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Abstract We calculate the complete tadpoles and self-
energies at the two-loop order for scalars in general renor-
malisable theories, a crucial component for calculating
two-loop electroweak corrections to Higgs-boson masses
or for any scalar beyond the Standard Model. We renor-
malise the amplitudes using mass-independent renormali-
sation schemes, based on both dimensional regularisation
and dimensional reduction. The results are presented here
in Feynman gauge, with expressions for all 121 self-energy
and 25 tadpole diagrams given in terms of scalar and tensor
integrals with the complete set of rules to reduce them to a
minimal basis of scalar integrals for any physical kinematic
configuration. In addition, we simplify the results to a set of
only 16 tadpole and 58 self-energy topologies using relations
in order to substitute the ghost and Goldstone-boson cou-
plings that we derive. To facilitate their application, we also
provide our results in electronic form as a new code TLDR.
We test our results by applying them to the Standard Model
and compare with analytic expressions in the literature.
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1 Introduction

The Higgs boson mass has been measured to an accuracy
of about O(100) MeV, making it an electroweak precision
parameter. In the Standard Model (SM), this is used to extract
the Higgs quartic coupling A, which, through a significant
amount of work can now be done with high precision, where
all of the relevant running parameters of the Lagrangian can
now be extracted from calculations at full two-loop order
[1,2] and partially at the three- and four-loop order [3—16]. A
code for calculating A in Landau gauge, SMH [17], and codes
for extracting all relevant SM parameters (the gauge cou-
plings, top and bottom Yukawa couplings, and Higgs quartic
coupling), mr [18,19] (which builds on the results of, inter
alia, [20-24]) and SMDR [25], exist. As a result of this effort,
the uncertainty on the measurement of the top mass is now
more important than the scalar self-energies in the SM.

However, in theories beyond the Standard Model (BSM),
it is not possible to make full use of the Higgs-mass mea-
surement because the theoretical uncertainty on the mass
calculation can be much larger, owing to the new degrees of
freedom. As a result, an enormous amount of effort has gone
into refining the calculation of the Higgs-boson mass from
a given set of physical or top-down inputs, in both generic
and specific theories. This has typically been driven by the
need for accurate predictions of the Higgs mass in supersym-
metric models, where the Higgs quartic coupling is predicted
from the gauge couplings (and other top—down parameters
in extended models).

The early expectation was for new coloured supersymmet-
ric particles near the electroweak scale, and since the Min-
imal Supersymmetric SM (MSSM) had a tree-level upper
bound on the Higgs mass equal to the mass of the Z boson,
a full fixed-order calculation in the MSSM at the one-loop
order [26-35] is vital, but the results at the two-loop order are
known to contribute several GeV to the SM-like Higgs-boson
mass. After much work a full fixed-order two-loop result is
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still not available: public codes use an effective-potential cal-
culation (neglecting the external momentum) in the “gauge-
less limit” (neglecting the electroweak gauge couplings) with
results in the “real MSSM” (neglecting C'P phases) [36-53]
and in the “complex MSSM” (including CP violation) [54—
64]. Some results also exist for three-loop strong corrections
in the effective-potential limit, see Refs. [65—68], now avail-
able in the Hima laya package [69,70] which also includes
four-loop leading logarithms of the strong corrections.

Some results now also exist beyond the gaugeless/
effective-potential limit: a complete effective-potential cal-
culation was described in Refs. [47,50], where the effective
potential was computed and the derivatives taken numeri-
cally, but application of this was hampered by the Goldstone-
Boson Catastrophe (GBC) which we shall discuss below.
Contributions of O((e; + ap + a)?) [71], Oey a5) [72~
74], O(a o) [73], and O(o; + ap + @) ) [75] with non-
vanishing external momentum were computed in fixed-order
computations.! However, there is now some urgency to fill in
the remaining discrepancy of the full electroweak corrections
and include momentum dependence (which are of the same
nominal order for the SM-like Higgs boson) — these have
remained a “holy grail” of the community for some time.

If new particles beyond the SM are very heavy com-
pared to the electroweak scale, a fixed-order calculation
breaks down due to large logarithms, and an effective-field-
theory (EFT) approach (or a hybrid approach, see Refs. [76—
84]) should be used. Such techniques have been applied for
some time [85-96], but it has been found that the threshold
corrections when matching on to the SM (or split supersym-
metry, or Two-Higgs-Doublet Model) can be large. Indeed,
while the two-loop renormalisation group equations (RGEs)
have been known since the 90s, the one-loop threshold cor-
rections in the MSSM were only evaluated recently [97-99],
and followed by an extraction of the same two-loop correc-
tions that are available for fixed-order computations [99-
102], essentially by matching the masses of the lightest Higgs
boson in the MSSM and the SM at the EFT matching scale.
Indeed, as discussed in Refs. [77,103], a fixed-order calcu-
lation can always be used to extract threshold corrections
in this way, especially when the low-energy theory contains
only one scalar field such as in the SM. Hence development
of fixed-order and EFT calculations go hand in hand.

Since the MSSM has been the driver for much of this work,
the accompanying work on other theories has been much less
developed until recently: in the next-to-MSSM (NMSSM),
fixed-order calculations were done at the one-loop order
[104—115] with only the dominant two-loop corrections in the

I We make use of the common notation that o; = gl.2 /(4 m) where g;
is a given coupling; @ ~ 1/137 corresponds to the electric coupling,
while gs, g/, g correspond to the strong gauge, top Yukawa and bottom
Yukawa couplings.
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effective-potential approach of O(w; + ap) org) [107,116]
and O(a?) [117] explicitly available; for Dirac-gaugino
models, the O(a; ag) corrections were computed in Ref.
[118].

However, particularly given the absence of clear signs of
new physics from the Large Hadron Collider (LHC), itis sen-
sible to take a model-agnostic approach where possible, and
this has led to a program of generic calculations. In Ref. [119]
the full effective potential was given for general renormalis-
able theories in Landau gauge. This was then implemented
in the package SARAH in Ref. [120] in the gaugeless limit,
where the first and second derivatives of the potential were
taken numerically. This allowed, for the first time, two-loop
corrections to be computed for any model at the push of a but-
ton. Moreover, in Ref. [121], scalar self-energies for general
theories were computed up to second order in the gauge cou-
plings. This is sufficient for a gaugeless-limit computation of
the Higgs mass, however the tadpole diagrams were lacking.
In Ref. [122] these were computed, and the self-energies
simplified to the effective potential limit — the result being
again implemented in the package SARAH. However, even in
the gaugeless effective-potential limit, this calculation was
plagued by the GBC. The solution came for the general case
in Ref. [123], and was implemented in SARAH with some
additional developments to the method in Ref. [124]. This
now represents the state-of-the art for any theory — supersym-
metric or otherwise — other than the SM or MSSM (for exam-
ple, Refs. [125,126] describe the only calculations including
all superpotential terms in the NMSSM), and in fact pro-
vides the only calculation including flavour-violating effects
at the two-loop order [127], or with pure DR’ renormalisa-
tion for the complex MSSM [126]. The status for threshold
corrections lags somewhat behind: generic thresholds at the
one-loop order were computed in Refs. [103,128], where in
particular the former reference describes the consistent treat-
ment of infra-red divergences and counterterm choices that
can simplify the computation, while the latter described the
implementation in SARAH.

The purpose of this work is to finally complete the set of
scalar self-energy diagrams in the gauge coupling for general
renormalisable theories, and provide the tadpole diagrams at
the same time. This completes the set that was promised in
Ref. [121]. In this paper we present the analytic expressions
and the technical machinery that we have used, specialising
to the Feynman gauge. However, since the final results (and
therefore this paper) are rather long, we have created a new
package TLDR where they are available in computer-readable
form. Readers wishing to skip the details and apply the results
are invited to download the code from:

http://tldr.hepforge.org

While some of the evaluation of spinor/Lorentz traces and
tensor reduction for specific models could be accomplished

using TwoCalc [129] and TARCER [130] (of which we
have made use) we derived some reduction rules not avail-
able there with the help of the general relations of Refs.
[131,132], so that all results can be reduced to a basis of
just a few one- and two-loop scalar functions that can be
numerically evaluated in TSTIL [133]. Moreover, our results
are already renormalised, and in particular we reduce the
number of classes of diagrams by making extensive use of
identities relating couplings of ghosts and Goldstone bosons
to other couplings in the theory.
Our calculation can be used for:

e Corrections to charged and/or coloured scalar masses.
For example, in supersymmetric theories this would
mean e.g. squark or sgluon masses.

e Electroweak corrections to the Higgs-boson mass <«
extraction of Higgs/neutral scalar quartic couplings.
These ought to be supplemented by a two-loop extrac-
tion of the electroweak expectation value and gauge cou-
plings (which requires the two-loop corrections to muon
decay and vector-boson self-energies, which we hope to
return to in future work).

e EFT matching of the Higgs quartic coupling via the pole-
mass matching technique [77]. As described at one-loop
order in Ref. [103], although a priori this would seem to
require a calculation of the Z-boson mass, in fact all of
the necessary information is contained in the scalar self-
energies/tadpoles, and thus the calculations here may be
sufficient.

1.1 Treatment of tadpoles and application of our results

The main application of our results is expected to be the eval-
uation of the pole mass for scalar bosons in any given theory.
For a general theory with scalars having indices i, j, ... and
masses “7,2 at the tree level, this corresponds to finding the
(complex) solutions of the equations

0:Det[<p2—ml-2> 5,']' —l'[ij(pz)], (1)

in p2, where IT; i ( p?) is the self-energy. We then write
Miy(p?) =T + 107 + - @)

where the superscripts denote the order of perturbation the-
ory.

There are three main techniques used to solve this in prac-
tice. The first is to iteratively evaluate Eq.(1) by starting
with p? = ml2 this does not respect gauge invariance or
perturbation order. The second is to perturbatively expand
the momentum as p* = ml.2 + p% + p% + - -+ and use matrix
perturbation theory to extract the pole mass at each order;
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this gives a gauge invariant result which respects the order
of perturbation theory, but can be tricky to implement in the
cases of some masses being degenerate. The third method
(see Ref. [121]) is to solve

0= Det[(p% — mlz) 3ij — Hf}”(.mlz)] 3)

iteratively, then expand the one-loop self-energy, giving

@(,2 M 2 2 2\ (7 2 @ (.2
7 (7)1 (af )+ (o1 = o) 1 () 4117 ()
4)

and insert into Eq. (1) to solve for p%, and so on. This method
is gauge invariant but does not respect the perturbation order
in p2, since p? will contain contributions from [I'Ig]l.) (mlz)]2
and higher powers, etc. In particular, if the aim is to use the
pole-mass-matching procedure to extract threshold correc-
tions, then the first or third methods will lead to uncancelled
higher-order logarithms.

