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Abstract We study the entanglement dynamics of two
static atoms coupled with a bath of fluctuating scalar fields
in vacuum in the cosmic string spacetime. Three different
alignments of atoms, i.e. parallel, vertical, and symmetric
alignments with respect to the cosmic string are considered.
We focus on how entanglement degradation and generation
are influenced by the cosmic string, and find that they are
crucially dependent on the atom-string distance r , the inter-
atomic separation L , and the parameter ν that characterizes
the nontrivial topology of the cosmic string. For two atoms
initially in a maximally entangled state, the destroyed entan-
glement can be revived when the atoms are aligned verti-
cally to the string, which cannot happen in the Minkowski
spacetime. When the symmetrically aligned two-atom sys-
tem is initially in the antisymmetric state, the lifetime of
entanglement can be significantly enhanced as ν increases.
For two atoms which are initially in the excited state, when
the interatomic separation is large compared to the transition
wavelength, entanglement generation cannot happen in the
Minkowski spacetime, while it can be achieved in the cos-
mic string spacetime when the position of the two atoms is
appropriate with respect to the cosmic string and ν is large
enough.

1 Introduction

Quantum entanglement is one of the most intriguing prop-
erties in quantum mechanics [1], and it plays a key role in
quantum information and quantum computing [2,3]. How-
ever, entanglement degrades due to the inevitable interactions
between quantum systems and environment [4], which is one
of the main obstacles to the realization of quantum informa-
tion technologies. In particular, a pair of initially entangled
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atoms can become separable within a finite time, which is
referred to as entanglement sudden death [5,6]. However, in
certain circumstances, entanglement can be generated rather
than destroyed due to indirect interactions between atoms
provided by the common bath they immersed in [7–11].
Meanwhile, the destroyed entanglement can also be recre-
ated, depending on the initial state of the two atoms as well
as the environment, known as entanglement revival [12].

In recent years, there is increasing interest in the study
of entanglement generation in non-inertial frames and in
curved spactime [13–24], focusing on the effects of accel-
eration and spacetime curvature on entanglement dynam-
ics. In this paper, we are concerned with how the entangle-
ment dynamics of a two-atom system is influenced if the
atoms are placed in a locally flat spacetime but with non-
trivial topology. In particular, we consider two static two-
level atoms in cosmic string spacetime. Cosmic strings are
topological defects that may have been created in the early
Universe during phase transitions [25]. The simplest cos-
mic string spacetime is that of a static, straight and infinitely
thin cosmic string, which can be regarded as a flat space-
time with a planar angle deficit. Quantum fields propagat-
ing in the cosmic string spacetime are inevitably influenced
by the nontrivial topology, and many quantum effects, such
as the vacuum expectations of stress-energy tensor [26–31],
the Casimir–Polder effect [32], atomic transition rate [33–
36], resonance interaction [37], and lightcone fluctuations
[38,39] have been studied, which exhibit behaviors similar
to those in a flat spacetime with a boundary. Therefore, it
is also of interest to investigate the entanglement dynamics
of two static atoms coupled with the vacuum fluctuations
of massless scalar fields in the cosmic string spacetime, and
compare the result with that in the Minkowski spacetime with
a reflecting boundary [10,17,24].

In this paper, we study the entanglement dynamics of two
mutually independent, static two-level atoms coupled with a
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bath of fluctuating massless scalar fields in vacuum in the cos-
mic string spacetime. We consider three different alignments
of atoms, i.e. parallel, vertical, and symmetric alignments
with respect to the cosmic string. In particular, we investi-
gate how the entanglement degradation and generation are
influenced by the cosmic string, and compared the results
with those in the free Minkowski spacetime case, as well as
those in the case of a Minkowski spacetime with a reflecting
boundary.

2 The master equation

We study the entanglement dynamics of a two-atom system
coupled with a bath of fluctuating scalar fields in vacuum
in the cosmic string spacetime. The total Hamiltonian of the
system can be expressed in the following form,

H = HS + HF + HI . (1)

Here HS is the Hamiltonian of the two-atom system,

HS = ω

2
σ

(1)
3 + ω

2
σ

(2)
3 , (2)

where σ
(1)
i = σi ⊗ σ0, σ

(2)
i = σ0 ⊗ σi , with σi (i = 1, 2, 3)

being the Pauli matrices, σ0 is the 2 × 2 unit matrix, and
ω denotes the energy level spacing of the atoms. HF is the
Hamiltonian of the scalar field. HI denotes the interaction
between the atoms and the scalar field, which can be written
as

HI = μ[σ (1)
2 φ(t, �x1) + σ

(2)
2 φ(t, �x2)], (3)

where μ is the coupling constant which is assumed to be
small.

At first, we assume that the two-atom system and the quan-
tum fields are decoupled, so the initial state of the total system
takes the form ρtot (0) = ρ(0) ⊗ |0〉〈0|, where ρ(0) is the
initial state of the two-atom system, and |0〉 denotes vac-
uum state of the scalar fields. In the weak-coupling limit,
the reduced density matrix of the two-atom system takes the
Kossakowski–Lindblad form [40,41]

∂ρ(t)

∂t
= −i[Hef f , ρ(t)] + D[ρ(t)], (4)

where

Hef f = HS − i

2

2∑

α,β=1

3∑

i, j=1

H (αβ)
i j σ

(α)
i σ

(β)
j , (5)

and

D[ρ(t)] = 1

2

2∑

α,β=1

3∑

i, j=1

C (αβ)
i j [2σ

(β)
j ρσ

(α)
i − σ

(α)
i σ

(β)
j ρ − ρσ

(α)
i σ

(β)
j ].

