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Abstract Ring laser gyroscopes are top sensitivity iner-
tial sensors used in the measurement of angular rotation. It
is well known that the response of such remarkable instru-
ments can in principle access the very low frequency band,
but the occurrence of nonlinear effects in the laser dynamics
imposes severe limitations in terms of sensitivity and stabil-
ity. We report here general relationships aimed at evaluating
corrections able to effectively account for nonlinear laser
dynamics. The so-derived corrections are applied to anal-
yse thirty days of continuous operation of the large area ring
laser gyroscope GINGERINO leading to duly reconstruct the
Sagnac frequency ωs . The analysis shows that the evaluated
corrections affect the measurement of the Earth rotation rate
Ω⊕ at the level of 1 part in 1.5 × 103. The null shift term
ωns plays a non negligible role. It turns out proportional to
the optical losses μ of the ring cavity, which are changing
in time at the level of 10% within the considered period of
thirty days. The Allan deviation of estimated Ω⊕ shows a
remarkable long term stability, leading to a sensitivity better
than 10−10 rad/s with more than 10 s of integration time, and
approaching (8.5 ± 0.5) × 10−12 rad/s with 4.5 × 105 s of
integration time.

1 Introduction

Ring laser gyroscopes (RLGs) are inertial sensors based on
the Sagnac effect [1–3]. They are largely used for inertial
navigation, and applications in geodesy, geophysics and even
for General Relativity, where tests are foreseen [4]. Since
2011 we are studying the feasibility of the test of Lense–
Thirring dragging of the rotating Earth at the level of 1%
with an array of large frame RLGs [5–7]. For that purpose it
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is necessary to push the relative accuracy of the Earth rotation
rate Ω⊕ measurement in the range from 1 part in 109 up to
1 part in 1012.
RLG consists of a laser with a cavity comprising of three or
four mirrors, rigidly attached to a frame; large frame RLGs
are utilised to measure the Earth rotation rate, being attached
to the Earth crust. Because of the Sagnac effect, the two
counter-propagating cavity beams have slightly different fre-
quency, and the beat note of the two beams is proportional
to the angular rotation rate of the ring cavity. Large frame
RLGs are the most sensitive instruments for inertial angular
rotation measurements. The Sagnac frequency of a RLG is in
fact proportional to the component of the angular velocity

−→
Ω

felt by the instrument along the normal to the cavity plane:

fs = SΩ cos θ

S = 4
A

λL
, (1)

where A is the area of the ring cavity, L is its perimeter, λ the
wavelength of the light, and θ is the angle between the area
vector of the ring and

−→
Ω . For RLGs lying horizontally (area

vector vertical) θ is the co-latitude angle, while for RLGs
aligned at the maximum Sagnac signal θ = 0. Equation 1
defines the scale factor S, which is a function of the geometry
and of λ, quantities than can be measured with a very high
accuracy.

Further to sensitivity, other key points of such instruments
rely on their broad bandwidth, which can span from kHz
down to DC, and their very large dynamical range. In fact
the same device can record microseismic events and high
magnitude nearby earthquakes [8], being the signal based on
the measurement of the beat note between the two counter-
propagating beams. It has been proven that large size RLGs,
equipped with state of the art mirrors, can reach the relative
precision of 3 parts in 109 with one day of integration time, in
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the measurement of Ω⊕ [1]. If shot noise limited, sensitivity
level scales with the square of the size of the ring cavity [1].
However, other limitations can affect the measurement.

The laser dynamics is non linear and plays a role in deter-
mining the RLG signal. We have recently developed a model
to reconstruct the Sagnac frequency ωs starting from the mea-
sured beat note ωm and using the mono-beam signals.1

The Sagnac angular frequency can be expressed as the
linear sum of several terms. As we have discussed in a recent
paper [9], reconstruction of the Sagnac angular frequency is
mostly affected by the correction ωs0 associated with the so
called back-scattering. In this paper we provide the necessary
information to evaluate the other correction terms. Thirty
days of continuous operation of GINGERINO are analysed
taking into account the set of first order expansion terms, and
results discussed.

Results demonstrate that the so called null shift term,
the first order correction ωns1, plays a non negligible role
in affecting both accuracy and sensitivity of the apparatus.
The finding is in contrast with conventional treatments of
RLG data, where null shift effects are typically neglected or
considered simply proportional to the difference of the two
mono-beam signals. On the contrary we found that includ-
ing such correction leads to improve the measurement accu-
racy. Furthermore, since null shift effects can be related to
the optical losses of the system, which inherently depend on
operation time, a time dependent effect is found.

2 The analysis scheme to take into account laser
dynamics

Our approach is based on the model of laser dynamics we
recently developed in details in [9] based on the Aranowitz
model of RLG [10,11], where laser dynamics is described
in terms of several dimensionless parameters (Lamb param-
eters). The polarization of the laser plasma is described up to
the third order expansion in powers of the field [10,11]. In the
case of large frame RLGs, to avoid mode competition, a 50:50
mixture of two isotopes, 20Ne and 22Ne, is utilised, and the
laser operation is set close to threshold to guarantee single-
mode operation. This particular choice allows for some sim-
plifications: the Lamb parameters of cross-saturation (θ12 and
θ21) can be neglected, and we can assume the self-saturation
terms equal to each other (i.e., β1 = β2 = β).