We therefore recommend the use of the second approach,
whereby the pole mass at the two-loop order is simply

2 2 D( 2 2 (. 2
Ppole,i = M + II?‘)(mi> + II(')(mi>
H(l) 2 M 2
+ I (mi)Hii (mi)

1 (2 (2
@), o
i J

and where the one-loop self-energies have already been diag-
onalised on the subspace of states that are degenerate at the
tree level; the sum over j includes all scalar and vector states
with the same quantum numbers.

In general, it is also necessary to include the contribu-
tions of tadpole diagrams. This is because, for each neu-
tral scalar with a non-trivial expectation value, there is a
non-trivial vacuum minimisation condition, which can be
used to eliminate one parameter from the theory. Commonly,
parameters of mass dimension 2 are substituted in this step,
such as the u? |H|? term in the Higgs potential of the SM.
If we write the neutral component of the Higgs field as
HO = %ﬁz (v + h + ---) and the quartic term as A |H|*, then
the necessary condition for the vacuum being a minimum is

O=puv+2rv 4+ —— (6)
oh

where AV are the loop corrections to the effective potential;

its derivatives correspond to tadpole diagrams. If we insist

that v is the correct vacuum expectation value to all loop

orders, then we can eliminate ;4> wherever it appears in favour

of A v? and tadpoles. Formally, then we can expand
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— 7
H YTy T on v oh @

where the superscripts denote loop orders. Since the tree-
level Higgs mass is mﬁ = u? 4 3 1 v?, this means that the
tadpole contributions modify the Higgs mass at higher orders.

Utilising this method for the computation of the mass of
any particle in the theory that depends on u? requires the
calculation of self-energies and tadpole diagrams. In partic-
ular, the application to computing the mass of the Goldstone
bosons leads to the GBC: in Landau gauge the “tree level”
Goldstone mass squared becomes of one-loop order and is
of indeterminate sign, which causes infra-red singularities in
the two-loop tadpoles and self-energies [134,135]. The ini-
tially proposed solution was to resum Goldstone diagrams,
and this was performed for the tadpoles of the MSSM in Ref.
[136]. However, in general this is cumbersome to implement;
and general solutions now exist for both, tadpoles and self-
energies, where we can instead use an “on-shell” mass for
the Goldstone bosons [123], or just perturbatively expand the
generalisations of Eq. (7) to the loop order that we are work-
ing to in tadpoles and self-energies [124], known as taking
“consistent tadpole equations”’; for example, we would need
to take

@2 @2
m7 (%) = 1P ()]

1
1 [81'15,)(1)2) BAV(I):|
MZ__)L v2

- 8
au? ah ®

v
In this way, the infra-red singularities cancel between the two
parts on the right-hand side, and this should continue order
by order in perturbation theory.

Another way of treating tadpoles is to work only in terms
of running parameters, so our expectation values solve the
tree-level vacuum-minimisation conditions only. That means
that we must include tadpole diagrams as part of the self
energies: these are one-particle irreducible but contain prop-
agators carrying no momentum (referred to as “internal”).
This was the approach used in the SM calculation of Ref.
[18] and leads to a gauge-invariant result, without needing to
perform expansions of the form of Eq. (7), at the expense of
a proliferation of diagrams, such as those depicted in Fig. 1.

In this paper, we shall work in the Feynman gauge. Prima
facie, one would think that our results do not suffer from
infra-red singularities, and so we sidestep the GBC, and could
avoid making an expansion of the form of Eq. (7): we could
(as originally envisaged inRef. [121]) just modify 12 at the
tree level so that Eq.(6) is satisfied and dispense with any
extra diagrams or shifts of the form of Eq. (8). A reader wish-
ing to implement this program can use the results from the
Appendix (121 self-energy classes and 25 tadpoles) or the
reduced set of 89 self-energy diagrams described in Sect. 4.
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Fig. 1 Examples of one-particle-irreducible diagrams with “internal”
propagators that we do not include in our list of topologies. All diagrams
of these classes can be straightforwardly computed from the one- and
two-loop self-energies and tadpoles that we include here

However, such an approach does not respect the order of
perturbation theory or gauge invariance.” Hence, we shall
simplify the expressions where all couplings and masses are
expressed in terms of tree-level parameters, so that the reader
may use any of the other approaches. In this way, we are
also able to make extensive use of relationships amongst the
couplings in general theories, and so reduce the number of
topologies to 16 for tadpoles and to 58 for self-energies for
non-Goldstone boson scalars.

To apply the results in practice for all but the simplest
of models is a task for a computer. Even for the Standard
Model it would be far too tedious to implement by hand.
Hence, we have provided our results in electronic form as
part of TLDR. All reduction rules are included so that the
renormalised expressions can be applied for any physically
relevant configurations of masses and momenta, in the form
of Mathematica modules and notebooks, with code to link
from Mathematica to TSIL. A user manual is provided
online. In the future we also intend to include c++ code
to link to TSIL for use with packages such as SARAH, the
(currently private) results for Landau and general R: gauges,
and extensions to vector/mixed scalar—vector/fermion self-
energies.

1.2 Guide to the paper

The paper is organised in the following way:

e inSect. 2 we introduce our nomenclature for the fields and
couplings that appear in renormalisable theories, and we
explain our method of computing the two-loop diagrams
and counterterms. As our results are valid for real fields,
we also show how to apply them to complex scalars and
Dirac fermions.

2 Moreover, theories with genuine Goldstone bosons would still suf-
fer the GBC. Hence, in our integral reductions, we must still deal with
Footnote 2 continued

infra-red singularities. In this work, we do so by means of dimensional
regularisation: all infra-red divergent diagrams acquire poles in the
dimensional regulator €. This actually provides yet another solution to
the GBC; we shall elaborate on the connection more clearly elsewhere.

e The purpose of Sect. 3 is to reduce the number of different
diagrams by making use of relations among the couplings
that are dictated by gauge invariance. In this way, ghosts
and Goldstone bosons can be eliminated from the theory.

e The nomenclature that is used for the loop integrals is
introduced in Appendix A. There, we also describe how
each integral can be reduced for any kinematic configu-
ration into a basis that can be quickly evaluated numeri-
cally.

e The full list of results for renormalised two-loop tadpoles
and self-energies in terms of the previously defined cou-
plings and loop integrals is given in Appendix B.

e The substitution of ghost and Goldstone couplings is
applied to these results in Sect.4. In the same section,
we also compare to previously known expressions.

e Our conclusions are summarised in Sect. 5.

2 Notation and methods

In this section we shall give our definitions and methods,
needed to understand the results presented in Sect.4 and the
Appendix.

2.1 Coupling definitions

In Ref. [121], scalar self-energies were given using two-
component spinors and a compact notation in terms of cou-
plings in a general lagrangian. Such a lagrangian reads

L= LS + ESF + l:SV + EFV + Egauge + ESghost, 9)

where

1 1
Ls= — g diik @i @) Pr — o7 hijia Pi @j P P,
(10a)
1 1 —1—J
Lsp=—5 """ Y1y @ — Sy VU @, (10b)
—I_
Lrv = gi" ALy Ty,

U i 1
Lsy =5 g AL AN @i 4 2 g AL A 0, @)

(10c¢)
+ gAY D 3D (10d)
cgauge = gabc AZ A{)) G AVE — igabe gcde Al Avb AZ Atg
(10e)
(10f)

be b au—c
+ g cAZa) b L7
ﬁSghost = %.gabz o; .
The fields ®; with indices {i, j, k, [} denote real scalars, 1/

with indices {I, J, K, L} Weyl fermions, A;i with indices
{a, b, ¢, d} gauge bosons, and w?, w* ghosts and antighosts

@ Springer
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(which carry gauge-boson indices). The Eq. (10) slightly dif-
fer from the ones in Ref. [121] because we work with a
different metric signature (4, —, —, —) and, since we work
away from the gaugeless limit/Landau gauge, we have cou-
plings between scalars and ghosts.

2.1.1 Scalar, vector and fermion couplings

In this work, due to the large numbers of diagrams and the
complexity of the expressions, we perform the generic cal-
culations using computer algebra, and we expect that the
application of the results will be best accomplished by imple-
mentation on computers. Hence, we use coupling definitions
that are more practical for that case; indeed, since we use
FeynArts to generate the set of generic diagrams, we adopt
an abbreviated form of the notation of the generic model file
Lorentz.gen. FeynArts works in four-spinor notation
and distinguishes particles and antiparticles; we remove this
distinction in our results by transforming all fields to real
scalars, gauge bosons and Majorana fermions. Our results
are therefore given in terms of vertices which, in general,
have more than one possible Lorentz structure; we denote
this with an index as last argument of each coupling. Our
vertices are named by their adjacent particles, S for scalars,
F for fermions, V for vectors, and U for ghosts. The dictionary
with Eq. (10) is:

SSSli. j. k. 1] = aijk, (11a)
SSSSli, j. k.1 1] = Ajjki, (11b)

FFS[1,7.i,1] = y'/i,

FFS[1.J.i.2] = y15i = (ylji>*, (11c)

FEV[I, J,a,1] = —g%7,
FFV[I, J,a,2] = —FFV[J,1,a,1] = (FFV[I, J,a,1])*,

(11d)
SVV[i,a,b,1] = —gt (11e)
SSVVIi. j.a,b,1] = —g®i (11f)

For the terms with fermions, the Lorentz structure with
index 1 or 2 refers to a left- or right-chiral projector, respec-
tively; the FFV couplings contain a gamma matrix in addi-
tion.

The remaining couplings require more inspection. The
SSV vertex is given by

3
_ _gaij p7a . gaji p;La _ gaij (Pi _ pj)ua
= SSVIi, j.a, 1] pj“ + SSVIi. j.a, 2] pl*, (12a)
— SSV[i,j,a,1] =1 gai-/ ,
SSVli, j,a,2] = —SSVIi, j,a,1]. (12b)
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We note that we do not enforce the equality of the two terms
for the counterterm vertex.