(6)

Here C (αβ)
i j and H (αβ)

i j are related to the Fourier and Hilbert

transforms, G(αβ)(λ) and K(αβ)(λ), of the scalar field corre-
lation functions,

G(αβ)(�t) = 〈φ(t, �xα)φ(t ′, �xβ)〉, (7)

where �t = t − t ′, which can be expressed as

G(αβ)(λ) =
∫ ∞

−∞
d�teiλ�tG(αβ)(�t), (8)

K(αβ)(λ) = P

π i

∫ ∞

−∞
dω

G(αβ)(ω)

ω − λ
, (9)

where P denotes principal value. Then C (αβ)
i j can be repre-

sented as

C (αβ)
i j = A(αβ)δi j − i B(αβ)εi jkδ3k − A(αβ)δ3iδ3 j , (10)

where

A(αβ) = μ2

4
[G(αβ)(ω) + G(αβ)(−ω)],

B(αβ) = μ2

4
[G(αβ)(ω) − G(αβ)(−ω)]. (11)

To study the time evolution of the reduced density matrix,
we choose the coupled basis {|G〉 = |00〉, |A〉 = 1√

2
(|10〉 −

|01〉), |S〉 = 1√
2
(|10〉 + |01〉), |E〉 = |11〉 }. Rewriting Eq.

(10) as

C (11)
i j = A1δi j − i B1εi jkδ3k − A1δ3iδ3 j ,

C (22)
i j = A2δi j − i B2εi jkδ3k − A2δ3iδ3 j ,

C (12)
i j = C (21)

i j = A3δi j − i B3εi jkδ3k − A3δ3iδ3 j , (12)

then a series of equations describing the evolution of the two-
atom system can be written as

ρ̇GG = −2(A1 − B1 + A2 − B2)ρGG

+ (A1 + B1 + A2 + B2 − 2A3 − 2B3)ρAA

+ (A1 + B1 + A2 + B2 + 2A3

+ 2B3)ρSS + (A1 + B1 − A2 − B2)(ρAS + ρSA),

ρ̇EE = −2(A1 + B1 + A2 + B2)ρEE + (A1 − B1

+ A2 − B2 − 2A3 + 2B3)ρAA

+ (A1 − B1 + A2 − B2 + 2A3 − 2B3)ρSS
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+ (−A1 + B1 + A2 − B2)(ρAS + ρSA),

ρ̇SS = −2(A1 + A2 + 2A3)ρSS + (A1 − B1

+ A2 − B2 + 2A3 − 2B3)ρGG

+ (A1 + B1 + A2 + B2 + 2A3 + 2B3)ρEE

+ (−B1 + B2)(ρAS + ρSA),

ρ̇AA = −2(A1 + A2 − 2A3)ρAA + (A1 − B1 + A2

− B2 − 2A3 + 2B3)ρGG

+ (A1 + B1 + A2 + B2 − 2A3 − 2B3)ρEE

+ (−B1 + B2)(ρAS + ρSA),

ρ̇AS = −2(A1 + A2)ρAS + (A1 − B1 − A2 + B2)ρGG

+ (−A1 − B1 + A2 + B2)ρEE

+ (−B1 + B2)(ρSS + ρAA),

ρ̇SA = −2(A1 + A2)ρSA + (A1 − B1 − A2 + B2)ρGG

+ (−A1 − B1 + A2 + B2)ρEE

+ (−B1 + B2)(ρSS + ρAA),

ρ̇GE = −2(A1 + A2)ρGE ,

ρ̇EG = −2(A1 + A2)ρEG, (13)

where ρI J = 〈I |ρ|J 〉 , I, J ∈ {G, E, A, S}. The differential
equations above can be solved analytically, and the explicit
expressions are given in Appendix A.

We take concurrence [42] as a measurement of quantum
entanglement, which is 1 for maximally entangled states and
0 for separable states. For the X states, the concurrence can
be calculated as [43]

C[ρ(t)] = max{0, K1(t), K2(t)}, (14)

where

K1(t) =
√

[ρAA(t) − ρSS(t)]2 − [ρAS(t) − ρSA(t)]2

− 2
√

ρGG(t)ρEE (t), (15)

K2(t) = 2 |ρGE (t)|
−

√
[ρAA(t) + ρSS(t)]2 − [ρAS(t) + ρSA(t)]2.

(16)

3 Quantum scalar field in the cosmic string spacetime

The line element in the spacetime of a static, straight cosmic
string can be written as

ds2 = dt2 − dr2 − r2dθ2 − dz2, (17)

where 0 ≤ θ < 2π
ν

. Here ν = (1 − 4Gμ)−1, with μ being
the mass per unit length of the string, and G the Newtonian
constant. The spacetime described by the metric above is
locally flat but with a nontrivial global topology characterized

by a deficit angle 8πGμ.1 In the cosmic string spacetime, the
Klein–Gordon equation of scalar field can be expressed as
(

∂2
t − 1

r
∂r (r∂r ) − 1

r2 ∂2
θ − ∂2

z

)
φ(t, �x) = 0. (18)

Solving the equation above, one obtains a complete set of
normal field modes [33]

u j (t, �x) = u j (�x)e−iωt , (19)

with

u j (�x) = 1

2π

√
ν

2ω
J|νm|(k⊥r)ei(νmθ+k3z). (20)

where J is the Bessel J function, the subscript j =
(k3, k⊥,m), with m being an integer. Here ω =

√
k2

3 + k2⊥,
with k3 ∈ (−∞,+∞), and k⊥ ∈ (0,+∞). The modes are
normalized according to

− i
∫

d3x u j (t, �x)←→∂t u∗
j ′(t, �x) = δ j, j ′ . (21)

Now the field operator can be expanded with the complete
set of normal modes as

φ(t, �x) =
∫

dμ j [c j (t)u j (�x) + c†
j (t)u

∗
j (�x)], (22)

in which

∫
dμ j ≡

∞∑

m=−∞

∫ ∞

−∞
dk3

∫ ∞

0
dk⊥k⊥, (23)

and c j (t) = c j (0)e−iωt and c†
j (t) = c†

j (0)eiωt express
respectively the annihilation and creation operators. The
commutation relations of the annihilation and creation oper-
ators show that

[c j (t, �x), c†
j ′ (t, �x)] = δ j, j ′ . (24)

