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Abstract In this paper analytical expressions are derived to
describe the spin motion of a particle in magnetic and electric
fields in the presence of an axion field causing an oscillat-
ing electric dipole moment (EDM). These equations are used
to estimate statistical sensitivities for axion searches at stor-
age rings. The estimates obtained from the analytic expres-
sions are compared to numerical estimates from simulations
in Chang et al. (Phys Rev D 99(8):083002, 2019). A good
agreement is found.

1 Introduction and motivation

Axions and axion like particles (ALPs) are candidates for
dark matter. There is thus a huge experimental effort for the
search of these kind of particles. For a detailed review, we
refer the reader to references [2,3]. Axions and ALPs can
interact with ordinary matter in various ways. Reference [4]
identifies three terms:

a

f0
Fμν F̃μν,

a

fa
Gμν G̃μν,

∂μa

fa
Ψ̄ f γ

μγ5Ψ (1)

describing the coupling to photons, gluons and to the spin
of fermions, respectively. The vast majority of experi-
ments makes use of the first term [e.g. Cavity experiments
(ADMX), helioscopes (CAST), light-through-wall experi-
ments (ALPS)]. In addition, astrophysical observations also
provide sensitive limits to the axion-photon coupling. In gen-
eral, it is rather difficult for these experiments to reach masses
below 10−6 eV, one reason being that the axion wave length

a e-mail: pretz@physik.rwth-aachen.de

becomes too large. Furthermore, these experiments are mea-
suring rates proportional to at least a small amplitude squared.

For the second (and third) term in the list (1) this is differ-
ent. It turns out that the second term has the same structure
as the QCD-θ term which is also responsible for an electric
dipole moment (EDM) of nucleons. The axion field gives
rise to an effective time-dependent θ -term and oscillates at
a frequency proportional to the mass of the axion ma . This
gives rise to an oscillating EDM. New opportunities to search
for axions/ALPs with much higher sensitivity arise, because
the signal is proportional to an amplitude A and not to its
square. To date, NMR based methods are being used to look
at oscillating EDMs [5].

Another possibility is to search for axions/ALPs in stor-
age rings. Storage ring experiments have been proposed to
search for electric dipole moments of charge particles [6,7].
These experiments allow also, with small modifications, to
search for oscillating EDMs. This possibility is discussed
in this paper. Section 2 explains the principle of the exper-
iment, how the (oscillating) EDM alters the spin motion in
electromagnetic fields and leads to a polarization observable.
In Sect. 3 statistical sensitivities for oscillating EDMs based
on these polarization observables are presented.

2 Spin motion in storage rings

The spin motion relative to the momentum vector in elec-
tric and magnetic fields is governed by the Thomas-BMT
equation [8–10]:

dS
dt

= (�MDM + �EDM) × S, (2)
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�MDM = − q

m

[
GB −

(
G − 1

γ 2 − 1

)
β × E

c

]
, (3)

�EDM = − ηq

2mc
[E + cβ × B] . (4)

S in this equation denotes the spin vector in the particle rest
frame, t the time in the laboratory system, β and γ the rela-
tivistic Lorentz factors, andB andE the magnetic and electric
fields in the laboratory system, respectively. The magnetic
dipole moment μ and electric dipole moment d both point-
ing in the direction of the particle’s spin S are related to the
dimensionless quantities G (magnetic anomaly) and η in Eq.
2:

μ = g
qh̄

2m
S = (1 + G)

qh̄

m
S and d = η

qh̄

2mc
S. (5)

We assume a vertical magnetic field and a radial electric
field, constant in time, forcing the particle on a circular orbit.
The three vectors B, E and v = βc are thus mutually orthog-
onal, as indicated in Fig. 1. In this case

�MDM =
⎛
⎝ 0

ΩMDM

0

⎞
⎠ and �EDM =

⎛
⎝ηΩ̃EDM

0
0

⎞
⎠ (6)

with ΩMDM = − q
m (GB +

(
G − 1

γ 2−1

)
βE
c ) and Ω̃EDM =

− q
2mc (E + cβB), B = |B| and E = |E|. The coordinate

system is chosen such that the first component points in radial
direction, the second in vertical and the third in longitudinal
direction. Note that β ×E is anti-parallel to B. This explains

the + sign in front of
(
G − 1

γ 2−1

)
in the definition of ΩMDM

instead of a − sign in Eq. 3.
For the following discussion it is more convenient to write