Next, for the pure gauge-coupling terms, we have (n*V is
the Minkowski metric)

1 0° abc qa’ 4 b w\ ave
9 AHa § AHb § Abe [g A Ay (1pE) A ]

— _gabC I:nﬂallb (pg% _ p{l;(r) + nﬂbuc (pélu _ p;:“)

+,7Mc#a (pgh _ pg«b)]’

— VVWVla,b,c,1] = —1 gabc.

(13a)
(13b)

For the four-vector coupling, we have the generic vertex
1%
JAHa JAKb 9 Abe 9 AMd
=21 I:gabe gcde nﬂaﬂb nMcV«d 4 gace gbde nua;/,c

pHoid 4 gade gcbe pHatd nucud]

= — I:vxﬂﬁqayb’ e, d, 1] nﬂaﬂb nlicl/vd

+ v’v’§r§7|:a7 b, c.d, 2] r)#aﬂc n#bl‘«d

_‘_v’w’w’w[a’ b,c.d, 3] n,uaﬂd n#zrﬂh]’ (143)
and thus we have the identifications
VVVV]a,b,c.d, 1] = =2VVV]a,c,e, 1|VVV[b,d,e, 1], (14b)
VVVV|a,b,c,d,2] = =2VVV]a,b,e, 1]VVV]c,d,e, 1], (14c)
VVVV|a, b,c,d, 3] = 2VVV]a,d, e, 1]VVV[b, c, e, 1] (144d)

with a sum on e.
2.1.2 Ghost couplings and ghost flow

Finally, for the ghost terms, in the FeynArts generic model,
no particular form of the couplings is enforced: the general
vertex for the UUV coupling is equal to

—1UUVla, b, e, 1] pk* — 1 UUV[a, b. ¢, 2] p°, (15)

whereas from Eq. (10) we see that in general R: gauge one
of these terms is always vanishing because the vertex only
contains a ghost and antighost (not ghost—ghost or antighost—
antighost) and moreover only contains a factor of the momen-
tum of the antighost. Hence we must preserve the distinction
between ghost and antighost in our amplitude, and we should
also include both directions of ghost flows. Then we have
UUV[-a,b,c, 1] = VVV]a, b, c, 1], UUV[-a,b,c,2] =0,
(16a)

UUVla, —=b,¢,2] = —VVV]a, b, ¢, 1],
(16b)

UUV]a, =b,c, 1] = 0,
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Do

Top. 1

Top. 2

Top. 3

B - IR I

Top. 1 Top. 2 Top. 3 Top. 4
Fig. 2 Allpossible topologies of one-particle irreducible Feynman dia-
grams for two-loop tadpoles (top row) and self-energies (bottom row)

are shown.In Ref. [121] the self-energy topologies are referred to as Y,

%. gabt
(16¢)

SUU[i,a, —b,1] = —& 8", SUU[i, —a, b, 1]

The signs here are confusing, because we expect that the
ghosts are anticommuting, and so should be the vertices. This
is an artefact of the algorithm used to construct the ampli-
tudes, where the ordering of the indices in the couplings is
not meant to be taken literally: it is assumed that for a given
choice of particles in a vertex, either there is only one way
of combining them into a vertex, and this is the ordering that
is implied (e.g. for a scalar—ghost—antighost coupling there
is only one correct choice), or the ordering does not matter.

However, there are two good reasons that the reader does
not need to worry about this issue: the firstis that they can just
take the above prescriptions and plug them into our results,
given in the ESM Appendix. Importantly, for the ghost ampli-
tudes they should sum over both signs of each ghost index,
e.g. for diagram I(()é)s we have the result

SSS[il, i3, i6, 1] SUU[i2, —i7, i4, 1] SUU[i3, —i4, i5, 1]

Suulie, —is, i7, 1] x loopfunction (17a)

that should be interpreted as
i1,i3,i6 4i2,i4,i7 3i3,i5,i4 4i6,i7,i5
(‘1 8 8 8
11136 §i2.i7.i4 5i3.i4.15 §i6,i5,i7> x loop function. (17b)

However, the second reason to not worry about this is that in
Sect. 3 we demonstrate how all of the ghost couplings can be
removed from the amplitude, giving a much smaller number
of classes of diagrams to evaluate.

2.2 Processing of diagrams

Here we describe our approach to generating and renormal-
ising the diagrams.

Feynman-diagrammatic approach: The two-loop Feyn-
man diagrams are generated with the help of FeynArts

Top. 5

Top. 6 Top. 7 Top. 8 Top. 9

U,U,M,V,X,Z, W, S respectively (topologies 2 and 3 are equivalent
for identical incoming/outgoing states)

[137-139]. The different one-particle irreducible topologies
of tadpoles and self-energies are depicted in Fig.2. Each of
these topologies is populated with all possible combinations
of fermions F (straight lines), scalars S (dashed lines), vec-
tor bosons V (wavy lines), and ghosts U (dotted lines) in
renormalisable theories. The external legs are fixed to be
scalars. Each particle in the diagram is assigned a unique
index € {il, ..., 17} for full generality.

BPHZ method: In general, the integrals of the two-loop dia-
grams in Fig. 2 are ultra-violet (UV) divergent. In order to reg-
ularise them, we follow the BPHZ prescription [140-143].
Each two-loop diagram contains UV-divergent sub-loops of
one-loop order that can be regularised by appropriate coun-
terterms. In general, an additional two-loop counterterm is
necessary in order to regularise all UV poles. While the latter
can be defined as a pure polynomial in the UV regulator 1 /¢,
the former regularise all non-local divergences and in general
give rise to UV-finite terms as well.

The realisation of the splitting of two-loop diagrams into
the so-called forest of sub-loop diagrams is carried out in
an automated way. For each sub-loop diagram, the corre-
sponding one-loop diagram with counterterm insertion is
generated. In addition, the appropriate counterterm topology
that regularises the logarithmic divergence of this sub-loop
is determined automatically. The algorithm is based on a
graph-theoretical interpretation of Feynman diagrams: first,
the closed cycles (loops) of each diagram are identified; sec-
ond, for each cycle, the lines (internal propagators) that make
up the loop are shrunken into a point (counterterm vertex);
third, the adjacencies to the shrunken cycle in the original
diagram (and the cycle itself) are used in order to determine
the required counterterm insertion. An illustrating example
of this procedure is given in Fig. 3.

Symmetry factors: Analytical results in terms of ampli-
tudes for the genuine, generic two-loop diagrams as well
as the corresponding one-loop diagrams with counterterm
vertex, and the one-loop counterterm insertions are gener-
ated with the help of FeynArts, FormCalc [144,145]

@ Springer
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selected sub-loop

one-loop diagram with
counterterm vertex

appropriate
counterterm insertion

2 6

—_

Fig. 3 The different sub-loops of topology 2 of the self-energies in
Fig.2 are marked in red at the left column. After shrinking the lines
of these sub-loops, the remaining one-loop diagrams with counterterm
vertex are displayed at the middle column. The appropriate countert-
erm insertion for each counterterm vertex is given at the right column.

and TwoCalc [129] (we also make use of OneCalc that is
part of TwoCalc). Note that among the 121 different self-
energy and 25 different tadpole diagrams that FeynArts
generates, those diagrams with symmetries of internal prop-
agators have already been removed, whereas diagrams with
symmetries with respect to the external propagators are all
kept. This processing fixes the symmetry factors of the gen-
uine two-loop diagrams. The symmetry factors of the coun-
terterm diagrams are modified accordingly in order to match
the regularised two-loop diagram.

Couplings: All occurring couplings are re-labelled by the
sequence of acronyms for all adjacent fields and carry the
corresponding propagator indices as argument. An additional
numeric argument £ at the last position allows one to distin-
guish the couplings of the same fields with different Lorentz
structure, as described in Sect.2.1 where we give the dic-
tionary to parameters in the Lagrangian. In FeynArts the
propagator indices may be signed in order to refer to antipar-
ticles.> The different Lorentz structures of the couplings
are summarised in Appendix A of the FeynArts manual
[139]; the argument ¢ refers to the £th entry of the vector
of couplings. The only deviation from the default setup of
the Lorentz structure applies to the coupling SSVlia, ib, ic]
that depends on the momenta ki, and k;;, of the scalar fields:

3 Note that at this stage the fields F, S, V, U are not yet specified and
may themselves be physical antiparticles. Therefore, a signed index of
an antiparticle refers to the particle.

@ Springer

V]
)
I

The consecutive numbers at the lines label the propagators; the same
number in the diagrams of one row refers to the same particle at that
propagator. A signed number indicates the antiparticle to the unsigned
one (note that external particles are defined as incoming by default)

at the level of the counterterm vertices not all instances are
proportional to (ki, — kjp); instead, the dependence on kj,
and ki, needs to be distinguished. For this purpose, the default
generic model file (and the model file) of FeynArts is ini-
tialised with the modifications given in Fig.4; for the cou-
plings (rather than counterterms) we keep the original ver-
tex SSVlia, ib, ic, 1].4

Counterterm vertices: Since the same counterterm vertex
can emerge from shrinking sub-loops of different two-loop
diagrams, it is mandatory to store information about the two-
loop topology along with the counterterm vertex in order
to determine the appropriate insertion. Our choice is to stay
close to the existing description in FeynArts, and to assign
a canonically ordered list of edges to each Feynman dia-
gram. The edges correspond to the propagators (including
the field type) of the diagram. The propagator indices are
stored as well since they are required for correctly labelling
the counterterm insertions; for the purpose of sorting or iden-
tifying diagrams they are not considered. Due to the canoni-
cal ordering of the edges, the direction of a propagator might
be reversed. In that case, the propagator index of that line
receives a sign, indicating an antiparticle. An example of
this correspondence is shown in Fig. 5.

4 The generic model file Lorentz . gen is utilised together with the
model file SM.mod. The latter is required in order to load all structures
for FeynArts. It already contains all possible renormalisable generic
couplings.
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SetOptions[InitializeModel,
GenericModelEdit :> (M$GenericCouplings

AnalyticalCoupling[sl S[j1, moml], s2 S[j2, mom2], s3 V[j3, mom3, {1i3}]]
AnalyticalCoupling[sl S[j1, moml], s2 S[j2, mom2], s3 V[j3, mom3, {1i3}]]

G[-11[s1 S[j1l, s2 S[j2], s3 V[j3]1].