Then, the correlation function can be written as

〈0|φ(t, �x)φ(t ′, �x ′)|0〉 = ν

8π2

∞∑

m=−∞

∫ ∞

0
dk⊥

∫ ∞

−∞
dk

k⊥
ω

× Jν|m|(k⊥r)Jν|m|(k⊥r ′)eik3�ze−iω�t eiνm�θ , (25)

1 Here let us note that, for the cosmic string spacetime, the deficit angle
should be very small. However, there are similar topological defects
in condensed matter systems such as elastic solids and nematic liquid
crystals [44], and there has been growing interests in studying the grav-
itational effects in analogue systems [45]. In such systems, the deficit
angle is not necessarily small. So, in a broad sense, the case with an arbi-
trary deficit angle can be taken as topologically non-trivial spacetimes
that may exist in analogue systems.
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where �t = t − t ′, �θ = θ − θ ′, and �z = z − z′. Let

k3 = ω cos ϕ, k⊥ = ω sin ϕ, (26)

then the correlation function can be rewritten as

〈0|φ(t, �x)φ(t ′, �x ′)|0〉

= ν

8π2

∞∑

m=−∞

∫ π

0
dϕ

∫ ∞

0
dωω sin ϕ

× J|νm|(ωr sin ϕ)J|νm|(ωr ′ sin ϕ)e−iω�t eiω�z cos ϕeiνm�θ ,

(27)

and the Fourier transform takes the form

G(αβ)(ω) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ν ω

4π

∞∑

m=−∞

∫ π

0
dϕ sin ϕ × Jν|m|(ωr sin ϕ)

Jν|m|(ωr ′ sin ϕ)eiω�z cos ϕeiνm�θ , ω > 0 ,

0, ω < 0 .

(28)

4 Entanglement dynamics of two-atom system

In this section, we investigate the entanglement dynamics of
two static atoms coupled with a bath of fluctuating scalar
fields in vacuum in the cosmic string spacetime. We assume
that the separation between the two atoms is L , and consider
three different alignments of atoms, i.e. parallel, vertical, and
symmetric alignments with respect to the cosmic string, as
shown in Fig. 1. In particular, we will study the entanglement
degradation and generation for atoms placed at different dis-
tances to the cosmic string, and compared the results with
those in the free Minkowski spacetime, and in the case of the
Minkowski spacetime with a reflecting boundary. For sim-
plicity, in the following, we assume ν is an integer.

4.1 Entanglement degradation

We begin our discussion with the entanglement degradation
of two-atom systems initially prepared in the symmetric state
|S〉 and the antisymmetric state |A〉, both of which are max-
imally entangled.

4.1.1 Two-atom system placed extremely close to the
cosmic string

I. Parallel alignmentWhen the two atoms are aligned parallel
to the cosmic string, the concurrence takes the form

C[ρ(t)] = e−4(A1±A3)t , (29)

where the ± sign refers to the symmetric state and the anti-
symmetric state respectively. It is obvious that the concur-
rence always decays monotonically in this case.

When the distance between the two-atom system and the
string is extremely small, the corresponding coefficients take
the form A1 = ν�0

4 , A3 = ν�0
4

sin(ω L)
ω L , which can be derived

from Eqs. (B4)–(B5) in Appendix B by taking the limit
ωr → 0. When the interatomic separation is vanishingly
small (ωL → 0), A1 = A3 = ν�0

4 . For atoms initially in the
antisymmetric state |A〉, the two atoms remain maximally
entangled during evolution as if it were a closed system.
When the interatomic separation is very large (ωL → ∞),
we have A3 = 0, so the evolution of concurrence is the same
whether the initial state is the symmetric state |S〉 or the anti-
symmetric state |A〉. Now we compare the result with those
in the Minkowski spacetime, and in the case of a Minkowski
spacetime with a reflecting boundary. Note that the concur-
rence in the latter two cases take the same form as Eq. (29),
but with different coefficients. For the Minkowski spacetime
case, the coefficients are A1 = �0

4 , A3 = �0
4

sin(ω L)
ω L . So when

the two atoms are placed extremely close to the string, the
concurrence evolves ν times as fast as that in the Minkowski
spacetime. For the case of the Minkowski spacetime with
a reflecting boundary, one gets A1 = A3 = 0 when the
atoms are extremely close to the boundary, c.f. Eqs. (B17)–
(B18). Therefore, the two-atom system will remain maxi-
mally entangled as if it were a closed system, regardless of
the interatomic separation and the initial state, which is dif-
ferent from the cosmic string case.
II. Vertical alignment In the vertical case, the expression of
concurrence can be calculated as

C[ρ(t)]

= e−2(A1+A2)t
[
(A1 − A2)

2 + 4A3
2 cosh(2γ t) ∓ 2A3γ sinh(2γ t)

]

γ 2 ,

(30)

where γ =
√

(A1 − A2)2 + 4A3
2, and the ∓ sign refers

to the symmetric state |S〉 and the antisymmetric state |A〉
respectively. In this case, since the coefficients A1 �= A2

(see Eqs. (B9)–(B11) in Appendix B), the expression is rather
complicated. In particular, it is not monotonous, so entangle-
ment revival may happen in certain cases.

When the separation between the two atoms is extremely
small (ωL → 0), the entanglement dynamics is the same as
that in the parallel case, as expected. When the separation
is very large (ωL → ∞), the concurrence takes the form
C[ρ(t)] = e−2(A1+A2)t , where A1 = ν�0

4 , A2 = �0
4 , no

matter the initial state of the two-atom system is |S〉 or |A〉.
So in these limiting cases, concurrence decays monotoni-
cally. When the separation between the atoms is comparable
to the transition wavelength (ωL ∼ 1), we study the entan-
glement dynamics numerically. Here and after we plot the
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Fig. 1 The parallel (left),
vertical (middle) and symmetric
(right) alignments of atoms with
respect to the cosmic string

Fig. 2 Entanglement dynamics for vertically aligned atoms initially
prepared in |S〉. On the left, the black, green, and red lines correspond
to ωL = 1/4, 1, 4, respectively, with ν = 2. On the right, the dot-dashed

blue, real red, green, and black lines correspond to ν = 1, 2, 5, 8, respec-
tively, with ωL = 1. Note that ν = 1 corresponds to the Minkowski
spacetime

