obtained by gravitational lensing and the corresponding
supernovae data, respectively.

We also consider the case where the universe is opaque.
Such effect has been proposed to account for the dim-
ming through dust distribution in the Milky Way, host
galaxies, intervening galaxies and intergalactic media [37–
41]. Cosmic opacity might result from some exotic mecha-
nisms including the theory of gravitons [42], Kaluza–Klein
modes associated with extra-dimensions [43], or a chameleon
field [44,45]. The flux received by the observer will be
reduced by the opacity depth factor, and the observed lumi-
nosity distance can be expressed by the opaque depth [46]:

DL
SN ,obs = DL

SN ,truee
τ(z)/2, (19)

where DL
SN ,obs is the observed luminosity distance from SN

Ia, DL
SN ,true is the true luminosity distance without the influ-

ence of opacity. In this paper, the opacity depth τ(z) is param-
eterized and can be written as

τ(z) = 2εz. (20)

Note that the distance information of the gravitational lensing
is obtained by measuring the angular separation, regardless
of the absolute intensity. That is, the distance measured by
gravitational lensing are not biased even in the presence of
opacity. Therefore, We also study the calibration by using
ADD and TDD respectively under the influence of cosmic
opacity.

4 Simulations and results

To perform a study on the power of calibration, we take a flat
ΛCDM universe with matter density ΩM = 0.3 and Hubble
constant H0 = 70kms−1Mpc−1 as our fiducial model in the
following simulations.

Since this work aims at giving a prediction of constraints
on α, β, MB , ε rather than using realistic data to get a result,
we give an unbiased analysis reflecting an average constrain-
ing power by the following steps. Firstly, on the basis of
the distributions in JLA, we set the parameters (α, β, MB)

and the theoretical observational quantities (mB, x, c) of
SNe Ia such that the luminosity distances of SNe Ia can
be converted to the fiducial values. Secondly, we randomly
select the redshifts of lenses and sources from Fig. 1, then
calculate the corresponding lensing distances, note that the
number of matched pairs might be different for each selec-
tion. Thirdly, We perform the noise distribution by consid-
ering the uncertainty levels of supernovae data in JLA and
5% uncertainties for lensing distances to generate the mock
data. Fourthly, we do minimizations to find the best-fits of
parameters (α, β, MB , ε) by using the minimization func-
tion in Python. Finally, we repeat the minimization process
for 50,000 times under different noise realizations.

We take all the best-fits from each minimization as the
expected distributions of the parameters. For both meth-
ods, we show results that are not affected by opacity in
Fig. 2, and that considering the effect of opacity in Fig. 3.
The constraints of each parameter of supernovae are com-
posed of one-dimensional distributions corner plots and two-
dimensional constraint for the combination of two parame-
ters, where the innermost contour and the outermost contour
represent the 1σ and 2σ ranges, respectively.

The simulation results in the ADD method show that the
MB uncertainty range of the supernova can be determined
at 0.03 under 1σ confidence level without the influence of
opacity. Under the influence of opacity, the simulation results
can determine the uncertainty range of MB at 0.08 (1σ).
We also consider these two cases with the TDD method.
The uncertainty range of MB is 0.26 (1σ) and 0.31 (1σ),
respectively. For comparison, we also consider the case when
the lens data uncertainties are 10%. Results from the two
methods are shown in Table 1.
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Fig. 2 In the case of no opacity, the 1-D and 2-D marginalized distribu-
tions and 1σ and 2σ constraint contours for SNe Ia nuisance parameters
(α, β, MB), respectively. The green contours and red contours represent
the constraint results for the ADD method and the TDD method, respec-
tively

Fig. 3 The same as Fig. 2 but in the case of considering the cosmic
opacity

We further consider the Pantheon sample[47] and compare
the results with the JLA sample under the same conditions
that the uncertainty of ADD and TDD are 5%. For the Pan-
theon sample, there is no stretch-luminosity parameter α and
color-luminosity parameter β, so we only consider absolute
magnitude MB and cosmic opacity ε. As shown in Figs. 4
and 5, both samples have almost the same results.