M$GenericCouplings /.

I
I
\4

{FourVector[moml, 1i3], FourVector[mom2, 1i3]}

),

ModelEdit :> (M$CouplingMatrices = M$CouplingMatrices /.

(c : Cls1_.
)
15
InitializeModel["SM"];

S[j1_1, s2_. S[j2_1, s3_.

V[j3_11) == {exp_} :> ¢ == {exp, -exp}

Fig. 4 The default generic model file of FeynArts is modified in order to allow for different Lorentz structures of the coupling SSV

F(i6)

Fig. 5 Each Feynman diagram can be uniquely identified by the list
of its edges when interpreted as a graph. Each edge has three argu-
ments: a starting vertex, an ending vertex, and a label (describing field
type and propagator index). The vertices v [i ] are numbered consecu-
tively, i € N. The starting vertices of external fields are not connected to

Counterterm insertions: All one-loop one-point, two-point,
three-point and four-point processes were computed at the
generic level using FormCalc, since they can in princi-
ple appear as counterterm insertions. Each of the Feynman
diagrams that appears in these processes was evaluated sep-
arately and stored together with its list of edges. In this way,
individual results can be looked up quickly and inserted into
the correct counterterm vertex; they may in future be pro-
vided as part of TLDR. In fact, to evaluate our results we
use a separate algorithm to calculate just the divergent parts
of the counterterms (which are identical in MS or DR at the
one-loop order) on the fly, and which works in any gauge.

Gauge fixing and regularisation: All two-loop self-energy
and tadpole diagrams, the corresponding one-loop diagrams
with counterterm vertex, and the UV divergences of the
counterterm insertions have been determined in 't Hooft—
Feynman gauge, Landau gauge, and the general Rg gauge.
However, diagrams with a large number of gauge bosons can
initially be expressed in a much shorter form in "t Hooft—
Feynman gauge. For this reason, we performed the com-

{edge[iv[1], v[2], S[i1]], edgeliv[3], v[4], S[i2]],
edgel[v[2], v([4], S[i3]],
edgel[v[2], v[5], V[-i4]], edgelv[4], v[6], V[-i7]],
edgel[v[5], v[6], F[-i5]], edgelv([5], v[6], F[-i6]1]}

the other edges and labelled iv [i]. If the starting and ending vertices
of an edge are interchanged compared to their original description in
FeynArts, the propagator index receives a sign, indicating an antipar-
ticle on that line

plete integral reduction only for the Feynman gauge (see
Appendix A). In addition, we computed our results using
dimensional regularisation (for MS renormalisation), and
dimensional reduction (for DR renormalisation). The extra
terms in dimensional regularisation have a coefficient Jys.

Results: The outcome for the combination of each genuine
two-loop integral with the corresponding counterterms for
all sub-loops is given in Appendix B.1 for the tadpoles,
and in Appendix B.2 for the self-energies; first, all previ-
ously known expressions of Refs. [121,122] are given in our
nomenclature, and then all new results are stated. Note that
the pure UV divergent two-loop counterterms are not con-
tained in these results, as they simply add clutter to the expres-
sions. After carrying out the integral reduction and extracting
all UV divergences via the relations in Appendix A, polyno-
mials in the regulator 1/¢ will remain, which simply corre-
spond to the genuine two-loop counterterm of the diagram;
but we may also find additional divergent and finite parts
corresponding to any infra-red divergences: we do not intro-
duce infra-red counterterms. As described in Sect. 1.1 any
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infra-red divergences should cancel in a full amplitude when
combined with one-loop self-energy and tadpole diagrams.

Basis of loop integrals: We have provided all of the integral
reduction rules in Appendix A to extract the finite part of
our generic renormalised amplitudes for any kinematic con-
figuration in terms of the basis of one- and two-loop scalar
functions that can be evaluated in TSTIL. This is a basis of six
two-loop scalar integrals and two one-loop ones. The TSTL
basis are actually “renormalised” integrals, with specific sub-
tractions; essentially they can be built up from Ref. [146]:

S,y = lim {su, v,2) — é [AG) +AG)

1
+A@)] - s x+y+z]
2¢

1 p2
—_—— = —x -y - 18
]l o
1
(H%%ZM)=ﬁ%{U@JJJU——B@J)
€— €
PLIN. (18b)
2¢2 2¢el’
M(x,y,z,u,v) = lim M(x, y, z, u, v), (18¢)
e—0

where the definitions of the boldtype integrals are given in
Appendix A.3.1, and the number of spacetime dimensions
isd = 4 — 2 €. In our results in the Appendix we use the
equivalent of the boldtype integrals, and so when taking the
finite part of the diagram we must use

le!

Fin[S(x, y,2)] = S(x,y,2) —x By (0,0, x)

¢! le

1
- yB() (0705 )’) _ZBO (05 O,Z),
(192)

(p2x.3). (190)

€'

Fin[U(X, y’ Z,M)] == U(-x’ ya Zau) +B()

where Fin[. . .] denotes the finite partase — 0, i.e. neglecting
non-zero powers of €, and

el 1
B(l) (p2, X, y) = F1n|:g B(x, y)i|. (20)

In principle, since B(x, y) is known analytically to all orders
in ¢, it is not difficult to evaluate B(‘f (and it is even avail-
able in TSIL). However, its presence is a sign of an infra-
red divergence: in the absence of infra-red divergences, all
B(lf integrals cancel in the renormalised amplitude. We have
explicitly checked that this is the case for all the results in
the Appendix. So then the reader might be curious as to why
we do not give the results in terms of the renormalised TSIL
basis, as done in Ref. [121]; the reasons are twofold:

@ Springer

e Diagrams with vector bosons contain many more tensor
integrals. By listing them in unreduced form we are able
to give our results for each diagram in only a few lines,
whereas some diagrams could fill pages by themselves in
expanded form, even just for the most general case where
there are no vanishing or degenerate masses.

e Theintegral reduction depends crucially on whether there
are coincident or vanishing masses. The simplest cases
concern scalar integrals with repeated propagators, where
for non-identical masses we can use partial fractions to
reduce them (see Eq. (121)). InRef. [121] there were gen-
erally one or two such cases per integral. In the imple-
mentation of the results of Refs. [123,124] in SARAH,
one scalar integral contains 12 different reductions. How-
ever, in our results, we also have cases in the reduc-
tion where some vanishing gauge-boson or ghost masses
naively lead to poles; furthermore, there are also special
cases with the external momentum taken equal to the
scalar mass that are relevant (in particular) for charged
scalar propagators. Hence our results (for example for
I(()?6) have up to 47 different special kinematic configu-
rations! In TLDR we provide the different special cases
for each diagram, and our reduction rules transform them
to the appropriate renormalised integral; clearly it would
be impractical (and not especially useful) to list all of the
final results here.

2.3 Charged scalars, Dirac fermions and y;

Our results are calculated using Majorana four-spinors,
and in Sect.2.1 we gave a prescription of how to trans-
late them to Weyl-spinor notation — but under the condi-
tion that the spinors are also Majorana, i.e. have diago-
nal (and real) masses. In Ref. [121] the results were pre-
sented in Weyl-spinor notation without this condition, by
allowing Dirac spinors to have off-diagonal masses M
where Mg Mg = m% 877; such mass terms simply link the
left and right Weyl spinors that form a Dirac spinor. To trans-
late our results to that notation is surprisingly easy, because
we pull out linear factors in the mass for each diagram includ-
ing fermions. For example, we can write for I(()%Z

I3, = mis Me[FFS[is, i6, i4, 1] FFVIis, i6, 17, 2]] SSV[il, 4,13, 1]
SvV[i2,i3,i7, 1] x f74(i3, 4, 5, i6,i7) + [i5 <> i6]

— H,‘j D21 mel:MI yljj g?l:l gbik gabj f74(b,k, 1,J,a)

— sne[M,K y!Ji gg’(] "% g f10(b k1, 0,a) .
2D
For practical applications, however, it is likely most use-

ful to retain the four-spinor notation; a translation to Dirac
spinors as a sum of two Majorana spinors, and to com-
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plex scalars as a sum of two real scalars is straightforward.
Naively, for each complex scalar or Dirac spinor the num-
ber of amplitudes would be doubled in this way, but actually
there must be a symmetry preventing the two components of
a complex scalar or a Dirac spinor from mixing or splitting
their masses — hence for any three-point coupling there is a
unique way of combining them into a coupling. For example,
when considering three complex scalars ¢1, ¢2, ¢3 where the
lagrangian contains

1
ﬁID-—5(a¢1¢2¢34—a*¢f¢§¢§) (22)

the terms ¢ ¢ ¢3, P1 ¢35 @3, P1 2 @5 or their complex con-
jugates are not allowed because they would violate the sym-
metries keeping the fields complex. Therefore, the notation
with Majorana spinors and real scalars can be very easily
applied to Dirac spinors and complex scalars: when inserting
fields into our results we just choose for each set of couplings
the one combination of fields that is allowed in the theory.
Indeed, this is the algorithm used in SARAH (albeit currently
for the diagrams in the gaugeless limit only).

Finally, another motivation for retaining the Majorana-
spinor notation is the problem of y5. For two-loop self-
energies, we can use a naive anticommuting prescription
for ys, but for two-loop decays or three-loop self-energies
this is known to be inconsistent and it would be neces-
sary to choose another definition, for example involving
the e*VP* tensor. In the two-component formalism, spinors
are automatically split by chirality, corresponding to a naive
y5 prescription, and it is not known how to make this consis-
tent for such higher-order calculations.

3 Removing Goldstone and ghost couplings

In this section, we shall derive tree-level relations among the
Goldstone and ghost couplings of general theories, which
extend those in Refs. [147,148], and eliminate four-point
couplings involving vectors. Indeed, the first such relation is
already implicitly included in Eq. (10); the four-vector cou-
pling is just related to the product of three-vector couplings,
as can be seen from either the requirement of unitarity of the
amplitude, or just read off from the standard kinetic term.
We shall derive all the necessary couplings using the second
approach; starting with fields in the gauge eigenstate basis of
scalars R; and gauge bosons V//

Fi, =0, V8 =3,V +g fvive, (23a)
1 b b
_ Z FSV Fa;w ) _g fca Vua VU auv‘f
1
= &V VEVE e (23b)

Once we break the gauge symmetries, we must diagonalise
the vector masses. Naively this just involves orthogonal rota-
tions and therefore the sum over intermediate states is not
affected; however, in the presence of kinetic mixing of U (1)
gauge bosons we must first make a non-orthogonal transfor-
mation. We must first unravel the kinetic mixing via

—b
Vliz = Zab All« , Z Zab Zecb # (San (2’4)
b

but then, since only U (1) gauge bosons may mix, we must
have f*¢Z.; = f*“ We subsequently make an orthogonal
transformation to diagonalise the vector masses;

it vi=N Al =2z,00 AL, (25a)
then g* =g f%/ N3 Ny NP (25b)

and the relation between quartic and cubic gauge couplings
is clear; also that g®*¢ is antisymmetric.