Eq. 2 in matrix form:

dS
dt

= (AMDM + AEDM)S (7)

with (to simplify the notation we use ΩEDM instead of Ω̃EDM

from now on)

longitudinal

radial

vertical

�B

�E

�v

Fig. 1 Illustration of the coordinate system used

AMDM =
⎛
⎝ 0 0 ΩMDM

0 0 0
−ΩMDM 0 0

⎞
⎠ and AEDM

= η

⎛
⎝ 0 0 0

0 0 ΩEDM

0 −ΩEDM 0

⎞
⎠ . (8)

In the following we assume that the EDM can have a
constant term and a time varying component, thus η = η0 +
η1 cos(ωat+ϕa) as suggested in [4,11]. The oscillating term
is caused by an axion of mass given by the relation ωa =
mac2/h̄. Assumingη0, η1 � G, AEDM in Eq. 7 can be treated
as a perturbation.

The solution to first order in η0 and η1 for arbitrary ini-
tial condition of the spin is given in Appendix A. The best
sensitivity to η0 and η1 is obtained by observing a build-
up of a vertical polarization of a beam initially polarized in
the horizontal plane. Thus we are interested in the behavior
of the vertical spin component Sv(t) in the case where the
spin points for example initially in the longitudinal direction
(S(0) = (0, 0, 1)T ). Using Eq. 37 in Appendix A one finds:

Sv(t) = η0ΩEDM
sin(ΩMDMt)

ΩMDM

+η1
ΩEDM

2(ωa − ΩMDM)(ΩMDM + ωa)
[−2ωa sin(ϕa)

+(ωa + ΩMDM) sin ((ωa − ΩMDM)t + ϕa)

+(ωa − ΩMDM) sin ((ΩMDM + ωa)t + ϕa)] . (9)

We are interested in the behavior close to the resonance
condition ΩMDM ≈ ωa . Ignoring in Eq. 9 all fast oscillating
terms (i.e. assuming ΩMDM, (ΩMDM +ωa) � ΩMDM −ωa)

one finds

Sv(t) = η1ΩEDM

2(ωa − ΩMDM)

× (−sin(ϕa) + sin ((ωa − ΩMDM)t + ϕa)) . (10)

= η1
ΩEDM

2Δω
(− sin(ϕa) + sin(Δωt + ϕa)) (11)

with Δω = ωa−ΩMDM For ϕa = 0 this expression coincides
with the expression given for NMR experiments [5]. At the
resonance, ωa = ΩMDM, Eq. 11 reduces to

Sv(t) = η1ΩEDM

2
cos(ϕa) t. (12)

In this case the build-up is linear in time to first order in η1.
The phase ϕa of the axion field is unknown. The experi-

ment should be performed with two bunches in the ring where
the polarizations are orthogonal to each other, which corre-
sponds to two phases ϕa and ϕa + π/2. This assures not
to miss an axion signal. This can also be seen in Fig. 2. It
shows the build-up of the vertical spin component Sv as a
function of time t for ϕa = 0 and ϕa = π/2 and for dif-
ferent axion frequencies ωa and ΩMDM = 750,000.0 s−1.
This ΩMDM corresponds to typical running conditions with
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Fig. 2 Vertical spin component Sv as a function of time t for ϕa = 0
(upper plot) and ϕa = π/2 (lower plot) and for different axion frequen-
cies ωa and ΩMDM = 750,000.0 s−1, ΩEDM ≈ 1,200,000 s−1, η0 = 0,
η1 = 10−10

deuterons of p = 970 MeV/c at the COoler SYnchrotron
COSY of Forschungszentrum Jülich in Germany. Note that
for a given ϕa the initial slope is the same independent of ωa .
One clearly observes the resonance behavior. If ΩMDM = ωa

the polarization build-up is maximal for ϕa = 0. The more
ΩMDM deviates from ωa , the weaker the signal becomes.

For the special case ωa = 0 Eq. 9 becomes

Sv = ΩEDM

ΩMDM
sin(ΩMDMt) (η0 + η1 cos(ϕa)) . (13)

Compared to Eqs. 10 and 12 the signal is two times larger.
For the following estimates of statistical uncertainties, we
continue to use Eqs. 10 and 12 for conservative results.

3 Statistical error estimates

Equations 11 and 12 can now be used to calculate statistical
sensitivities under various experimental conditions. We are
interested in the error on η1.