Table 1 Constraint results of supernova parameters for two methods
with different degrees of uncertainty for the JLA sample. The top half of
the table shows the results without opacity, and the bottom half considers
results with opacity

Methods MB α β ε

ADD(5%) −19.10+0.03
−0.03 0.1+0.03

−0.03 2.7+0.40
−0.36 –

TDD(5%) −19.10+0.24
−0.24 0.1+0.11

−0.10 2.7+0.99
−1.13 –

ADD(10%) −19.10+0.04
−0.04 0.1+0.04

−0.04 2.7+0.54
−0.50 –

TDD(10%) −19.10+0.31
−0.31 0.1+0.16

−0.18 2.7+1.15
−1.66 –

ADD(5%) −19.10+0.06
−0.06 0.1+0.03

−0.03 2.7+0.37
−0.36 0.0+0.06

−0.06

TDD(5%) −19.10+0.31
−0.31 0.1+0.15

−0.15 2.7+1.20
−1.18 0.0+0.34

−0.39

ADD(10%) −19.10+0.11
−0.11 0.1+0.08

−0.07 2.7+1.89
−1.50 0.0+0.10

−0.10

TDD(10%) −19.10+0.39
−0.37 0.1+0.17

−0.17 2.7+1.38
−1.76 0.0+0.38

−0.42

Constraint results of supernova parameters for two methods with dif-
ferent degrees of uncertainty for the JLA sample. The top half of the
table shows the results without opacity, and the bottom half considers
results with opacity

Fig. 4 The comparison of constraint results on MB between Pantheon
sample and JLA sample with 5% uncertainty of ADD and TDD

Fig. 5 The comparison of constraint results on ε between Pantheon
sample and JLA sample with 5% uncertainty of ADD and TDD

The results show that ADD method is much more power-
ful than TDD method. There are two reasons for this. First,
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and the most important reason, this is because the screening
criteria we set for the TDD method will artificially weaken
the constraints. There are ∼ 53 pairs of valid data that meet
our screening criteria under the ADD method, but only ∼ 2
pairs for the TDD method due to the high-redshifts (typically
2-3) of the sources in LSST. Second, TDD method contains
two distance errors from SNe Ia, while ADD method uses
only one SN distance. Previous studies [55] have shown that
combining ADD and TDD can improve the ability to con-
strain the parameters. However in this work, the power of
TDD is too weak. Jointing TDD and ADD does not affect,
unless the power of TDD is at the same level as ADD. There-
fore, we will not further study the effects of combining ADD
and TDD.

Our study shows ADD method is excellent for calibrating
SNe Ia. Nevertheless, we still incorporate the TDD method
in this paper for completeness.

5 Conclusion and discussions

SNe Ia play an important role in modern astronomy, espe-
cially in measuring cosmological distances. However, some
theories and observations introduced controversies about the
absolute magnitude of supernovae and the distance relation
from Cepheids.

In this paper, we propose a strategy to calibrate the abso-
lute magnitude of supernovae by using two kinds of lensing
distances. The simulation is based on the high-quality data
available in the future LSST era. The results show that grav-
itational lensing systems can constrain the SN Ia parameters
to a high precision. Compared with the TDD method, the
ADD method is more powerful in constraining the param-
eters of supernovae. There are two main origins for the
large uncertainty of the TDD method. On the one hand,
it contains the error of two distances, which significantly
increases the uncertainty. On the other hand, it is necessary
to match the redshifts of both lens and source, resulting in
a smaller amount of data that match successfully. Applying
TDD method for LSST lenses may not be the best idea in
our matching method since the source redshifts are usually
too high compared with supernovae. Nevertheless, smooth-
ing method like the Gaussian Process can make all the lensing
systems whose source redshifts < 2 available, which is worth
trying in further studies.

For the absolute magnitude, Richardson et al. obtained
the MB of −19.25 ± 0.2 through a comparative study [56],
which is much better than the MB = −19.16 ± 0.76 they
obtained in 2001 [57]. The TDD method (5%) can also obtain
the same constraint results without considering the cosmic
opacity. The results of the ADD method (5%) are consistent
with the results of the best-fit ΛCDM parameters with the
C11 sample MB = −19.16 ± 0.03 and slightly smaller than

the JLA sample fitting results MB = −19.04 ± 0.01 [14].
The best-fit parameter of MB found by combining BAO and
SNe is −19.12±0.03 [17]. The uncertainty of the MB which
was constrained from the 110 Cepheid variables in the host
galaxies of two recent SNe Ia (NGC 1309 and NGC 3021) is
0.05 [4]. By using the new technique, Cepheid variables in 11
host galaxies of recent Sne Ia were observed in near-infrared,
and 19 reliable SNe Ia samples were calibrated, resulting in
the uncertainty of MB ∼ 0.13 [58]. The calibration uncer-
tainty of MB of supernovae through gravitational wave events
is σMB � (0.1, 0.2) [21]. The uncertainty of MB calibrated
from 1000 GW events is one order of magnitude smaller
than the one calibrated with Cepheids [21]. Compared with
the results of these methods, the gravitational lens can give
more powerful constraints over a wider range of redshifts.
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