The general goal of the analysis is to evaluate the Sagnac
frequency correcting systematics due to the laser nonlinear
dynamics by using the available data: the measured beat note
and the mono-beam signals [9,12]. Figure 1 shows a scheme

1 For mono-beam signals we intend the signals observed by the two
photodiodes that detect the laser intensities in the counter-propagating
directions, see Fig. 1.

of the experimental apparatus, where photodiodes collecting
the relevant signals are indicated.

The model provides two analytical expressions for the
Sagnac angular frequency ωs = 2π fs : a non-linear rela-
tionship (Eq. 8 of Ref. [9]). This analytical expression was
expanded up to the second order in term of two parameters
δns and K , and can be calculated from the Lamb parameters.
Accordingly, ωs is expressed as the linear sum of a total of
six terms:

ωs = ωs0 + ωns1 + ωns2 + ωK1 + ωK2 + ωnsK . (2)

As demonstrated in [9] ωs0, accounting for back-scatter
effects, is the dominant term in the expansion. The term ωs0

does not depend on Lamb parameters and can be expressed
starting from the knowledge of experimental parameters
according to:

ωs0 = 1

2

√
2ω2

m IS1 IS2 cos(2ε)

I1 I2
+ ω2

m + ωm

2
+ ωsξ (3)

ωsξ = ξ × IS1 IS2ω
2
m cos(2ε)

2I1 I2
√

2IS1 IS2ω
2
m cos(2ε)

I1 I2
+ ω2

m

(4)

where ωm is the measured beat note (expressed as angu-
lar frequency), I1,2, IS1,S2, and ε are the DC level of the
mono-beam signals, their amplitude demodulated at the beat
note frequency, and the dephasing between the two signals,
respectively.

In order to better define ωs0 and take into account experi-
mental issues, such as dark currents in the photodiode signals,
the term ωsξ , see Eq. 4, has been introduced, where ξ is a pro-
portionality constant which could be evaluated by statistical
means.

The other terms in Eq. 2 give smaller contributions. They
can be evaluated as detailed in the Appendix, starting from
the knowledge of the Lamb parameters [10], a careful esti-
mation of all operating parameters of the system, and the
evaluation of the total optical losses μ. The latter can be
measured with a 1% accuracy via the ring down method [11],
i.e., by suddenly switching off the laser discharge and mea-
suring the time behaviour of the intracavity signals through
photodiodes PH1 and PH2 in Fig. 1. The method cannot
be applied continuously during the RLG operation, since it
requires to switch off the laser. Moreover, optical losses can
change during operation, therefore their evaluation should be
repeated frequently.

Because of that, and also to avoid uncertainties and fluctu-
ations related to estimation of operating parameters such as,
laser beam size, pressure and polarization conditions of the
discharge (see Appendix for their use in the relevant expres-
sions), in the present paper we have adopted a statistical
approach for evaluating μ. As shown in the next subsec-
tion, this parameter enters as a linear proportionality factor
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Fig. 1 Typical scheme of RLG with a square ring cavity. Photodiodes
used to measure the beat note, necessary to evaluate the ωm , the two
mono-beams (PH1 and PH2) and the gain monitor (DM) are shown.
PMT indicates an additional photodetector not used for the purposes
of the present paper. Note that the signal produced by the photodiode
PH1 is used also in a feedback loop to control the power of the laser

into ωns1. Therefore, we can express ωns1 = μ×ω̃ns1, where
ω̃ns1 is evaluated starting from known data and μ determined
through a linear regression procedure. The terms in Eq. 2 con-
taining the subscript K require some further discussion. As
reported in the appendix, the parameter K is proportional
to oscillating terms at the frequency ωs . The evaluation of
the K terms is not straightforward, and several approaches
are in principle feasible. In the current analysis, we assume
that ωs is nearly constant in time, and as a consequence for
frequencies much below ωs the contribution of these terms
should average to zero. As reported in the appendix, assum-
ing 〈sin ωs t〉 = 〈cos ωs t〉 = MK the equations is simplified,
emerging a proportionality term MK , that is evaluated via
the statistical approach.