For four-point scalar—vector interactions, we must look at
the covariant derivative of the scalars in the gauge-eigenstate
basis:

Dy R; = du¢i — 05 R; V., (26)

where Oiaj are real antisymmetric matrices. They obey the
group algebra [#%, 6] = — f£2b¢ 9¢_ This then yields

1 1
5 DuRi D"Ri O Vil 0 Ri 9" Rj+ 6f; Op; Ri Rj Vi V.

27)

The scalars are rotated by an orthogonal transformation (there
is no kinetic mixing at tree level) so we have

Vv

gaij — glfl NZSa gabij:gaki gbkj + gakj gbki‘

(28)

) ~(S) ~H(S)
Oyi Olj )

The couplings g/ are antisymmetric on the exchange of
the two scalars. It should be noted that the assumption that
the scalar rotation is orthogonal will be violated if the run-
ning parameters do not sit at the minimum of the tree-level
potential, e.g. if we work with running parameters that sit
at the minimum of the full loop-corrected potential. Such an
approach, however, leads to many complications in the calcu-
lations and we do not recommend it. Alternatively a choice of
finite counterterms (such as using an on-shell scheme) may
cause the identity above and in the following to be violated.

3.1 Ghosts and gauge fixing
To derive the Goldstone and ghost couplings, we first need

the gauge-fixing terms. Once we give expectation values to
the scalars, so R; = v; + R;, and defining

@ Springer



417 Page 12 of 64

Eur. Phys. J. C (2020) 80:417

F =00 v; Zpa, (29)

l

the scalar kinetic terms contain
1 —a .
5 DuRi D"R; > Ay, F; 3"R;
+ % (Fe 66, Zeo + FL 65, Zoa) Ri Ay, A"
+ % FeFeAL A", (30)

We thus have the R: gauge-fixing terms

Gi = (a Z”—gF“R-) Lo = —Lgage. a1
\/g 12 1 L ? f 2 ?

defined so as to remove tree-level kinetic mixing between
scalars and vectors.

Rotating the gauge transformations in the original gauge
basis a“ so that a® = Z,, a@’, we have

SAL = 0@ — A @ = (Dua)”, (32a)
SR =R =@ [Zuy 05 (v; + R))]
=@ [ + Zsa 0}, R ). (32b)
This gives
5Ge 1 A
o= (Dt e ez Ry
(33a)
. 8GE
Lghost = —¢* o= . (33b)

From this we can read off the ghost mass matrix and the ghost
couplings. For ghost—vector couplings, we have

Lehost D (du@) D' D
— (9,@°) [ A, @ = g A% o (3,@7). (34)

Also as expected,
m2, = F* F} 35)

is the mass matrix for the gauge bosons too, and so we can
diagonalise both ghosts and vectors with the same orthogonal
rotation O;Z), and for each massive vector of mass m, there
will be a ghost with mass /€ m,. However, it is important
that, since the ghosts and antighosts are not identical, we can
treat them as complex fields, and we actually have the liberty
of defining them with an additional phase.

@ Springer

From Eq. (30), after diagonalising the scalars we read off
that, as noted in Ref. [149],

gabi — gabi + gbai’ (36)
but since g% has an antisymmetric piece we cannot simply
invert this relation. In order to write 3% in terms of the
other couplings of the theory we will have to consider the

Goldstone bosons.
3.2 Goldstone bosons

The gauge-fixing terms are also expected to give mass to the
Goldstone bosons (except in Landau gauge); they contain
scalar mass terms

ﬁgD—é

> 7 Fj“ R; R;j. 37)

To see that these concern just the Goldstone bosons, con-
sider the standard perturbative proof of Goldstone’s theo-
rem: we expand the potential without gauge-fixing terms
Vo(R; + a 87) = Vo(R;) where §7 = Ql.bj R; Zp,, and dif-
ferentiate the relation once:
2
patsr SNy,
OR; OR;
(38)

gV 3(a? 89) 9V,
@04 Rj— =0, da57) 2V
I 3R aR; R

If we work at the minimum of the potential, this becomes

3’V 3V

0O=a%8s — = @' F ——2 (39)
IR OR;|p, — IR; OR;

This is true for any a“; the F" are null eigenvectors of the

mass matrix until we add the gauge-fixing terms. Adding the

gauge fixing terms we have

3%V,
M = 2 4§ FFL. (40)
OR; OR; :

Now let us use the singular value decomposition of F;" and
define, suggestively:

Ff =04 (Fp)h O (41)

where OLZ), O;ls) are orthogonal and Fp is a diagonal — but
not in general square — matrix. Since
92 Vo

82V0
0=05 F iap = (o o —— (42)

i OR; i OR;

clearly Oﬁ.ls.) is arbitrary when acting on Goldstone-boson
indices; it can be chosen to simultaneously diagonalise both
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matrices in Eq. (40), splitting the scalars into would-be Gold-
stone bosons and a remaining set. Then, in the diagonal
basis ®;, Fp becomes a projector onto Goldstone bosons:

0, a> Ngorj> Ng

ng (Sajv a,j < Ng ’ (43)

(Fp)j = {

where Ng is the number of Goldstone bosons/massive vec-
tors.

Armed with this, we can write
~abi __ _aij b __ 1 abi 1 abc c
g& =g (FD)j—Eg —58 (Fp);i» (44)
i.e. we can exchange the scalar—ghost coupling for scalar—
vector couplings. However, because the coupling has a dif-
ferent form depending on whether the scalar is a Goldstone
boson or not, this introduces some complications in calculat-
ing amplitudes: we should either sum separately over Gold-
stone indices and the remaining scalars (which is necessary
for finding a gauge-invariant result), or just use these pieces
to remove the ghost couplings. In this work we take the latter
approach.

Another point is in order: there is actually some ambi-
guity in the above definitions because we have the free-
dom to introduce signs/phases of the Goldstone bosons and
ghosts. In all calculations such signs should drop out. This
is in particular notable because implementations of gauge-
fixing in the literature are defined via the standard procedure
but, in order to verify the above relation (and, indeed, those
that we shall introduce below), it is necessary to introduce
such signs/phases — we checked our identities against the
FeynArts model file of the SM, for example, where we
need to introduce a sign for the Z-boson Goldstone and a
factor of : for the W-boson Goldstone.

3.3 Eliminating all Goldstone-boson couplings

Now that we have given explicit forms for the ghost couplings
in terms of scalar and vector couplings, and found that the
form depends on whether the scalar is a Goldstone boson or
not, we can also consider relating the couplings of Goldstone
bosons to other couplings in the theory. Partial results for
these can be found in Refs. [147,148]. The general strategy
will be to use our projector Fp and invert the relation in
Eq.(41), and use the identity

mg dap = OL) Oy F F!
= -0 04 (v7 6267 v) Zee Z1a. (45)
Throughout we shall distinguish would-be Goldstone bosons

from ordinary scalars S by using the letter G to represent
them, and we use G, Gp, G, ... for their indices (instead

of i, j, k,...): the subscript a, b, c, ... of course indicates
that they correspond to the gauge boson of that index.

3.3.1 Scalar—vector couplings

GGV Inserting our projector into g%/ we have:

gaGth: — Wlb_mgaij (FD)? (FD);
c
1 ..
c
1 VioW o
— 2mb - Za,a,, Zb/b” ZC’C” O((l/,j (91(7//13 OE’”C) UT
c

x (6% 97 6¢ — ¢ 99 9" ).
(46)

Next we use

UT (91) ea 96‘) v = _facd UT eb ed v — fbc‘d UT ed 9(1 v

_ pbad yT gegd o 4 T (96 he 9”) v, 47)

and therefore the coupling of two Goldstone bosons to a
gauge boson is:

aGpG, — 1

& 2mpme

g%be (mi — mi — m?) ) (48)

This is the expression found in Ref. [148] by requiring that
high-energy scattering amplitudes of theories with massive
gauge bosons have the correct behaviour.

SGYV For a general scalar, coupled to a Goldstone boson and
a vector, we can derive

gaiG;, — L gaij (FD);) — L g,abi
mp mp
1

— M [gabi _ (FD)ZL gabc] . (49)

GVYV Consistent with the previous two expressions, we can
derive

1
bG. b 2 2
g = T g (ma - mb) : 50)

3.3.2 Scalar-Goldstone couplings
The pure-scalar interactions involving Goldstone bosons can
also be related to couplings involving vectors, thus allowing

them to be eliminated. To derive the required relations, we
continue to apply derivatives to Eq. (38):
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_ 08 9PVo 987 97V a0V
OR; OR; 0R, ~ ORy OR; dR; ' ' OR; OR; Ry’
(51a)
0 9 Vo GRS
OR; OR; OR, OR; ORy OR; 0R; OR;
98¢ 33V, 34V,
i 0 4 40 0 (51b)

OR OR; OR; dRy = ' OR; dR; R, OR;

From Eq. (51a) we get the GSS coupling

1 .
ag,jk = — g [m(Q),j - m%,k] , (52)
a

2

where we have denoted by mg; the eigenvalues of

(82Vo)/(8 R; OR})|. These are equal to the scalar masses in
the full potential, except that they do not include contribu-
tions from gauge fixing: would-be Goldstone bosons have
m% Gy = 0.