Fig. 3 Entanglement dynamics for vertically aligned atoms initially prepared in |A〉. On the left, the black, green, and red lines correspond to
ωL = 2, 4, 8, respectively, with ν = 2. On the right, the dot-dashed blue, real red, green, and black lines correspond to ν = 1, 2, 5, 8, respectively,
with ωL = 4

time evolution of concurrence as a function of dimensionless
time �0t . To better illustrate the results, we use a logarith-
mic time scale in this paper. From Fig. 2 (left) and Fig. 3
(left), we observe that when the interatomic separation is
appropriate, entanglement revival can be achieved, which is
different from the parallel case in which concurrence always
decreases monotonically. In Fig. 2 (right) and Fig. 3 (right),
it has been shown that as the parameter characterizing the
nontrivial topology ν gets larger, the entanglement revival
happens earlier, and the maximal value of the revived con-
currence is larger. For comparison, we note that in the case
of the Minkowski spacetime with a reflecting boundary, the

concurrence is C[ρ(t)] = e−2A2t whether the initial state is

symmetric or antisymmetric, where A2 = �0
4

(
1 − sin(ω L )

ω L

)
.

So entanglement revival can not occur.
III. Symmetrical alignmentWhen the two atoms are symmet-
rically aligned with respect to the cosmic string, i.e. �r = 0,
�θ = π

ν
, and �z = 0, the concurrence takes the same form

as Eq. (29), with A1 = A3 = ν�0
4 . So entanglement revival

cannot happen. When the initial state is |S〉, the concurrence
evolves ν times as fast as that in the Minkowski spacetime,
which is similar to the parallel case. When the initial state is
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Fig. 4 Relative decay rate of concurrence when the atoms are parallel
to the cosmic string, with initial state |S〉, ν = 2, and ωL = 1. The real
line describes the case in the cosmic string spacetime, and the dashed
line describes the corresponding case in the Minkowski spacetime with
a boundary

|A〉, the concurrence can be protected as if it were an isolated
system, which is different from the parallel case.

4.1.2 Two-atom system placed at a distance comparable to
the atomic transition wavelength

In the following, we discuss the entanglement degradation
when the two-atom system is at a distance comparable to the
atomic transition wavelength, i.e, r ∼ ω−1.
a.Distance effects In this part, we focus on how entanglement
dynamics is influenced by the atom-string distance r , so we
fix the interatomic separation at ωL ∼ 1. We assume that the
two atoms are initially in |S〉. However, when the initial state
is |A〉, the results are essentially the same.
I. Parallel alignment As have been discussed, when two
atoms are parallel to the cosmic string, the concurrence takes
the form of Eq. (29), which decays monotonically as time
grows. Here we can define a relative decay rate as

� = − 1

C[ρ(t)]
dC[ρ(t)]

dt
. (31)

When the initial state of the two atoms is symmetric state,
we can get the relative decay rate of concurrence as � =
4(A1 + A3). In Fig. 4, we show how the decay rate varies
with the atom-string distance. It is shown that the relative
decay rate is the largest when two atoms are placed on the
string. As the distance increases, it oscillates with a damping
amplitude. However, in the boundary case, as the atoms are
approaching to the boundary, the relative decay rate becomes
zero.
II. Vertical alignment In the following, we numerically study
the entanglement degradation for atoms aligned vertically to
the cosmic string, and compare the result with that in the case
with a reflecting boundary. As shown in Fig. 5 (left), when the
two atoms are vertically aligned to the string, entanglement

revival can be achieved, and the revival time of entanglement
oscillates as the atom-string distance increases. Similar to the
cosmic string case, entanglement revival happens when the
two atoms are vertically aligned to the boundary, see Fig. 5
(right).
III. Symmetrical alignmentWhen the two atoms are symmet-
rically aligned with respect to the cosmic string, the concur-
rence takes the same form as Eq. (29). So the result is similar
to that of the parallel case and we do not discuss it in detail
here.
b. Topological effects In this part, we consider the effects of
the parameter ν that describes the nontrivial topology of the
cosmic string spacetime on the entanglement dynamics, so
we fix the interatomic separation and the distance at the order
of the transition wavelength.
I. Parallel alignment In Fig. 6 (left), we show the entangle-
ment dynamics of two atoms aligned parallel to the cosmic
string. As the parameter ν gets larger, the decay rate becomes
larger, and the lifetime of entanglement becomes shorter.
II. Vertical alignment In contrast to the parallel case, when the
two atoms are placed vertically to the cosmic string, entangle-
ment revival occurs, see Fig. 6 (right). The larger the param-
eter ν is, the earlier the entanglement revival occurs. Here we
note that for the parallel and vertical alignments, we assume
the two-atom system is initially prepared in |S〉. However,
when the initial state is |A〉, the results are essentially the
same.
III. Symmetrical alignment In Fig. 7, we plot the entangle-
ment dynamics for atoms symmetrically aligned with respect
to the cosmic string. The decay rate of concurrence increases
as ν increases when the initial state of the two-atom sys-
tem is the symmetric state |S〉. However, when the initial
state of the two-atom system is the antisymmetric state |A〉,
as ν increases, the decay rate of concurrence significantly
decreases, and the lifetime of entanglement is significantly
enhanced.

4.1.3 Two-atom system placed far from the cosmic string

When the two-atom system is placed far from the cosmic
string, i.e. ωr → ∞, the coefficients of the master equation
can be calculated as A1 = A2 = B1 = B2 = �0

4 , A3 =
B3 = �0 sin(ωL)

4ωL , and the entanglement dynamics is the same
as that in the Minksowski spacetime.