In summary, the analysis procedure is as follows: in the
first level, different terms ω̃ns1,2 are evaluated and stored on
disk; in the second level, updated ξ , μ and MK coefficients
are found with linear regression models, minimising the sum
of Eq. 2. It is important to remark that μ can be stable with
time, or varying with time. In this second case it is necessary
to add to the model the information necessary to follow the
time behaviour. Section 2.3 presents the method used for
GINGERINO. We remind that the available signals from the
RLG are sampled at high frequency (typically 5 kHz), and the
whole calculation is carried out at sufficiently high frequency,
in our case 2.5 kHz, while data are stored after decimation,
usually corresponding to a sampling frequency of 2, 1, or 0.1

Fig. 2 First analysis level and data storage. Symbols PD... are used in
this figure to denote different photodetectors, BP stands for band-pass,
HT for Hilbert transform

Multiple linear
regression model ωsωs0

ωsξ ωns1 ωns2 ωK1 ωK2 ωnsK Enviromental
Monitors

Fig. 3 Linear regression model analysis scheme: parameters ξ , μ, and
MK related to the reduction of systematics due to laser dynamics are
evaluated by statistical means in order to determine ωs . Other parame-
ters coming from environmental monitors could also be included in the
statistical approach

Hz. The diagram in Fig. 2 shows the first level involved in
the method, while Fig. 3 presents a diagram of the second
level of analysis.

In the following, 30 days of data produced by GIN-
GERINO will be analysed. In the analysis, corrections are
included only up to the first order: ωns1 = ωns , ωK1 = ωK .
Second order terms are in fact smaller and do not contribute to
improve the results compared to the present state of accuracy.
The Appendix contains however all information to evaluate
the different terms in the general case.

2.1 Some details on the evaluation of first order expansion
terms

As already mentioned, we start from the DC components,
I1 and I2, of the mono-beam signals, their AC components
at the beat frequency ωm/2π , IS1 and IS2, and the relative
phase ε between the two AC components.

Dissipative processes (like diffusion or absorption from
the mirrors) can produce non reciprocal losses between the
two counter-propagating beams, so that two distinct loss
parameters μ1 �= μ2 must be used. Without loss of general-
ity, it is possible to take μ1 = μ and μ2 = μ + δμ, where μ

represents the reciprocal losses term and δμ the non recipro-
cal ones. The plasma dispersion function depends on several
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parameters: gas pressure, line width of the excited isotopes,
resonance frequency of the two counter propagating beams,
area of the beam profile at the discharge, and temperature of
the plasma. Assuming that β1 = β2 = β (a rough evalua-
tion reported in [13] gives β1 − β2 � 10−14), combining the
information of the mono-beam DC signals I1 and I2 with the
plasma dispersion function, the gains of the two beams Gain1
and Gain2 (see Appendix) are evaluated. Since β1 = β2 the
non reciprocal loss term δμ can be hence determined. Using
other relationships reported in the literature [14,15] it is pos-
sible to write ωns1,2, ωK1,2 and ωnsK as a function of the
known quantities ωm , I1, I2, IS1, IS2, ε, and μ. As shown
in the Appendix, losses appear as a multiplicative factor in
ωns1,2.

Further to be dependent on losses, terms correcting the null
shift depend also on ε, as well as on geometry and size of the
cavity, in a rather complicated way. Therefore, minimization
of ωns1,2 is not straightforward. To give an example using
the parameters of GINGERINO, the minimum is found for
δμ = 0; assuming typical values in physical units I1 =
I2 = 1 V and IS1 = IS2 = 0.01 V (see Appendix for the
calculation), the null shift correction is of the order of 0.4
μHz, with a modulation induced by variations of ε of the
order of 5×10−6 μHz. In general δμ �= 0, as can be inferred
from the difference in mono-beam signals. While keeping all
other parameters fixed as in the example above, a difference
in the demodulated photodiode signals IS1 and IS2 of 1 mV
leads to remarkable values of the null shift correction. In such
conditions, the null shift contributes to around 500 μHz, with
modulations induced by ε of the order of 0.013 μHz.

The above examples suggest that, in general, variations
with ε are rather small and can be neglected. Therefore, in
the ideal case of equal losses the effect of the null shift is a
systematic term affecting the accuracy of the measurement
at the level of 1.5 × 10−9, assuming variations of the losses
with time below 10%, while when δμ is not negligible the
effect is orders of magnitude higher. In the considered case
the requirement on the stability of μ with time is of the order
of 1 part in 104 in order to achieve a precision of 1 part in
109. As far as accuracy is concerned, the systematic effect is
of the order of 1 part in 106, one thousand times the goal of
GINGER (1 part in 109 at least).

While being less relevant than those related to null shift
effects, also the terms with the K suffix deserve discussion.
Equation 2 shows that such terms are linearly summed to
ωs . As a consequence, their contribution to low frequency
signals, i.e., those stimulating the major interest in typical
applications of RLGs, can be reduced by low pass filter-
ing. Despite of the possibility to remove related contribu-
tions through low pass filtering, the evaluation of ωK requires
some further assumptions. ωK oscillates at the Sagnac fre-
quency, containing sin(ωs t) and cos(ωs t) terms. However,
due to nonlinear dynamics, the long time average of such

oscillating terms can deviate from zero. Therefore, we can
express ωK as the product of a small parameter MK with a
given function of known parameters. As already mentioned,
the value of MK and its very slow variations can be found
via linear regression.