3.1 Resonance case

The best sensitivity is of course given on resonance, i.e.
ΩMDM = ωa . In this case the spin build-up follows Eq. 12:

Sv(t) = η1
ΩEDM

2
cos(ϕa)t. (14)

Assuming that one extracts a beam of N particles con-
tinuously on a target with the same rate over a time period
T during which the beam polarization P is assumed to be
constant and using a polarimeter with an average analyzing
power A of the scattering process and a fraction f of the
beam particles detected, the observed vertical polarization
(assuming Pv � P) will be:

Pv(t) = PASv(t) = PAη1
ΩEDM

2
cos(ϕa)t. (15)

From this polarization measurement η1 can be determined
with variance

V (η1) =
(

1

ΩEDM

)2 96

f N (AT P cos(ϕa))2 . (16)

Details are given in Appendix B.1.
Adding the information from the two bunches with Δϕa =

π/2 one arrives at

V (η1) =
(

1

ΩEDM

)2 96

f N (AT P)2 . (17)

3.2 Off-resonance case

For the off-resonance case the vertical polarization is
obtained by multiplying Eq. 11 with PA:

Pv(t) = η1PA
ΩEDM

2Δω
(− sin(ϕa) + sin(Δωt + ϕa)) . (18)

In order to determine η1, the data have to be fitted to the
functional form of Eq. 18. The three fit parameter are η1, Δω

and ϕa .
The central red curve in Fig. 3 shows the figure of merit

(FOM) defined as the inverse of the variance of η1 as a
function of ΔωT/(2π) normalized to the FOM at resonance
Δω = ωa − ΩMDM = 0 given by the inverse of Eq. 17.
If the frequency is off be 1/T , with T being the measure-
ment duration, the FOM drops to roughly 20%. Details are
given in Appendix B.2. This suggests to take measurements
separated by 1/T in frequency, as indicated by the addi-
tional blue and green FOM curves in Fig. 3. The upper
dashed black curve which is roughly constant shows the sum
of the FOMs from the measurements at the different fre-
quencies. Experimentally one would not run at frequencies
ΔωT/(2π) = . . . ,−2,−1, 0, 1, 2, . . . as indicated in Fig. 3
but rather sweep the frequency with the speed (= frequency
per time) v = 1/T 2.
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Fig. 3 Figure of merit (FOM) as a function of (ωa − ΩMDM)T/(2π)

normalized to the FOM at resonance Δω = (ωa − ΩMDM) = 0. Solid
lines: FOM for measurements at ΔωT/(2π) = −2,−1, 0, 1, 2 respec-
tively. Dashed line: sum of FOMs

To scan a region of Δ f = 1 kHz with a measurement
duration of T = 10 s for a single frequency, one would thus
need a total measurement time

Δ f T 2 = 105 s.

In this frequency range η1 would be determined with the
same accuracy over the whole frequency range.

3.3 Estimates for the error on the axion-gluon coupling CG
fa

According to reference [12] the relation between the EDM
d and θQCD is given by d ≈ 10−16θQCDe cm. To simplify
the discussion we make no distinction between proton and
deuteron. θQCD is connected to the axion field amplitude a0

and the axion-gluon coupling strength Cg/ fa via θQCD =
a0 Cg/ fa . Using the relation between the axion density ρa
to the amplitude a0 = √

2ρa/ma and finally equating ρa

with the local dark matter density ρLDM ≈ 0.4 GeV/cm3 ≈
3 · 10−42 GeV4 (see reference [13]), assuming that axions
saturate the local DM energy, accuracy estimates for Cg/ fa
can be obtained as a function of the axion mass ma :

dosc. = 10−16 θQCD e cm (19)

= 10−16 a0
CG

fa
(20)

= 10−16
√

2ρLDM

ma

CG

fa
(21)

= 2.5 · 10−18 CG

fa

1

ma
eV GeV ecm = η1

qh̄

2mc
S. (22)

Table 1 gives an overview over frequency ranges
accessible at the existing Cooler Synchrotron COSY at
Forschungszentrum Jülich in Germany using polarized pro-
tons and deuterons and for a planned prototype storage ring
with combined electric and magnetic bending fields for an
EDM measurement [14]. Other parameters, like number of
stored particles N , efficiency f , analyzing power A, polar-
ization P and spin coherence time τ are given as well.