4.2 Entanglement generation

Now, we turn our attention to the phenomenon of entangle-
ment generation when the initial state of the two-atom system
is |E〉, which is separable. From Eqs. (14)–(16), we can see
that entanglement generation can occur as long as the value√[ρAA(τ ) − ρSS(τ )]2 − [ρAS(τ ) − ρSA(τ )]2 is larger than
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Fig. 5 Entanglement dynamics for atoms aligned vertically to the cos-
mic string initially prepared in |S〉, with ν = 2. On the left, the black,
green, red, orange, and blue lines correspond to ωr = 1/2, 1, 2, 4, 8,
respectively. On the right, the black, green, and red lines correspond to

ωr = 1/2, 5/2, 7/2, respectively. The real lines describe the cases in
the cosmic string spacetime, and the dashed lines describe the corre-
sponding cases in the presence of a reflecting boundary

Fig. 6 Entanglement dynamics for atoms aligned parallel to (left), and vertically to (right) the cosmic string initially prepared in |S〉, with
ωL = 2, ωr = 1. The dot-dashed blue, real red, green, and black lines correspond to ν = 1, 2, 5, 8, respectively

Fig. 7 Entanglement dynamics for atoms aligned symmetrically to the cosmic string initially prepared in |S〉 (left) and |A〉 (right), with ωr = 1.
The dot-dashed blue, real red, green, and black lines correspond to ν = 1, 2, 5, 8, respectively

2
√

ρGG(τ )ρEE (τ ), which takes a finite time of evolution via
spontaneous emission.

4.2.1 Two-atom system placed extremely close to the
cosmic string

I. Parallel alignment In the parallel case, when the inter-
atomic separation is vanishingly small (ωL → 0), or
extremely large (ωL → ∞), it can be shown that entan-
glement cannot be created. When the separation of the two
atoms is of the order of the transition wavelength (ωL ∼ 1),
we investigate the entanglement dynamics numerically and

show the result in Fig. 8, which suggests that the birth time
of entanglement becomes earlier as ν increases (see Fig. 8
(left)).
II. Vertical alignment In the vertically aligned case, when
the interatomic separation is extremely small (ωL → 0), the
situation is essentially the same as the parallel case, so entan-
glement cannot be generated. When the interatomic separa-
tion is very large (ωL → ∞), we have C[ρ(t)] = 0 since
A1 = A3 = 0, so entanglement cannot be created either.
In Fig. 8 (right), we show the time evolution of concurrence
when the separation of the two atoms is of the order of the
transition wavelength (ωL ∼ 1). Similar to the parallel case,
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Fig. 8 Entanglement dynamics
for atoms aligned parallel to
(left), and vertically to (right)
the cosmic string initially
prepared in |S〉, with ωL = 1.
The dot-dashed blue, real red,
green, and black lines
correspond to ν = 1, 2, 5, 8,
respectively

Fig. 9 Entanglement dynamics for atoms aligned parallel to (left, with
ωL = 1), vertically to (middle, with ωL = 1), and symmetrically to
(right) the cosmic string initially prepared in |E〉, with ν = 2. The real
black, green, and red lines correspond to ωr = 1, 2, 3, respectively.

The real lines describe the cases in the cosmic string spacetime, and the
dashed lines describe the corresponding boundary case (left, middle),
and the Minkowski spacetime case (right)

the larger the parameter ν is, the earlier the birth time of
entanglement is.
III. Symmetrical alignmentWhen the two atoms are symmet-
rically aligned with respect to the cosmic string, the situation
is similar to the parallel case when ωr and ωL approach to
zero simultaneously. Thus, similarly, entanglement genera-
tion cannot happen in this case.

4.2.2 Two-atom system placed at a distance comparable to
the atomic transition wavelength

In this part, we investigate the entanglement generation when
the two-atom system is at a distance comparable to the atomic
transition wavelength.
a. Distance effects
I. Parallel alignment As shown in Fig. 9 (left), when the two-
atom system is aligned parallel to the string, the birth time of
entanglement oscillates as the atom-string distance increases.
However, the maximal concurrence during evolution remains
nearly unchanged.
II. Vertical alignment When the two-atom system is placed
vertically to the string, the birth time of entanglement also
oscillates as the atom-string distance increases, as shown in
Fig. 9 (middle). Compared with the parallel case, the maxi-
mal concurrence shows a notable change as the atom-string
distance increases. In contrast to the corresponding boundary

case, the birth time of entanglement is more sensitive to the
atom-string distance in the cosmic string case.
III. Symmetrical alignment Similar to the parallel case, when
the two-atom system is symmetrically aligned with respect to
the string, entanglement generation can occur only when the
distance between the two-atom system and the string is nei-
ther too far nor too close. In certain cases, e.g. when ωr = 3
in the symmetrical case as shown in Fig. 9 (right), entangle-
ment can be generated, but it cannot in the corresponding
Minkowski spacetime.
b. Topological effects
I. Parallel alignment When the two-atom system is aligned
parallel to the cosmic string, as ν increases, the birth time
of entanglement becomes earlier, while the maximal entan-
glement during evolution is almost unchanged, as shown in
Fig. 10 (left).
II. Vertical alignment When the two-atom system is aligned
vertically to the cosmic string, similar to the parallel case,
the birth time of entanglement also becomes earlier as ν

increases. However, in contrast to the parallel case, the max-
imal entanglement during evolution is also enhanced as ν

increases, see Fig. 10 (middle).
III. Symmetrical alignment When the two-atom is symmet-
rically aligned with respect to the cosmic string, as shown in
Fig. 10 (right), the birth time of entanglement oscillates as ν

increases, in contrast to the parallel and vertical cases.
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Fig. 10 Entanglement dynamics for atoms aligned parallel to (left, with ωL = 1, ωr = 1), vertically to (middle, with ωL = 1, ωr = 1), and
symmetrically to (right, with ωr = 6) the cosmic string initially prepared in |E〉. The dot-dashed blue, real red, green, and black lines correspond
to ν = 1, 2, 5, 8, respectively

4.2.3 Two-atom system aligned far from the cosmic string

When the two-atom system is placed far from the cosmic
string, i.e. ωr → ∞, we have (ωr → ∞), A1 = A2 =
B1 = B2 = �0

4 , A3 = B3 = �0 sin(ωL)
4ωL , the entanglement

dynamics is the same as that in the Minksowski vacuum.