A Mathematica notebook is reported in the Appendix to
show details of the symbolic calculations leading to ωns and
ωK functions, to demonstrate how losses are a scale factor
for the ωns terms, and to provide numerical examples of the
involved values calculated for the GINGERINO setup. We
note that, according to our model, ωK can be written as the
ratio of two polynomials where the parameter μ enters in
one term, preventing direct evaluation of such a parameter
through a simple fit procedure. However, we have checked
that, with typical μ values of 100 − 1 ppm, variations in
calculated results are not significant.

In the following, we focus onto calculations for a general
RLG dynamics, and their implementation for the specific
case of GINGERINO.

2.2 The selected playground and the first step of the
analysis

Thirty days of continuous operation between June 16 and
July 15 2018 have been selected for this test. After June 21,
heavy operations took place in the underground laboratories
where GINGERINO is placed for the building of another
experiment. Disturbances induced in GINGERINO opera-
tion, consisting of mostly mechanical effects, are well visi-
ble in the second half of the data stream. We included also
these data to show that, even in non ideal conditions, very
high sensitivity and stability can be obtained. The data are
acquired with our DAQ system at 5 kHz sampling rate [12].
The whole set of data has been analysed on a hourly base, and
the terms ωm , ωns/μ, and ωK1/MK (assuming μ = 10−4)
were evaluated and stored for offline analysis. In the calcu-
lation, average losses μ = 10−4 are used to evaluate ωK ,
since it has been checked that the dependence on μ is negli-
gible at the present sensitivity limit. The analysis, based on
the Hilbert transform of interferograms and mono-beam sig-
nals, leads to the beat note frequency ωm/2π , the amplitudes
of the mono beams at the beat frequency IS1, IS2, and the
relative phase ε. In order to avoid spurious oscillations due
to the boundaries between contiguous hours in the hourly-
based analysis, for each hour 6 minutes of data are added at
the beginning and at the end; these extra samples are removed
after the analysis (overlap-save method). The analysed data
are stored after decimation at 20 and 0.1 Hz; the decimation
is implemented via the standard Matlab function decimate,
which applies 8th order Chebyshev Type I lowpass filter with
cutoff frequency 0.8 × (Fs/2), where Fs is 20 or 0.1 Hz.
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2.3 The second step of the analysis

A second routine collects offline different days for longer
analysis. The first operation is to identify the portions of data
which are not at normal operation, typically less than 5%
of the data are removed. To this aim, we make use of the
fringe contrast of the interferogram acquired at 20 Hz rate.
The choice of such a sampling rate minimizes the discarded
sample. This operation associates the flag 1 to the good sam-
ples and the flag 0 to the bad ones; from this routine we get
the mask to select data decimated at lower frequency.

In the present analysis, decimated at half an hour rate,
above 90% of data are selected. Both the intensity of the
mono-beam signal (I2, collected by the photodiode indicated
as PH2 in Fig. 1), that is not used for the feedback control
of the laser power, and of the Discharge Monitor (DM , i.e. a
photodiode looking at the laser discharge) change with time.
This is a clear indication that μ changes with time; in par-
ticular, I2 indicates the presence of non reciprocal losses δμ,
while DM is proportional to the total excited atoms, and
therefore to the total losses. DM and I2 signals allow us to
model the change of losses as a function of time through two
form factors:

– gain monitor form factor: FFDM = DM−〈DM〉
〈DM〉

– mono-beam 2 form factor: FFPH2 = I2−〈I2〉〈I2〉 .

2.4 Reconstruction of the Sagnac frequency by a linear
regression model

The vectors ωns , ωns × FFDM , ωns × FFPH2, ωξ , and ωK

are collected, and the linear regression method is utilised
to determine the unknown parameters μ, MK and ξ , and
evaluate ωs accordingly.

Let us remind that ωs0 accounts for back-scatter noise,
and an additional term ωξ has been implemented to account
for inaccuracies on the measured quantities IS1,2, I1,2 and ε

[9]. In summary, in the procedure μ and MK are physical
quantities which could be evaluated independently, while ξ

compensates noises in the measured quantities.
Figure 4 shows data before (top panel) and after (bot-

tom panel) the application of this procedure. The dispersion
across the mean value is clearly suppressed using ωs , mean-
ing that the new regressive analysis, which includes the terms
ωns and ωK , duly accounts for it. The Matlab function fitlm
has been used to perform linear regression. Results indicate
that the p-value, which tests the null hypothesis, is approxi-
mately zero for all vectors excluding the one related to ωK ,
whose p-value is 0.038. On the other hand, the relative error
in the estimation of the MK term involved in the ωK expres-

Fig. 4 Top: time variations expressed as Ω and θ , see Eq. 1, of the
analysed data [utilising ωs0 with the mean value subtracted; the mean
value is 2π × (280.208 ± 0.001 Hz), compatible with a RLG with area
vector vertical within a few mrad error]. Bottom: as above, but using ωs
evaluated with the linear regression model. Note: around day 20 some
data were lost because of a failure in the data acquisition system

sion is around 50%, whereas it amounts to 1 − 12% for all
other vectors.2

Figure 5 shows the contribution of the laser systematics.
A dominant role is played by ωns , which produces a slowly
variable level ranging, in units of frequency, between 180–
200 mHz, with standard deviation 2.3 mHz. ωξ gives a small
correction with mean value −5.7 mHz and standard devi-
ation 2.3 mHz. These two terms affect residuals, whereas
ωK is smaller by more than a factor 10; it has a mean value
compatible with zero and standard deviation 0.05 mHz, see
Fig. 6.