It is also useful to have the expression for a GGS coupling:

2
my g

aAG,Gpk = gPk, (53)

2mgy my,

where we note (as shown in Ref. [123]) that a triple-
Goldstone coupling vanishes.
To avoid using m%’ ; We can write

mg; =m; —&mg (Fp)! (54)

and therefore

1 . m
k|, 2 2 b "Mb  akG
ag,jk = — ga/ [mj _ mk] + (FD)j — ga b
”la ”la

mp .
+ (Fp)h —= g4Gv
m

a

1 . 1
= g 87 [ =]+ ] e
a a
b abj
+ (Fp)g m g . (55
a

From Eq. (51b) we retrieve the GSSS

AG,jkl = mL [3“” ai + g% aiji + g™ aijk] - (56)
a

Here there is a sum over all scalars i including Goldstone
bosons, and indeed j, k, [ can be Goldstone fields. To elim-
inate couplings with more Goldstone bosons we then just
need to insert the formulae that we have given above into
this equation; for example (as we shall later require) a four-
point coupling of two Goldstone bosons and two scalars that
are not Goldstone bosons 12, [is

@ Springer

1 b Loack el U ach bek
AGuGikl = o [g“ i 588 — 58
+gai/€ gbii (Zmlz . m12 _ mi)
+ gail ghik (2 m? — ’"1% _ m;)] ) (57)

Also particularly interesting (but not needed for this work) is
the four-Goldstone coupling, which can be written as (sum-
ming over all non-Goldstone scalars i)

m2 .
7 0,i [ abi gcdi +ga('i gbdi + gadi gb('i] .
Mg Mp Me My

(58)

AG,G,G:.Gy =

3.3.3 Fermion couplings

To complete the removal of Goldstone boson couplings, we
would require the couplings of fermions to Goldstone bosons.
We will not actually use these in this work, and they were
given in Ref. [147]; we give them again here in our notation
for future reference:

1
MO =1 —(my —mp) g5, (59)
mg

y

4 Results

In this section we shall describe our results. The renormalised
expressions for all of the basic classes of diagrams are given
in Appendix B.1 for the tadpoles and Appendix B.2 for the
self-energies, since they are rather long; initially, there are 25
tadpole and 121 self-energy classes which is a much larger set
than in the gaugeless limit. Therefore we shall describe how
we can reduce this set to 89 or 92 for generic self-energies
(depending on whether we choose to exchange the ghost—
ghost—vector coupling for a triple-gauge coupling) or 58 for
non-Goldstone scalars; and just 16 for the tadpoles.

4.1 Tadpole diagrams
4.1.1 Unreduced diagrams

To present our results in a readable way, and to make the
connection with the diagrams in Ref. [122], we shall denote
tadpole topologies 1, 3 and 2 with all scalar propagators as
Tss, Tsss, Tssss; the subscripts are modified for different
fields accordingly. The total tadpole can be written as

ay @ 5 3
S =T =T, (60)
n=0
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where the superscript (2, n) indicates O(g2") in the gauge
couplings g. Then the unreduced set of tadpole topologies is:

SO B
= gl o
Al R (e I

T;YSV + T%V +T§Y3 U+T‘;V<1V>V+TVIYKV I%V?V : (610)
723 _ TUUSU TVVSV (61d)

(1) (1)
IO9 z-21

The integrals Ij(vl) can be found in Appendix B.1. Of these,
the expressions in 7>? are equivalent to Egs. (2.32), (2.33),
(2.34), (2.36) and (2.37) in Ref. [122], since they are inde-
pendent of the gauge fixing (and the results in the gaugeless
limit were given there).

4.1.2 Combined diagrams

The diagrams with fermions are irreducible, but we can
exchange all four-point couplings including vectors, and all
ghost couplings, for three-point couplings involving vectors
and scalars using the identities in Sect. 3. This means that we
can reduce the number of topologies by combining the loop
functions together. To do this, we need some notation: we
write each integral in the Appendix as a sum over the differ-
ent combinations of Lorentz structures multiplied by a loop
function. Suppose we have an integral with n propagators
and m couplings with p indices in total; then let us write the
couplings generically as

c[il’izwusLl]v~--7C[~~wi(p)sLm]v (62)

where {L, ..., L,,} denote the Lorentz structure of the cou-
plings. The diagrams can be written as

7P = 3

(L}

s ip) T el . (63)
=1

In the cases where there is only one function, we omit the
superscript with the Lorentz indices. For example, we can
write

78y = svvlin, i2, i3, 11VVVIi2, i3, i4, 14, 11 181 (i2, 13, i4)
+ SvVlil,i2,i3, 1] VVVVIi2, i3, i4, i4, 2] t41’2) (i2,13,i4)

+ SVVIil, i2, i3, 1] VVVVI[i2, i3, 4, i4, 3] tj”)(iz, i3,14),
(64)

but
Iéi) = SSSJil,i2,i3, 1] SSSSIi2,13, i4, i4, 1] 11 (12,13, 14).  (65)

For fermions, there are several Lorentz structures and the
loop functions differ, while for amplitudes without fermions
there are at most three, and the loop functlons are tylplcally
equal or differ very little (in this example, t4 L3) 2))
Armed with this notation, we can then comblne the ampli-
tudes. For all the combinations, we will also be able to reduce
each class to just a single Lorentz structure. It is therefore
straightforward to convert our expressions in FeynArts-
based coupling notation to the notation of Eq. (10) using the
identities in Sect.2.1. The result for the tadpoles is:

(2,0

T =129, (662)
T®Y = Teppy + Tsyrr + Tsvss + Tsssv, (66b)
T%? = Tyyrr + Tyvss + Tsvsy

+ Tssvv +Tsyvv + Tvvvy, (66¢)
T = Tvvsy. (66d)

We see that the original set of 25 topologies is reduced to just
16. A more detailed description of the subtleties in the reduc-
tion involving scalar—ghost couplings is given in the next
section. Here we simply present the results for the reduced
expressions in turn.

The simpler combinations are

Tsssy = SSSJil,i2,i5,1] SSV[i2, i3, i4, 1] SSVI[i3, i5, i4, 1]

[t13(i2,13,14,15) — 21> (i2,15,i4)], (67a)

Tyvss = SSV[i3,i4,i2, 1] SSV[i3, i4, 5, 1] SVV[il, i2, 5, 1]
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X [t17(i2,13,14,15) + 13(i2,15,13) + 13(i2,15,i4)] ,
(67b)

Tsysy = SSV[il,i2.i5, 1] SSV[i2, i3, i4, 1] SVV[i3, i4, i5, 1]

x [t18(i2,13,14,15) — 2 tp5(i3,i4,15)], (67¢)

Tssyv = SSS[il, i2.i5, 1] SVV[i2, i3, i4, 1] SVV[i5, i3, i4, 1]
1
X | t9(i2,13,i4,i5) + 2 tg(i2,13,i4,15) | , (67d)
Tsyyy = SSVI[il, i2,i5,1] SVV[i2, i3, i4, 1] VVVI[i3, i4, i5, 1]

1
X [tzz(iz, i3,14,i5) + 1 t14(i2, 13, 14, i5)

1
~1 t14(i2, 14, i3, 15)] , (67e)

Tyvvsy = SVVI[il,i2,i5,1] SVV[i3, i2, i4, 1] SVVI[i3, i4, i5, 1]

X [t21(12, i3,i4,15) — %tg(iZ, i3, 4, i5)i| , (671)
while the more complicated combination is
Tyyyy = SVV[il, 12,15, 1] VVV[i2, i3, i4, 1] VVVI[i3, i4, i5, 1]

X [t23(i2, i3,i4,i5) — 2 typ(i2, 3, 4, i5)

LDy o (1,1
—t4 (12, 15,14) - t4

(i2,15,13)
+ tf’3) (i2,15,14) + tjm)(iz, i5,13)

PP SO S WD
— Z m Iy (12,13, i4, 15)—§ (mi3 +mi4) t9(i2,13, i4, i5)

Wssss =~ Xsss

S _

=0+ ;0 + 50
111 101 001

H([)SF_WSSFF Mrsrsr Mrrrrs VFFFFs  VsssSFF

@ * o T L0
z-110 21—022 1021

Yssss

1 1
+ 3 t14(i2, i3, 14, i5) + 3 114(i2, 4,13, i5)
1 1
+ 3 t15(i2,13, 14,15) + 3 t15(i2,i4,13,15) |. (67g)

4.2 Self-energies
4.2.1 Unreduced diagrams

To make the connection with the diagrams up to second order
in the gauge coupling in Refs. [121] and [122], we write the
total self-energy as

4
1
@ _ @n | e
Mt =~ :5 (Hil,iz + Hiz,il) (68)

where the superscript (2, n) indicates O(g>") in the gauge
couplings g. The minus sign reflects the difference in our
conventions compared to FeynArts. The symmetrisation
on the external legs is to account for the fact that some dia-
grams are not explicitly symmetric (for example, we elimi-
nate Ty since it is identical to Z\o) with il < i2, i4 < i7)
and it is far faster to symmetrise the total final result rather
than evaluate twice as many diagrams.

The expressions for [T and 1D are known, and we
can write them as

My =0+ 0, (692)
My = N0V L nRsve’ 4 srve’, (69b)

All of these simple terms except TT®)SV8” are irreducible.
The diagrams without vectors are

Zssss + Ssss n Ussss +Vsssss Msssss
2) 2) (2) (2) 2 -
Tyos Iy5 2 Zipg Toso T4 (70a)
o) 2 (70b)
Tys7 Tyss

while the diagrams with only one vector propagator are

2 Yvsss Usvss Msysss Mssssy - Vvssss  Vssvss
nsv.e” = 70 T o0 oot o0t o0 T, 0 (71a)
003 010 031 033 066 067
2 Ysssv Vyssss = Xssv  Wsssy
MRsSv.e® — 70 + 70) 70) + 70 (71b)
002 069 102 113
M M 1% 1% \%
qsFv.? _ Mrerev Mrvese VPrrry  Vvsser  Vssvir (710)

@) @)
IOZ8 2 IOZ9

@ Tt @ T,,2 -
IO62 2063 2 IO64
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In Ref. [121], the expressions are given in unreduced form;
those in TTI®SV:¢> can be simplified by removing the four-
point scalar—vector interaction, as we shall do in the next
section.