5 The maximal concurrence during evolution

In the previous section, we have shown that entanglement
can be generated for a pair of atoms initially in a separa-
ble state in certain conditions. The concurrence starts from
zero, reaching its maximum, and then decreases to zero. In
the following, we study how the maximal entanglement dur-
ing evolution is influenced by the cosmic string. We will
show that the maximal entanglement during evolution can
either be enhanced or weakened, depending on the distance
between the two-atom system and the string, the interatomic
separation, and the parameter characterizing the nontrivial
topology.

5.1 Parallel alignment

In the following, we investigate the situation when the atoms
are parallel to the cosmic string. First, we fix the atom-
string distance and see how the maximal concurrence varies
with the interatomic separation. When the atoms are placed
extremely close to the cosmic string, the corresponding coef-
ficients are ν times those in the Minkowski spacetime as
mentioned before. Thus the concurrence evolves ν times
as fast as that in the free space, but the maximal concur-
rence during evolution remains the same. In Fig. 11 (left),
we observe that when the atom-string distance is small com-
pared to the transition wavelength, the maximal concurrence
during evolution in the cosmic string spacetime with differ-
ent ν is almost the same as that in the Minkowski spacetime
as expected. When the atom-string distance is comparable
to the transition wavelength, as ν increases, the range of the

atomic separation within which entanglement can be cre-
ated is broadened, see Fig. 11 (middle). Furthermore, when
ν gets large enough, the maximal entanglement during evo-
lution does not change with ν any more. When the two atoms
get farther from the string, the maximal entanglement during
evolution approaches that in the Minkowski spacetime, see
Fig. 11 (right).

Now we investigate how the maximal concurrence varies
with the atom-string distance with a fixed interatomic sepa-
ration. In Fig. 12, it has been shown that the maximal concur-
rence can be significantly enhanced or weakened in the pres-
ence of the string. In particular, when the separation between
the two atoms is very large, entanglement cannot be gener-
ated in the Minkowski spacetime. However, it can be gener-
ated in the presence of the cosmic string when the two atoms
are placed at an appropriate distance to the string and the
parameter ν is large enough, see Fig. 12 (right).

5.2 Vertical alignment

As before, first we study how the maximal concurrence varies
with interatomic separation with a fixed atom-string distance.
In contrast to the parallel case, the maximal concurrence is
significantly affected by the cosmic string when the atoms
is placed close to the string, see Fig. 13 (left). The range
of the atomic separation within which entanglement created
can be broadened in the presence of a cosmic string. Also,
the larger ν is, the wider the range is. When the two atoms
get farther from the string, the maximal entanglement during
evolution approaches that of the Minkowski spacetime, see
Fig. 13 (right).

Now we investigate effect of the atom-string distance on
the maximal concurrence with a fixed interatomic separa-
tion. When the interatomic separation L is small compared
with the transition wavelength of the atoms ω−1, entangle-
ment creation cannot happen when the two-atom system is
placed extremely close to the cosmic string, see Fig. 14 (left).
When the distance between the two atoms is large compared
to the transition wavelength, entanglement generation cannot
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Fig. 11 Entanglement dynamics for atoms aligned parallel to the cosmic string initially prepared in |E〉, with ωr = 2/10 (left), ωr = 2 (middle),
and ωr = 20 (right). The dot-dashed blue, real red, dashed green, and real black lines correspond to ν = 1, 2, 5, 8, respectively

Fig. 12 Entanglement dynamics for atoms aligned parallel to the cosmic string initially prepared in |E〉, with ωL = 2/10 (left), ωL = 2 (middle),
and ωL = 20 (right). The dot-dashed blue, real red, dashed green, and real black lines correspond to ν = 1, 2, 5, 8, respectively

Fig. 13 Entanglement dynamics for atoms aligned vertically to the cosmic string initially prepared in |E〉, with ωr = 2/10 (left), ωr = 2 (middle),
and ωr = 20 (right). The dot-dashed blue, real red, dashed green, and real black lines correspond to ν = 1, 2, 5, 8, respectively

Fig. 14 Entanglement dynamics for atoms aligned vertically to the cosmic string initially prepared in |E〉, with ωL = 2/10 (left), ωL = 2
(middle), and ωL = 20 (right). The dot-dashed blue, real red, dashed green, and real black lines correspond to ν = 1, 2, 5, 8, respectively
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Fig. 15 Entanglement dynamics for atoms aligned symmetrically to
the cosmic string initially prepared in |E〉. The dot-dashed blue, real
red, green, and black lines correspond to ν = 1, 2, 5, 8, respectively

happen in the Minkowski spacetime, while it happens in the
cosmic string spacetime with a large ν when the atom-string
distance is small or comparable with the transition wave-
length, see Fig. 14 (right).

5.3 Symmetrical alignment

Now we come to the symmetrical case. As shown in Fig. 15,
entanglement can be generated only when the atom-string
distance is appropriate. The range of the distance that entan-
glement can be generated is broadening as ν increases. Also,
the larger ν is, the more peaks there exist. In particular, there
is an interval of distance within which entanglement genera-
tion can not happen in the presence of a cosmic string when
atoms are close to the string.

6 Conclusion

In conclusion, we have investigated the dynamics of two
static atoms in the cosmic string space in the framework
of open quantum systems. We consider three situations, i.e.
parallel, vertical and symmetric alignments of atoms with
respect to the cosmic string. In particular, we focus on how
the phenomena of entanglement degradation and generation
are influenced by the cosmic string.