Figure 7 shows the evaluated losses. During the 30 day
period considered, a variation of 12% is observed in μ, with
a visible trend towards higher losses for increasing time.
Figure 8 compares the distributions of the beat frequency
ωm/2π , of the ωs0/2π reconstructed in the first stage of our
approach and that of the finally determined ωs/2π . It should
be noticed that the distribution of ωm is highly non-Gaussian
while that of both reconstructed frequencies becomes close

2 The coefficient of determination of the linear regression procedure
and the standard deviation of the obtained residuals are R2 = 0.952
and (770 ± 3) μHz, respectively.
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Fig. 5 Top: ωns evaluated through the best-fit procedure and the one
calculated assuming average losses. Bottom: the contribution using the
DM and PH2 signals to follow the time behaviour of the losses μ

Fig. 6 The first step of the analysis evaluates ωs0, which accounts for
back-scatter noise; ωξ has been developed to further improve back-
scatter cancellation, taking into account inaccuracies in the signals pro-
duced by photodiodes PH1, PH2, their demodulated intensity IS1,2
and dephasing ε

Fig. 7 Time behaviour of the losses, estimated with the DM and the
uncontrolled mono-beam signal PH2

to Gaussian, indicating that the nonlinear terms of dynamics
are correctly accounted for. Moreover, ωs is shifted towards
lower frequencies as a consequence of the null shift term ωns .
Figure 9 reports the modified Allan deviation, expressed in
angular rotation rate. We observe that, after the application
of the procedure (red line), the variance is decreasing with
the integration time up to more than 2 days. This suggests
that with our procedure we are effectively correcting the long
term laser dynamic effects. It is well known that RLGs are
sensitive to Chandler Wobble effect, which is typically below

Fig. 8 Distribution of the beat frequency ωm/2π , of the first stage of
the reconstruction ωs0/2π and of the final ωs/2π

Fig. 9 Modified Allan deviation of the measured angular velocity Ω

from the beat note (ωm ), ωs0 and evaluated ωs (blue, green and red lines,
respectively), relative to the mean value, expressed in angular velocity
[rad/s]

100 nrad. We have checked that the level reached in the long
term stability is above the limit imposed by the Chandler
Wobble effect. The so far obtained long term instability is
about 10 times larger than the scale factor changes induced by
temperature variations considering 5 × 10−6/oC the thermal
expansion coefficient of granite, the material used for the
RLG frame, and 0.02oC as typical temperature variation in
the 30 day period. The obtained modified Allan deviation
represents a fair improvement compared to the analysis in
[12] (the improvement is around a factor 7) carried out by
using available signals on a pure phenomenological basis,
for instance the long time behaviour was cancelled using the
DM signal.

3 Discussion and conclusions

The Sagnac frequency ωs of the GINGERINO RLG has
been evaluated taking into account the laser dynamics. The
model leads to a linear sum of several terms, which can be
determined with the available signals of beat frequency and
mono-beams. The so-called back-scatter noise, which has
been so far considered the most severe limitation of RLG, is
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accounted for by terms ωs0 and ωξ . It turns out that the null
shift term ωns is the second dominant contribution. It depends
linearly on cavity losses μ; this term definitely affects accu-
racy of the apparatus, since in the best case, if the losses are
constant, it represents a non-negligible DC contribution. Fur-
thermore, it is likely that losses are not constant with time,
hence ωns affects stability. If a long term stability of 1 part in
109 is required for the Ω⊕ measurement, the requirement for
the stability of μ with time, or equivalently for the relative
accuracy in the evaluation of μ, is ωns

ωs
× 109. According to

the model, it is straightforward to see that the null shift level
is minimised when δμ � 0.

Changes of μ at the level of 10% are evident in GIN-
GERINO. In order to follow those changes we have utilised
the DC mono-beam signal of the uncontrolled beam, that is
the signal which is not used in feedback loops controlling
the laser operation (beam 2 in our case), and the discharge
monitor DM , also called gain monitor. ωs is evaluated with
a linear regression model.

Remarkably, during the measurements considered in this
paper, in particular after the twentieth day of the 30 day
record, heavy activity was present for the construction of
a new experiment inside the underground laboratory hosting
the RLG. Despite that, and the fact that GINGERINO is not
equipped with control of the geometrical scale factor (accord-
ingly its wavelength is not fixed), in 5.4 days of integration
time it has reached the relative stability of (1.7±0.07)×10−7

[corresponding to a resolution in the angular velocity mea-
surement of (8.5 ± 0.5) × 10−12 rad/s].