Next we can write

1—[1(12122) — gty qsV.et L qRIFV.gt | ety et
(72)

Mpyvrvr Myyvsss Vvsvrir

The letters I, R representirreducible and reducible classes
respectively; the final two contain special classes. The
expressions are

Vysvss = Vssvsy  Wssvy

ni-e' = @ T 0 0 ) 0 @ > (73a)
2 1y T30 2154 2Ly 21k, Iii6
RSVt _ Ussvy n Usvvv +MSVSVS+MVSSVS +MSVSSV+MVVSSV Vsssvv
= (2) (2) (2) (2) (2) (2) (2)
2 Ioh 2153 2 Iy Toy 2 Liys Lo Tos3
n Vssvvv ~ Zssvy n Ysvvs n Yyvssv  Ysvvv | Uvssv  Vsssuu
(2) (2) (2) (2) (2) (2) (2)
2 Tpo3 2 Tyge Toos Zoos Zooe 2 1o, Zoso
Vssvou = Vsvvss  Vvsssy = Xvvs Xvvy  Wyyss  Ssvy
) 7@ T 7@ 70t ot Lot Lot oo (73b)
071 079 080 103 104 115 121
s Vsyvrr Wyvrr
morvs = "o "+ 0, (73c)
076 114
s Vsvvvv Vsvvou Wyvvvy Wyvyu
e = "o 70t o T o0 (73d)
099 086 119 117
< o4 Zysyvs  Wssuu
nse’ = S (73e)
Iy YA
For the third-order terms, we have
NGy = ne 4 mesve’ 4 e’ (74)
The expressions read
6 Myssyvv VvvvFF
s — " i/ (75a)
051 087
Rsv.e6 _ Ussvv  Usyvy  Msysys Myssys Msyssy Myvssy  Vsssvv
nosv.e" = 27 T 57 T @t 20 50 T 20 7@
011 013 040 041 043 049 083
n Vssvvv = Zssvv Ysvvs + Yyssv + Ysyvv  Uyssv  Vsssuu
(2) (2) (2) (2) (2) (2) (2)
2 Tpo3 2 Tye Toou Zoos Tooe 2 Iy, Zoeo
Vssvou . Vsvvss  Vvsssy  Xvvs | Xvvv  Wyyss = Ssvy
+ o+t ;o T 0 t 0t 0+t 0 toos (75b)
2 Iyyy Ty Zogo VAT Tita 1y\s 15
s Vvvvuu Vvvvvy
Hi’g = 1_(2) I(z) (750)
100 095
Finally, the fourth-order terms are given by
@4 _ Myyuus ,Mvvvvs  Vuvusu  Vvvvsy (76)
i1,i2 — (2) (2) (2) (2)
o Tpyy Tys3 Zo61 Zoos
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Together, these describe 92 classes. However, we can
immediately reduce this to 89 by removing the ghost—ghost—
vector couplings inside 14" and Hi'gﬁ, as we describe in
the next sections.

4.2.2 Combination of classes

As in the case of the tadpole diagrams, we shall exchange
four-point couplings involving vectors, and all ghost cou-
plings, for three-point couplings involving scalars and vec-
tors. We therefore use the same notation as in the tadpole
case to represent our loop functions and their couplings; the
self-energy diagrams can be written as

7P =Y @) [l nl D)

L j=

In the cases where there is only one function, we omit the
superscript with the Lorentz indices. For example, we can
write

I%l = SSVVIil,i2,i3,i4, 1] VVVV[i3, 4, i5, i5, 1] ff&”(ﬁ, i4,i5)
+ SSVVIil,i2,i3,i4, 1] VVVV[i3, i4, i5, i5, 2] fl(éf) (i3, i4, i5)
+ SSVVIil, i2,i3, 4, 1] VVVV([i3, i4, i5, 5, 3] fl%f) (i3, i4, i5),
(78)
but

I(%)l = SSglil, i3, i4, 1]
SSSli2, 13,15, 11 SSSS[i4, i5, i6, i6, 1] f1 (i3, i4, i5, 6). (79)

The first trivial application of this is to remove the dia-
grams with ghosts that do not couple to scalars. In the above
notation we can write

+ 50
58" = svvlil, i3, i4, 1] SVV[i2, 13,17, 1]
VVV[i4, i5, i6, 1] VVVIis, i6, 7, 1]

x [ 1(561,1,1)037 i4,15,16,i7) — 4f9(51’1’1’1)(13,i4, is, i6, 17)] ,
(80)
4 .
where we note that fg(;’l’l’l) = f9(51,1,2,2)’ and [T+¢" consists

of two classes corresponding to diagrams I(()g)g and Il(?g :

4
M+&" = sSVIil, i3, i4, 1] SSV[i2, 13,17, 1]
VVV[i4, i5, i6, 1] VVV[is, i6, 17, 1]

x [f9(91’1'1’1)(i3, i4,15,i6,17) — 4 fag "V (13, 14,15, 16, i7)]
+ SSVVIil, i2, 5, i6, 1] VVVIi3, i4, i5, 11 VVV[i3, i4,i6, 1]

X [fl(llél’l)(ﬁ, i4,i5,i6) — 4f1(11§1’”(13,i4, iS,i6)]. (81)

@ Springer

This reduces the number of classes of diagrams to evaluate to
89, which will speed up evaluation (since the loop functions
are all of the same class, they require no substantial extra time
to evaluate, whereas performing loops over the couplings and
evaluating the loop functions each time is slow). In fact, by
using Eq. (28) we can combine these two classes of diagrams
into one graph of topology Vsyyyy; but we shall apply this
systematically in the next section.

4.2.3 Ghostbusting

In the previous section we eliminated diagrams contain-
ing only ghost—ghost—vector couplings and no ghost—ghost—
scalar couplings. In this section we shall remove all ghost
couplings from the amplitude, and also apply Eq.(14) and
Eq. (28) in order to obtain only 58 classes to evaluate in total
(compared to the 28 for up to O(g?) terms) at the expense of
requiring that the external scalars are not would-be Goldstone
bosons.

The key equation that we shall apply is Eq. (44) which
shows how we can relate SUU couplings to scalar and vector
couplings. However, the form of those couplings has an extra
contribution for would-be Goldstone bosons:

SuUlil, —i2,i3,1] = —% SVVlil,i2,i3, 1]

—% D & (Fp)ij vuvlia. iz 3. 1], (82)
i

We therefore have to make some distinction between
would-be Goldstone bosons and the other scalars in the sum-
mation. One approach to dealing with this would be to intro-
duce the Goldstone bosons as a new class of fields (separate
from other scalars) from the start, and remove them via the
identities in Sect.3 afterwards. This would be necessary to
obtain an explicitly gauge-invariant result, and should lead to
afaster evaluation of the final result, but comes at the expense
of complicating the expressions. We leave this to future work.

Instead, we deal with the above problem by noting that
the first term on the right-hand side of Eq. (82) is universal
for all scalars whether they are Goldstone bosons or not,
so we can split any diagram containing an SUU vertex into
two (or more) and explicitly sum over the second part, since
it effectively becomes a vector propagator. As an example,
consider I(%;:

I(% = SUUIil, —i3,i6, 1] SUU[i2, —i7, i4, 1]
SUUlis, —i4, i3, 1] SUULIS, —i6, 17, 1] f27(i3, 14, i5, i6, i7)
= SVV[il, 3,16, 1] SVV[i2, i4,i7, 1]

1
SVVI[is, i3, i4, 1] SVVI[is, i6, 17, 1] 3 fr7(i3, 4, 15, 6, i7)
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+ SVVlil, i3,i6, 1] SVV[i2, i4,i7, 1]

1
VVV[i3,i4, 15, 1] VVV[i5, i6, i7, 1] 3
(33)

Two combinations here have dropped out:

l
g s fr7(i3, 14,15, 6, i7) [svv[u, i3,i6, 1] SVV[i2, 14,17, 1]

SVVI[is, i3, 14, 1] VVVIis, i6, i7, 1]
+ SVVIil, i3, i6, 1] SVV[i2, i4, i7, 1]

VVV[is, i3, 14, 1] SVV[i3, i6, i7, 1]] =0, (84a)

l
g s fr7(i4, 3, 15,17, i6) [SW[iZ, i4,17, 11 SVVI[il, i3, 6, 1]

SVV[is, i4, i3, 1] VVV[i5, i7, i6, 1]
+ SvVli2,i4,i7, 1] SVV[il, 3,16, 1]

MfS f27(i3,i4, 15,16, 7).

sums over all scalars and sums over just Goldstone indices,
explicitly trading the Goldstone bosons for vectors.

4.2.4 Final simplified results for self-energies

The final result for our set of 58 self-energy topologies can
be expressed as:

H1(12102) =15 + 5F (85a)
Hl(lz l1) Osv.g + I(DSFV, ¢ + oY 5 , (85b)
N3 = oo $ AV LU et (850
n) = ne® 4 7e° (85d)
1'11(12142) _ ﬁg8 (85e)

The pieces without bars are unchanged from above, the ones

VVVIis, i4,13, 1] SVVI[is, 17, i6, 1]] =0. (84b)  with bars are explained in the following.
Schematically we then have
6 .-@- u(i7) v(i6) V(i7) v(i6) v(i7)
|
; | ‘.
-—--0 1505) @= —— — ——-— -——c o --=
S(il) . | ' (i2) S(il) S(i2) S(il) S(i2)
. . I B .
u@) T -@-° Ui v(i3) v(i4) v(i3) v(i4)
Muyvuus Myvvvs Myvvvy

and we see that the diagrams that drop out would not have
fit with the above picture (note that almost exactly the same
pattern reproduces for diagram 7, 061 ). In the diagram on the
left, the sum over scalar propagators is indeed a sum over all
scalars in the theory. We restrict to the case that the external
states are not Goldstone bosons here, because otherwise the
couplings for the diagrams on the right hand side of the above
relations would include gauge bosons as external legs, and
we would therefore need to combine those amplitudes with
mixed scalar—vector and vector—vector amplitudes.