For atoms initially in the symmetric state |S〉 and the anti-
symmetric state |A〉, both of which are maximally entangled,
the concurrence decays monotonically when the atoms are
aligned parallel to or symmetrically to the cosmic string,
while the destroyed entanglement can be revived when the
two atoms are aligned vertically to the string, which can-
not happen in the Minkowski spacetime. In the parallel case,
when the atoms are placed extremely close to the string, the
decay rate of concurrence is ν times that in the Minkowski
spacetime, no matter the initial states is |S〉 or |A〉. When
the two atoms are symmetrically aligned with respect to the
cosmic string, the situation is the same when the initial state

is |S〉, but concurrence can be protected as if the two-atom
system were isolated from its environment when the initial
state is |A〉. Even if the atom-string distance is comparable to
the transition wavelength, the lifetime of entanglement can
be significantly enhanced as ν increases when the symmet-
rically aligned two-atom system is initially in |A〉.

For two initially separable atoms, entanglement can be
generated when the separation between the two atoms is
comparable to the transition wavelength. For the parallel two-
atom system, the atom-string distance mainly affects the birth
time of entanglement, while for the vertical two-atom sys-
tem, the maximal concurrence during evolution is also sensi-
tive to the atom-string distance. When the distance between
two atoms is large compared with the transition wavelength,
entanglement generation cannot happen in the Minkowski
spacetime, while it happens in the cosmic string spacetime
at some appropriate positions.
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Appendix A: The matrix elements for the density matrix

In this section, we give the time-dependent matrix elements
of the density matrix by solving Eq. (13).

1. Parallel and symmetrical alignments

As we will show in Appendix B, in these two cases, we have
A1 = A2 = B1 = B2, and A3 = B3, so their matrix elements
for the density matrix are the same, except that the explicit
forms of the coefficient A3 are different.
a. When the two-atom system is initially in |A〉, we have

ρAA(t) = e−4(A1−A3)t ,

ρGG(t) = 1 − e−4(A1−A3)t , (A1)
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and all the other components are zero.
b. When the two-atom system is initially in |S〉, we have

ρSS(t) = e−4(A1+A3)t ,

ρGG(t) = 1 − e−4(A1+A3)t , (A2)

and all the other components are zero.
c. When the two-atom system is initially in |E〉, we have

ρAA(t) = A1 − A3

A1 + A3

[
e−8A1t (e4(A1+A3)t − 1)

]
,

ρSS(t) = A1 + A3

A1 − A3

[
e−8A1t (e4(A1−A3)t − 1)

]
,

ρGG(t) = 1 −
[
A1 − A3

A1 + A3

[
e−8A1t (e4(A1+A3)t − 1)

]

+ A1 + A3

A1 − A3

[
e−8A1t (e4(A1−A3)t − 1)

]
+ e−8A1t

]
,

ρEE (t) = e−8A1t , (A3)

and all the other components are zero.

2. Vertical alignment

In this case, since A1 �= A2, the results are more complicated.
In the following results, for brevity, we let ξ = A1A2(A1 +
A2) + 4A1A2A3 + (A1 + A2)A2

3, η = A1A2(A1 + A2) −
4A1A2A3 + (A1 + A2)A2

3, χ1 = A1 + A2, χ2 = A1 − A2,

and γ =
√

(A1 − A2)2 + 4A2
3.

a. When the two-atom system is initially in |A〉, we have

ρAA(t) = e−2χ1t

2γ 2

[
χ2

2 + (γ 2 + 4A3
2) cosh(2γ t)

+4A3γ sinh(2γ t)
]
,

ρSS(t) = χ2
2

γ 2 e
−2χ1t sinh(γ 2t2),

ρGG(t) = e−2(χ1+γ )t

2γ

[
2A3(1 − e4γ t )

− γ (1 + e4γ t − 2e2(χ1+γ )t )
]
,

ρAS(t) = ρSA(t)

= −χ2 e−2χ1t sinh(γ t)

γ 2

[
2A3 sinh(γ t)+γ cosh(γ t)

]
,

ρEE (t) = 0. (A4)

b. When the two-atom system is initially in |S〉, we have

ρAA(t) = χ2
2

γ 2 e
−2χ1t sinh(γ 2t2),

ρss(t) = e−2χ1t

2γ 2

[
χ2

2 + (γ 2 + 4A3
2) cosh(2γ t) − 4A3γ sinh(2γ t)

]
,

ρGG(t) = e−2(χ1+γ )t

2γ

[
2A3(e

4γ t − 1) − γ (1 + e4γ t − 2e2(χ1+γ )t )
]
,

ρAS(t) = ρSA(t) = χ2 e−2χ1t sinh(γ t)

γ 2
[
2A3 sinh(γ t) − γ cosh(γ t)

]
, ρEE (t) = 0. (A5)

c. When the two-atom system is initially in |E〉, we have

ρAA(t) = e−2χ1t

χ1(A1A2 − A2
3)γ 2

{
4A3χ2

2 (A2
3 − A1A2) − γ 2η cosh (2χ1t)

+χ1

(
A1χ2

2 A2 + χ2
1 A2

3 − 4χ1A
3
3 + 4A4

3

)
cosh(2γ t)

+ γ
[
2A3χ1(A1 − A3)(A2 − A3) sinh(2γ t)

+ γ η sinh (2χ1t)
] }

,

ρSS(t) = −e−2χ1t

χ1(A1A2 − A2
3)γ 2

{
4A3χ2

2 (A2
3 − A1A2)

+ γ 2ξ cosh (2χ1t)

−χ1

(
A1χ2

2 A2 + χ2
1 A2

3 + 4χ1A
3
3 + 4A4

3

)
cosh(2γ t)

+ γ
[
2A3χ1(A1 + A3)(A2 + A3) sinh(2γ t)

− γ ξ sinh (2χ1t)
] }

,

ρGG(t) = e−2(2χ1+γ )t

(A1A2 − A2
3)γ

{
A1

[
2A2

3e
2χ1t (e4γ t − 1)

− A2γ
(
e2χ1t (e4γ t + 1) − e2γ t (1 + e4χ1t )

)]

− A2
3

[
2A2e

2χ1t (1 − e4γ t )

+ γ
(
e2χ1t (e4γ t + 1) − e2γ t (3 − e4χ1t )

)]}
,

ρAS(t) = ρAS(t) = −χ2e
−2χ1t

χ1(A1A2 − A2
3)γ 2

{
γ

[
χ1(A1A2 + A2

3) sin(2γ t) − 2A2
3γ sinh (2χ1t)