The analysis poses the problem of the accuracy of angular
velocity estimations; however, it is not straightforward to
understand the accuracy of the final measurement, an issue
to be addressed by future Monte Carlo studies to be carried
out following the approach we have already employed in
[13].

Main goal of the present analysis was to demonstrate that
null shift effects can be evaluated in analytical terms and that
they are not negligible at the present sensitivity level of our
instrumentation. In order for the linear regression method to
give reliable results, the model must be complete. Our data
are affected by seismic contributions. They are obviously not
considered in the model, but, due to their typical frequency,
their role is suppressed thanks to low pass filtering used in our
procedure. Furthermore, environmental conditions, in partic-
ular temperature, can affect RLG operation. We have verified
that their role is negligible for the present data set. In order
to check that the procedure does not artificially affect shape
and properties of the input signals, we have added a spurious
signal synthetically produced to the data, with amplitude of
the order of fractions of nrad/s, and verified that it was not
modified due to the procedure.

The analysis has also shown that losses are the main lim-
itation of GINGERINO. The question is now which part of

the apparatus is the main responsible for losses and for their
behaviour as a function of time. The hypothesis is that the
main contribution comes from the gain tube of the laser. In
the standard high sensitivity RLG scheme, it acts both as gain
tube and spatial filter. The laser discharge is in fact produced
within a pyrex capillary, with inner diameter of 4 mm, which
is a bit small compared to the waist of the beams.

In the near future, a new capillary tube with slightly larger
inner diameter will be installed in GINGERINO to limit
losses. Furthermore, additional data, such as current of the
discharge tube and laser wavelength, will be continuously
recorded in order to better characterise the instrument oper-
ation in the long term.

As far as the analysis is concerned, the effect of terms
θ1,2 will be eventually included in the model to account for
possible deviations of the laser mixture behaviour from the
expected one. Furthermore, the data analysis will be extended
in order to evaluate the null shift second order terms ωns2

based on the recipes given in the present paper and to deter-
mine the associated correction in data from GINGERINO.
Finally, we plan to devote efforts aimed to better understand
the influence of each parameter, in particular of the change
of wavelength, in the RLG operation, which for the present
set of data matters, since GINGERINO is free running and
the wavelength can change with even small temperature vari-
ations.
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use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

Appendix A: Identification of He–Ne ring laser dynamics

Constants and parameters of He–Ne ring lasers

Beam − = Cw , Beam + = Ccw, Isotope 1 = Ne20,

Isotope 2 = Ne22

c = 299792458 (* speed of light m/s *);
h = 6.62606896 × 10−34(∗ Planck constant Js ∗);
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ε0 = 8.854187817 × 10−12

×(∗ Fundamental dieletric constant F/m *);
λ = 632.81 × 10−9(∗ He-Ne laser wavelength m ∗);
kB = 1.3806488 × 10−23(∗ Boltzmann constant J/K *);
u = 1.660538921 × 10−27(* unified atomic mass unit kg * );
SF = L/λ/4

×(∗ Scale Factor of the instrument; L perimeter length ∗);
FSR = c/L (* Free spectral range Hz * );
fS = X ∗ SF(∗ Sagnac signal bias;

X is the angular velocity bias of the RLG∗);
γ a = (8.35 + p)106(* Decay rate of level a * );
γ b = (9.75 + 40p)106(* Decay rate of level b * );
Aik = 3.39 × 106(* Transition rate between laser levels * );
γab = (γa + γb)/2 + δγ

×(* Radiation decay rate plus collision induced rate * );
δγ = 0;
m20 = 20 u (* atomic mass isotope 1 * );
m22 = 22 u (* atomic mass isotope 2 * );
k20 = 1/2 (* Relative concentration of isotope 1 * );
k22 = 1/2 (* Relative concentration of isotope 2 * );
�D20 =

√
2 kB Tp/m20

λ

×(∗ Doppler halfwidth isotope 1 rad/s;
Tp plasma temperature∗);

�D22 =
√

2 kB Tp/m22

λ

×(∗ Doppler halfwidth isotope 1 rad/s∗);

μ ab =
√

π ε 0 Aik

(
λ

2π

)3 h

2π

×(* Electric dipole moment of the transition * );
η20 = γ ab/�D20

×(* homogeneus to doppler broadening rate isotope 1 * );
η22 = γ ab/�D22

×(* homogeneus to doppler broadening rate isotope 2 * );
Sh = 885 × 106(* isotopic shift Hz * );
ξ120 = (0 + Sh/2)/�D20