The accuracy estimates are given for two scenarios

1. One year of beam time (107s) is spent at a single fre-
quency.

2. In one year of beam time a certain range in frequency is
covered.

For the duration of a single measurement, we assure that
it does not exceed the axion coherence time, τax , given by

τax = π h̄

ma
Q

with a quality factor Q = 3 · 106 as in reference [1].
The dots in Fig. 4 indicate one-σ limits one could reach

at COSY running with protons or deuterons and for the pro-

Table 1 Parameters used for the estimates. The ring radius of the prototype ring is R = 8.9 m

COSY Prototype ring

Proton Deuteron Proton

Momentum p/GeV/c 0.3 3.7 0.3 3.7 0.25 0.30

Spin revolution frequency ΩMDM/ 106 s−1 5.86 72.3 0.233 2.88 7.35 0.0

Axion mass ma /eV 4 · 10−9 5 · 10−8 1.5 · 10−10 2 · 10−9 5 · 10−9 0

Magnetic field B/T 0.07 0.8 0.07 0.8 0.0 0.033

Electric field E/MV/m − − − − 7.4 7.4

Stored particles per bunch N 109 109 1010

Fraction detected events f 0.005 0.005 0.005

Average analyzing power A 0.6 0.6 0.5

Beam polarization P 0.8 0.8 0.8

Spin coherence time τ/s 1000 1000 1000
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Fig. 4 One σ limits for the axion-gluon coupling Cg/ fa reachable
within 1 year running at a fixed frequency (stars) or over a given fre-
quency range (areas) for COSY (orange) or the prototype ring (blue). In
addition, limits reached by the nEDM experiments [15], nucleosynthesis
[16] and prospects for NMR experiments [5] are shown schematically.
The green line shows the estimates obtained in [1] with simulations

totype ring running at one fixed frequency for one year for
each point.

In the second scenario we start with the total running time
available in one year, Ty = 107 s. For the prototype ring, if
one wants to span a region of Δ f = 1 MHz in one year, the
duration T is given by

T =
√

Ty
Δ f

= 3.2 s.

for each frequency interval Δ fi = 1/T . For a 1 kHz region,
one finds T = 100 s.

The corresponding limits are shown in Fig. 4 as colored
areas. The green line shows estimates from reference [1]
scaled to match them with the assumptions made in this doc-
ument about the parameters N , f, P, A.

The same is shown for running at COSY. The fact that the
limits using a pure magnetic ring are getting worse at smaller
frequency is due to the fact that for lower frequencies, the
magnetic field is lower, which in turns makes ΩEDM smaller
and one loses sensitivity. For the combined ring the electric
field is constant, a small magnetic field is added to slow down
the spin precession. ΩEDM varies only very little.

4 Summary and conclusion

Analytic expressions for the spin motion in presence of an
oscillating EDM in storage rings were derived from the
Thomas-BMT equation. These were used to give sensitiv-
ity estimates for the axion-gluon coupling at COSY and at
a prototype EDM ring. This was done for two scenarios: (1)
Running at one fixed frequency, (2) covering a wide range in
frequency.

The results are in good agreement compared to reference
[1] where a numerical approach was used to find sensitivities.
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Appendix A: Solution of equation 7

Equation 7 can be written as

Ṡ =
(
AMDM + η ÃEDM(t)

)
S. (23)
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To solve Eq. 23 we expand the solution in orders of η

S(t) = S0(t) + ηS1(t). (24)

Entering Eq. 24 in Eq. 23 and keeping only terms up to
order one in η yields

Ṡ0 + ηṠ1 = AMDMS0 + η(AMDMS1 + ÃEDMS0). (25)

Thus

Ṡ0 = AMDMS0, (26)

Ṡ1 =
(
AMDMS1 + ÃEDMS0

)
. (27)

Since AMDM does not depend on t , equation 26 has the
solution

S0(t) = exp(AMDMt)S(0) (28)

with arbitrary initial condition S(0).
The solution for the Eq. 27 can be found using the variation

of constant method:

S1 = exp(AMDMt)S(0)

+
∫ t

0
exp(AMDM(t − s)) ÃEDMS0(t)ds. (29)

Up to first order in η the solution is

S(t) = S0(t) + ηS1(t) (30)

= (1 + η) exp(AMDMt)S(0)

+η

∫ t

0
exp(t − s) ÃEDMexp(AMDMt)S(0)ds (31)

Using Mathematica [17] one finds S(t) = A(t)S(0) with

A11 = (1 + η0) cos(ΩMDMt) (32)

A12 = η0ΩEDM(cos(ΩMDMt) − 1)

ΩMDM
+ η1ΩEDM

(
(sin(ϕa)(ωa sin(ΩMDMt) − ΩMDM sin(ωat))

ω2
a − Ω2

MDM

+ΩMDM cos(ϕa)(cos(ωat) − cos(ΩMDMt))

ω2
a − Ω2

MDM

)
(33)

A13 = (1 + η0) sin(ΩMDMt) (34)

A21 = η0ΩEDM(cos(ΩMDMt) − 1)