]

+ 8A2
3(A1A2 − A2

3) + 2A2
3γ 2 cosh(2χ1t)

− 2A2
3χ2

1 cosh(2γ t)
}

,

ρEE (t) = e−4χ1t . (A6)

Appendix B: Calculations of the coefficients Ai and Bi

In this Appendix we show the details of the calculations of the
coefficients Ai and Bi in Eqs. (13) for different alignments
of the two-atom system in the cosmic string spacetime, in
the Minkowski spacetime with a boundary, and in the free
Minkowski spacetime.
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1. In the cosmic string spacetime

To get the coefficients Ai and Bi , we need the Fourier trans-
form of the field correlation function (28). In order to cal-
culate the result explicitly, we use the property of Bessel
function [46]

∞∑

m=−∞
Jν|m|(k⊥r)Jν|m|(k⊥r ′)eiνm�θ = 1

ν

ν−1∑

n=0

J0(k⊥Ln,ν),

(B1)

where ν is integer, and Ln,ν =√
r2 + r ′2 − 2rr ′ cos(�θ + 2πn

ν
).

a. Parallel alignment

When the two-atom system is aligned parallel to the string,
taking Eqs. (B1) and �θ = 0,�z = L ,�r = 0 into Eq.
(28), we obtain

G(11)(ω) = G(22)(ω)= ω

2π

∫ 1

0
dx

ν−1∑

n=0

J0(ωr Rn,ν

√
1−x2),

(B2)

G(12)(ω) = G(21)(ω)

= ω

2π

∫ 1

0
dx cos(ω x �z)

ν−1∑

n=0

J0(ωr Rn,ν

√
1−x2),

(B3)

with Rn,ν =
√

2 − 2 cos
( 2πn

ν

)
. With the help of the formulas

(6.677) in Ref. [47], the integration above can be calculated,
and we get

A1 = A2 = B1 = B2 = �0

4

ν−1∑

n=0

sin(ωr Rn,ν)

ωr Rn,ν

, (B4)

A3 = B3 = �0

4

ν−1∑

n=0

sin
√

(ωL)2 + (ωr Rn,ν)2
√

(ωL)2 + (ωr Rn,ν)2
, (B5)

where �0 = μ2ω/2π denotes spontaneous emission rate in
the Minkowski spacetime.

b. Vertical alignment

When the two-atom system is aligned vertically to the string,
we have �θ = 0,�z = 0,�r = L . Similarly, we obtain

G(11)(ω) = ω

2π

∫ 1

0
dx

ν−1∑

n=0

J0(ωr Rn,ν

√
1 − x2), (B6)

G(22)(ω) = ω

2π

∫ 1

0
dx

ν−1∑

n=0

J0(ωr
′ Rn,ν

√
1 − x2), (B7)

G(12)(ω) = G(21)(ω) = ω

2π

∫ 1

0
dx

ν−1∑

n=0

J0(ω Ln,ν

√
1 − x2).

(B8)

So we can get

A1 = B1 = �0

4

ν−1∑

n=0

sin(ω r Rn,ν)

ω r Rn,ν

, (B9)

A2 = B2 = �0

4

ν−1∑

n=0

sin(ω r ′ Rn,ν)

ω r ′ Rn,ν

, (B10)

A3 = B3 = �0

4

ν−1∑

n=0

sin(ω Ln,ν)

ω Ln,ν

. (B11)

c. Symmetrical alignment

When the two atoms are symmetric alignment with respect
to the cosmic string, i.e. �θ = π/ν,�z = 0,�r = 0, we
obtain

A1 = A2 = B1 = B2

= �0

4

ν−1∑

n=0

sin(ω r Rn,ν)

ω r Rn,ν

, (B12)

A3 = B3 = �0

4

ν−1∑

n=0

sin(ω r Hn,ν)

ω r Hn,ν

, (B13)

with Hn,ν =
√

2 − 2 cos
[

(2n+1)π
ν

]
.

2. In the Minkowski spacetime with a reflecting boundary

We assume that a conducting boundary is placed at y = 0.
The two-point function takes the following form

〈0|φ(t, �x)φ(t ′, �x ′)|0〉
= 〈0|φ(t, �x)φ(t ′, �x ′)|0〉 f ree+〈0|φ(t, �x)φ(t ′, �x ′)|0〉bnd ,

(B14)

where

〈0|φ(t, �x)φ(t ′, �x ′)|0〉 f ree
= 1

4π

1

(x − x ′
)2 + (y − y′

)2 + (z − z′
)2 − (t − t ′ − iε)2

,

(B15)
〈0|φ(t, �x)φ(t ′, �x ′)|0〉bnd

= − 1

4π

1

(x − x ′
)2 + (y + y′

)2 + (z − z′
)2 − (t − t ′ − iε)2

,

(B16)
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and ε → +0.

a. Parallel alignment

When two atoms are aligned parallel to the boundary, the
corresponding coefficients are

A1 = A2 = B1 = B2 = �0

4

(
1 − sin(2 ω r)

2 ω r

)
, (B17)

A3 = B3 = �0

4

(
sin(ω L)

ω L
− sin(

√
(ω L)2 + (2ω r)2 )√

(ω L)2 + (2ω r)2

)
.

(B18)

b. Vertical alignment

When the two-atom system are aligned vertically to the
boundary, we have

A1 = B1 = �0

4

(
1 − sin(2 ω r)

2 ω r

)
, (B19)

A2 = B2 = �0

4

(
1 − sin(2 ω r ′)

2 ω r ′

)
, (B20)

A3 = B3 = �0

4

(
sin(ω L)

ω L
− sin(ω r + ω r ′)

ω r + ω r ′

)
. (B21)

3. In the Minkowski spacetime

In the free Minkowski spacetime, we have

A1 = B1 = A2 = B2 = �0

4
, (B22)

A3 = B3 = �0

4

sin(ω L)

ω L
. (B23)
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