×(∗ Detuning normalized to Doppler width for

Clockwise beam, isotope 1 ∗);
ξ220 = (fS + Sh/2)/�D20

×(∗ Detuning normalized to Doppler width for

CounterClockwise beam, isotope 1 ∗);
ξ122 = (0 − Sh/2)/�D22

×(∗ Detuning normalized to Doppler width for

Clockwise beam, isotope 2 ∗);
ξ222 = (fS − Sh/2)/�D22

×(∗ Detuning normalized to Doppler width for

CounterClockwise beam, isotope 2 ∗);

cI2P = π2μab2

2h2γ a γ b

1

2 c ε 0 Ta

×(∗ Power Calibration Constant from S.I. to

Lamb Units, T Mirror transimssion coefficient,

a area of the mode∗);

Electronic constants to express all in function of the
monobeams voltage

cI2V = cI2P/GAmp/aEff

×(∗ Acquired Voltage Calibration Constant from

×S.I. to Lamb Units;
GAmp Transimpedance amplifier gain;
aEff photodiode quantum efficency ∗);

Evaluation of output power and mean intensities from the
above constants

Pout = Vsampled/GAmp/aEff

×(∗ Output power 1–10 nW∗);
ImeanP = cI2P Pout

×(* Check Mean intensity in Lamb units *);
ImeanV = cI2V Vsampled

×(* Check Mean intensity in Lamb units *);

Plasma dispersion function

Zi [ξ_, η_] = √
π e−ξ∧2 − 2η;

(* Imaginary part of the plasma dispersion function *)

Zr [ξ_, η_] = −2 ξ e−ξ∧2;
(* Real part of the plasma dispersion function *)

L [ξ_, η_] = 1

1 +
(

ξ
η

)2 (* Lorenzian function *)
1

1 + ξ2

η2

Lamb parameters expressions for the single isotope case

βs [ξ_, η_, G_] = G
Zi [ξ, η]
Zi [0, η] (*Self saturation coefficient *);

αs [ξ_, η_, G_, μ_] = βs [ξ, η, G] − μ

×(* Excess of gain minus losses coefficients *);
σ s [ξ_, η_, G_] = G

FSR

2

Zr [ξ, η]
Zi [0, η]

×(*Scale Factor error coefficient due to laser physics *);
θs [ξX_, ξY_, η_, G_] = βs [ξY, η, G]L [ξX, η]

×(*Cross saturation coefficient *);
τ s [ξX_, ξY_, η_, G_]
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= G
FSR

2

(
ξX

η

)
Zi[ξY, η]
Zi[0, η] L[ξX, η]

×(* Null shift error coefficient *);

Lamb parameters expressions for the double isotope case

20 and 22 are the isotopes; X and Y are the counter-
propagating beams

βd[ξ20 _, ξ22 _, ηu20 _, ηu22 _, G_]
= k20 βs[ξ20 , ηu20 , G] + k22 βs[ξ22 , ηu22 , G];

αd[ξ20 _, ξ22 _, ηu20 _, ηu22 _, G_, μ_]
= k20 αs[ξ20 , ηu20 , G, μ] + k22 αs[ξ22 , ηu22 , G, μ];

σd[ξ20 _, ξ22 _, ηu20 _, ηu22 _, G_]
= k20 σ s[ξ20 , ηu20 , G] + k22 σ s[ξ22 , ηu22 , G];

θd[ξX20 _, ξX22 _, ξY20 _, ξY22 _, ηu20 _, ηu22 _, G_]
= k20 θs[ξX20 , ξY20 , ηu20 , G]

+ k22 θs[ξX22 , ξY22 , ηu22 , G];
τd[ξX20 _, ξX22 _, ξY20 _, ξY22 _, ηu20 _, ηu22 _, G_]

= k20 τ s[ξX20 , ξY20 , ηu20 , G]
+ k22 τ s[ξX22 , ξY22 , ηu22 , G];

Gain2 = Simplify

×[NSolve[ImeanP == αd[ξ220, ξ222, η20, η22, G, μ + δμ]
/βd[ξ220, ξ222, η20, η22, G], G][[1, 1, 2]]
/.Vsampled → PH2];

Gain1 = Simplify

×[NSolve[ImeanP == αd[ξ120, ξ122, η20, η22, G, μ]
/βd[ξ120, ξ122, η20, η22, G], G][[1, 1, 2]]
/.Vsampled → PH1];

β1 = Simplify

×[βd[ξ120, ξ122, η20, η22, Gain1]/.Vsampled → PH1];
β2 = Simplify

×[βd[ξ220, ξ222, η20, η22, Gain2]/.Vsampled → PH2];
DM = Solve

×[β1 == β2, δμ]; DMU = δμ/.DM[[1, 1]]; β = β1;

Evaluating lamb parameters

σ1 = Simplify[σd[ξ120, ξ122, η20, η22, Gain1]];
σ2 = Simplify[σd[ξ220, ξ222, η20, η22, Gain2]];
τ12 = Simplify

×[τd[ξ120, ξ122, ξ220, ξ222, η20, η22, Gain1]];
τ21 = Simplify

×[τd[ξ220, ξ222, ξ120, ξ122, η20, η22, Gain2]];
evaluation of the corrective terms
Null Shift

� = Sqrt[8c∧2 r1 r2 Cos [2ε]/L∧2 + ωm∧2];