ΩMDM
− η1ΩEDM

(
(cos((ωa − ΩMDM)t + ϕa)

2(ωa − ΩMDM)

+ (ΩMDM − ωa) cos((ωa + ΩMDM)t + ϕa) − 2ΩMDM cos(ϕa))

2(ωa − ΩMDM)(ωa + ΩMDM)

)
(35)

A22 = 1 + η0 (36)

A23 = η0ΩEDM sin(ΩMDMt)

ΩMDM
+ η1ΩEDM

(
(sin((ωa − ΩMDM)t + ϕa)

2(ωa − ΩMDM)

+ (ωa − ΩMDM) sin((ωa + ΩMDM)t + ϕa) − 2ωa sin(ϕa))

2(ωa − ΩMDM)(ωa + ΩMDM)

)
(37)

A31 = −(1 + η0) sin(ΩMDMt) (38)

A32 = −η0ΩEDM sin(ΩMDMt)

ΩMDM
+ η1ΩEDM

(
(ωa sin(ϕa) cos(ΩMDMt) − ωa sin(ωat + ϕa)

(ωa − ΩMDM)(ωa + ΩMDM)

+ΩMDM cos(ϕa) sin(ΩMDMt))

(ωa − ΩMDM)(ωa + ΩMDM)

)
(39)

A33 = (1 + η0) cos(ΩMDMt) (40)
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Note that η = η0 + η1 cos(ωat + ϕa). We are mainly
interested in the entries A23 and A21 which gives the vertical
polarization in case of an initial in plane polarization.

Appendix B: Variance on η1

B.1: Resonance case: variance of a slope

Starting point is Eq. 15

Pv(t) = PASv(t) = PAη1
ΩEDM

2
cos(ϕa) t. (41)

The variance on the slope parameter s = PAη1
ΩEDM

2
cos(ϕa) of a straight line is

V (s) = σ 2

NpointsV (t)
,

where σ is the error on each individual point where the curve
is measured. Npoints is the number of points entering the fit
and V (t) is the variance of the points along the time axis.
For evenly distributed values in a time interval T , one has
V (t) = T 2/12. If the polarization is determined from an
azimuthal asymmetry one has [18]:

σ 2 = 2

n
,

where n is the number of events entering the analysis for a
single point. Evidently for the total number of events one has
N f = nNpoints .

Putting everything together one finds

V (s) = 24

f NT 2 . (42)

Translated to the variance on η1 one finds the expression
given in Eq. 17

V (η1) = 24

f N (PAT cos(ϕa))2

(
2

ΩEDM

)2

. (43)

B.2: Off-resonance case: variance of an amplitude

A polarization given by Eq. 18 leads to the following count
rate in the detector:

N (t) ∝ 1 +η1
PAΩEDM

2Δω
(− sin(ϕa)

+ sin(Δωt + ϕa)) cos(Φ) (44)

where Φ is the azimuthal angle of the scattered particle.
There are three unknowns η1, Δω and ϕa . To estimate the
uncertainty on η1 we consider the extended maximum like-
lihood method applied to the counting rate in Eq. 44. The
log-likelihood function � has the form

� =
Nevents∑
i=1

log

(
1 + η1

PAΩEDM

2Δω
(− sin(ϕa)

+ sin(Δωt + ϕA)) cos(Φi )

)
− log(Ntot ), (45)

where Ntot is the total number of events detected.
To get the covariance matrix for the three unknowns

η1,Δω and ϕa one has to consider the expectation values
of the second derivatives of the likelihood function.

The the second derivative with respect to η1 it is for exam-
ple given by〈

∂2�

∂η2
1

〉
=

∫ T

0

∂2�

∂η2
1

N (t)dt. (46)

For η1/Δω � 1 and a measurement time T = 2π/Δω

(corresponding roughly to the black curves in Fig. 2), one
finds for example for the error on η1:

σ 2
ϕa=0 = 1

(ΩEDMAT P)2 f N

128π2(15 + 2π2)

(3 + 4π2)

≈ 1033

(ΩEDMAT P)2 f N
(47)

for ϕa = 0,

σ 2
ϕa=π/2 = 1

(ΩEDMAT P)2 f N

128π2(15 − 2π2)

33 − 4π2

≈ 924

(ΩEDMAT P)2 f N

for ϕa = π

2
. (48)

Combining these two measurements leads to a

V (η1) = 488

(ΩEDMAT P)2 f N
(49)

which is approximately a factor 5 larger compared to the
resonance case in Eq. 43.
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