δns = Simplify[σ2 − σ1 + τ21 PH2 − τ12 PH1];
ωns1 = −δns(ωm/2/� + 1/2);
ωns2 = δns

2 2c2 r1 r2 Cos[2ε](
8c2 r1 r2 Cos[2ε] + L2ωm2

)
�

;

K and ωK evaluations

K = Sqrt[a1/a2] ∗ c ∗ r1

∗(−Cos[ε] Sin[t ωs] + Cos [t ωs] Sin [ε])
− Sqrt[a2/a1]c r2(Cos [ε] Sin [t ωs ]
+Cos[t ωs ] Sin [ε]);

ωK1 = K

(
− ωm

2L�
− 1

2L

)
;

ωK2 = K2

(
2c∧ 2r1 r2 Cos [2ε]�(

8 c∧ 2 r1 r2 Cos [2ε] + L2ωm2
)2

)
;

mixed term

ωnsK = δnsK

2Sqrt
[
8c∧ 2r1 r2 Cos [2ε] + L2ωm2

] ;

Approximated value of ωk1 Assuming 〈Cos[ωs t]〉 = 〈
Sin[ωs t]〉 = MK, where MK is a proportionality constant
estimated by statistics

K = MK

⎛
⎝

√
α1
α2 IS2 L ωm(−Cos [ε] + Sin [ε])

4
√

PH1 PH2

−
√

α2
α1 IS1 L ωm(Cos [ε] + Sin [ε])

4
√

PH1 PH2

⎞
⎠ ;

ωK1 = MK/L(−(ωm/2/� − 1/2));

Calculations of α1,2 and r1,2 parameters

α1 = β(PH1 + IS1∧2/4/PH1)

+ IS1 IS2 ωm Sin[2ε]/PH2/4/(c/L);
α2 = β(PH2 + (IS2)∧2/4/PH2)

−IS1 IS2 ωm Sin[2ε]/PH1/4/(c/L);
r1 = IS2 ωm/2/(c/L)/Sqrt[PH1 PH2]/2;
r2 = IS1 ωm/2/(c/L)/Sqrt[PH1 PH2]/2;

Operation parameters of GINGERINO

p0 = 4.66 (* Gas pressure mbar *);
p = p0/1. 33(* Gas pressure Torr *);
a = π × 0.52 × 0.73 × 10−6; (* area of the mode *)

T = 0.35 × 10−6 (* Mirror transimssion coefficient *);
L = 4 × 3.60 (* Perimeter of the Ring m *);
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Tp = 360 (* kinetic discharge temperature *);
aEff = 0.4 (* photodiode quantum efficency *);
GAmp = 109 (* Transimpedance amplifier gain *);
X = 280.4/SF; (∗mean value of the anglar velocity, rad/s∗)

Calculation of the two functions used in the paper

Funωns1[ωm_, ε_, PH1_, PH2_, μ_, δμ_]
= Simplify [ωns1/.δμ → DMU] ;

FunωK1[ωm_, ε_, PH1_, PH2_, IS1_, IS2_, μ_, MK_]
= Assuming[ωm > 0, Simplify[ωK/.δμ → DMU]];

In the following a few relations are explicitly reported
using the parameters of GINGERINO

In this analysis μ indicates the losses of mode 2, while δμ is
such that the losses of beam 1 is μ + δμ

δμ is perfectly deducible: δμ = DMU

Simplify[DMU]
−((3.23238 × 10−37(2.83342 × 1022 + 3.0937 × 1036 PH1

−3.0937 × 1036 PH2)μ)/(−13.7927 + 1. PH1))

μ is a proportionality function for ωns1

Funωns1[ωm_, ε_, PH1_, PH2_, μ_, δμ_]
= Simplify[ωns1/.δμ → DMU]

×
(

0.5 (1.20443 × 1039 − 1.77025 × 1043 PH2

+1.28346 × 1042 PH22 + PH12(−1.28347 × 1042

+9.30544 × 1040 PH2)

+PH1(1.77025 × 1043 − 8.33485 × 1036 PH2

−9.30534 × 1040 PH22))

μ

(
ωm +

√
ωm2

(
1 + 0.5 IS1 IS2 Cos[2ε]

PH1 PH2

)))
/(

(13.7927 − 1.PH1)2(3.0937 × 1036

−2.24299 × 1035 PH2)

×
√

ωm2

(
1 + 0.5 IS1 IS2 Cos[2ε]

PH1 PH2

))

μ is a proportinality function for δns

Simplify [δns/.δμ− > DMU]((
−1.20443 × 1039 + PH12(1.28347

×1042 − 9.30544 × 1040 PH2) + 1.77025 × 1043 PH2

−1.28346 × 1042 PH22 + PH1
(
−1.77025 × 1043

+8.33485 × 1036 PH2 + 9.30534 × 1040 PH22
))

μ
)

/(
(13.7927 − 1.PH1)2(3.0937

×1036 − 2.24299 × 1035 PH2)
)
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