There are also complications when the “Goldstone” leg
attaches to a triple or quartic scalar vertex. The reason for
this can be traced back to Eq.(52): masses appear in the
GSS coupling relation that are different for Goldstone bosons
than for other scalars (in any gauge except Landau gauge),
and this then feeds into the relation for the GSSS coupling.
There would also potentially be a similar problem for the
SGV vertex, but in all our examples this is avoided because
we assert that we have no external Goldstone bosons. There is
only one diagram with a quartic scalar coupling and ghosts —
A 1(?2 —that we will discuss in more detail below, but diagrams
I(%)s s I(%z) and Ié%)l contain triple scalar couplings, that we
treat by using Eq.(55) and again splitting the diagram into

4.2.5 Reduced diagrams of O(g?%)

The combined diagrams start at O(g?):

—SV, g%
m e = SSSJil, i3, 14, 1] SSSJi2,i3,17, 1]

SSV[i4, i5,16, 1] SSVI[is, 7,16, 1]

X [f69(13,i4, i5,i6,17) — f2(i3,i4,17,i6) — f2(i3,17, i4, 16)}
+ SSSglil, i2,i5,i6, 1] SSVIi3, i5, i4, 1] SSV[i3, i6, i4, 1]

X Hf113(i3,i4, i5,i6) + 2 f102(i5, i6, i4)}. (86)

4.2.6 Reduced diagrams of O(g*)

The only new diagrams with fermions enter at order O(g*)
and are given by:

—FV,g*
T
= 2 Me[FFV[is5, i6, 4, 1] FFV[is, i6,i7, 1] SSVIil, i3, i4, 1] SSV[i2, 13,17, 1]]

X {f;é'l‘l‘”(ﬁ,m, i5,16,i7) + 2f1<f4"1)(15,16, i, i7)}
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+ 2 Ne[FFVI[i5, i6,i4, 1] FFVI[i5, i6,i7, 2] SSV[il, i3, i4, 1] SSV[i2, 3,7, 1]]

x {f7(61’2’1’1)(i3, i4,i5,i6,17) + 2 £ s, i6, 4, i7)}. (87)

The other combined diagrams at order O(g*) are:

—SUV,g*

I1 = Msyssy + Msysvs + Myssys + Myyssy

+ Vsssvv + stvss + stvvv + Vvsssv.
(88)

These new topologies are:

Mgyssy = SSSIil, i3,i6, 1] SSV[i2, i4, i7, 1]
SSV[i3, 4,5, 1] SVVIi6, i5, 17, 1]
X HZ fa3(i3,14,i5,16,17) + 4 f11(s6, i5, 17, i3)],
(892)
Mgysys = SSS[il, 3,6, 1] SSVI[i3, i5, i4, 1]
SSV[is, i6, 17, 1] SVVI[i2, i4, 17, 1]

X {2 fa0(i3,14,i5,16,17) — 4 f106(i3, i6, i4, i7)} ,
(89b)
Myssys = SSVI[il,i3.i6, 1] SSV[i2, 7, 4, 1]
SSVIi3, 5,14, 1] SSVIis,i7, 6, 1]
X {f41(i3,i4, i5,i6,17) + f12(i3,15, i4, i6)
S50, ~ 2 fin (5400}, (39)
Myvyssy = SSVI[il,i3,i6, 1] SSV[i2, i4, 7, 1]
SSV[i3, 4,15, 1] VVV[i5, i6, i7, 1]
X lf49(i3,i4, i5,i6,i7) — 2 f13(i6,15,i7,i3)
— 2 f13(i7,i5, i6, 14)} , (89d)
Vsssyy = SSSIil.i3.i4, 1] SSS[i2, 3,17, 1]
SVV|[i4, 5,16, 1] SVV[i7, 15, i6, 1]

1
X {fg3(i3,i4, i5,16,i7) + 3 feo(i3, 14, i5, i6, i7)} ,
(89¢)
Vsvvss = SSVI[il.i3.i4, 1] SSV[i2, 3,17, 1]
SSVIis, i6, i4, 1] SSV[is, i6, i7, 1]

X {f79(i3,i4, i5,i6,17) + 2 f115(5, i6, i4, 7)
+ 2 f103(i4,17.15) + 2 f103(i4.17. i6)

+ %[f4(i3, i4,17,15) + f4(i3.i4, 17, i6)

+ f4(i3,17,i4,i5) + f4(i3,17, i4, i6)]}, (89f)

Vsvvvy = SSVI[il, 3,4, 1] SSV[i2, 13,17, 1]
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VVV[id, i5, 6, 1] VVV[is, i6, 17, 1]

X {f99(i3,i4, i5,i6,17) + 2 f119(5, i6, i4, 17)
1

2 2 2 2 i A i g s
-3 (mil — mi3) (mi2 — mi3> fe0(i3, 14, 15,16, 17)

+ % () + iy — 24)

[f71(i3,i4, i5,16,17) + f71(i3,i4, 16, 15,17)]

— £V amis) — 0D (3,407, 56)
+ Y 6sa,5) + £ 63,1417 16)
— 2 f36(i3.14.15,16,17) — 4 f117(i3.4,15,16.7)
—2 fioa G4.7.i5) — 2 £33 4. 17.i6)

+ 2f1%f)(i4, i7,i5) + 2f1%f)(i4, i7,i6)} , (89g)

Vvsssy = SSV[il,i4,i3, 1] SSV[i2, 7,3, 1]
SSVl[i4,i5,i6, 1] SSV[is, i7, 6, 1]
X lfgo(i},iél, i5,16,17)
— f5(i3,14,17,i6) — f5(i3,i7, 4, 16)
—2 f121(i5,13,i6) 4+ f12(i4, i5,i6,13)

+ f12(i7,15, i6, 13)}. (89h)

4.2.7 Reduced diagrams of O(g®)

The 10 combined diagrams involving scalar and vector cou-
plings of O(g®) are given by

6 _ _ _
* = Msysvy + Myvsvs + Myysvy + Myyyyy

+ Vsvvsy + Vvssvv + Vysvsy
+Vysvvy +Vyvyss + Vyyyyy. (90)
The topologies of type “M are:
Mgysyy = SSSJil,i3,i6, 1] SVVI[i2, i4, 7, 1]
SVVI[i3, 4,5, 1] SVVIi6, i5, 7, 1]
1
X {2 fs0(i3,i4, 5, i6,17) — 3 fr5(i3,i4,15, i6, i7)} ,
(91a)
Myysys = SSVI[il,i3,i6, 1] SSVI[i3. is, i4, 1]
SVVI[i2, 4,7, 1] SVVI[is, i6, i7, 1]
X [2 fa7(i3,i4,15,i6,i7) — 2 f1a4(i7,15, i6, i4)}, (91b)
Myvysyy = SSVI[il, i3, i6, 1] SVVI[i2, i4, 17, 1]

SVV[i3, id, is, 1] VVV[is, i6, i7, 1]

1
X {2 fs4(i3,i4, 15, i6,17) — Ef;j’l’l’”(a, i4,15, 16, i7)



Eur. Phys. J. C (2020) 80:417

Page 21 of 64 417

+- f3' L1, 2)(3 i4, 5, i6, 17)} 91c)

Myvyyy = SVV[il,i3,i6, 1] SVV[i2, i4, 17, 1]
VVVI[i3, i4, i5, 1] VVVI[i5, i6, i7, 1]

X { f56(i3.4, 15,16, 17)

+ é () + 1) fos (3.4, 5. 16, 17)

—2 £ @6, 14, 17) 42 £l (3,16, 14, 17)

+1 miz5 f27(i3.i4.15. 6, i7)

—f[f“ PED 3 iais 6, 17) + £ 63,5, 16, 17)

+ f36(03,i4,15,16,17)
+ Y Gaiisni6) + iy (4,133, 17, 66)
+ f36(i4,13,15, 17, i6)
+ VG mis i 4) + £ Ge, s, i3, 14)
+ f36(i6,17.i5.13, i4)
+ £ 67 6 15, i3) + LD (17,56, 15,14, 1)

+ f36(i7,i6,15, i4, i3)]
1
T [f45(i3» i4,15,6,17) + fa5(i4,13, 15,17, i6)
+ f45(i6,17.15,13.14) + fa5(i7.16.15.i4, 13)]}. (91d)

The last term in the above appears fearsome, but actually its
finite part simplifies dramatically:

Fin[Myyyyy] = Svvlil.i3.i6, 1] SVV[i2, 4,7, 1]
VVV[i3, i4, 15, 1] VVVI[i5, i6, i7, 1]

 Jous 3

15
+g By, m) By, In%)}

9 9
2 B(my, my) — 1 B(my. mjy)

1
+ 76 [34 my + 34 0y + 34 mfy + 34

+65 s — 66 p” — m; — i |
x M (niy, mpy, m, iy, ms)

- § U,y )

- o UGy s )
- U(Inlﬁ’ mpy, my.,

1
iy U (my, myy. m3, mizs)}- 92)

This expression is untroubled if any masses are coincident
or vanishing.

The topologies of type “V” are:

Vsvvsy = SSV[il, 3,14, 1] SSVI[i2. 3,17, 1]
SVVIis, 4,6, 1] SVV[i5, i6, 7, 1]
X {f91(13,i4, i5,i6,17) + 2 f118(5, i6, i4, i7)} ,
(93a)
Vyssyy = SSVI[il, i, i3, 1] SSV[i2, 7,13, 1]
SVV[i4, 15,16, 1] SVV[i7, 15, i6, 1]

1
X {fgz(i},i4, i5,16,17) + 3 f70(i3, 4, 5, i6, i7)} ,
(93b)
Vysvsy = SSVI[il,i4,i3, 1] SSV[i4, i5, i6, 1]
SVVli2,i3,i7, 1] SVVIis, i6, 17, 1]

x {2 Fro(i3,i4,i5,i6,i7) — 2 f1a (7,15, 16, 13)} ,
(93¢)

Vysyyy = SSVI[il,i4.i3, 1] SVV[i2, 3,17, 1]

SVV[i4,i5,i6, 1] VVV][i5, i6, i7, 1]

1
X {2 fo7(i3,14,i5,16,17) + 3 f34(i3,14, 15, i6,17)

—% f34(i3, 14, i6, 15,17)}. (93d)
Vyvvvss = SSVI[is, i6, 4, 1] SSV[is, i6, i7, 1]

SVV[il, i3, 4, 1] SVV[i2,i3,i7,1]

X {fgg(i},i4, i5,i6,i7) + f7(i3, i4,17,15)

+ f7(i3, 14, 17, 16)}, (93e)

Vyvvvyy = SVVI[il,i3,i4, 1] SVV[i2,13,i7, 1]
VVV[i4, 5,16, 1] VVV[is, i6, 17, 1]

X {floo(i3,i4, i5,i6,i7) — 2 fos5(i3, 14, i5, i6, i7)

1
— — f70(i3.14. 15,16, 17
8

— £V G, 7,5) — £8P (3,14,17, 6)

+ fsl L %)(13 i4,17,i5) + f(1 L %)(13 i4,17,i6)

nz, my
_ i3 -5 - Jfe0(i3, 14, 15,16, 17)

ia mi7
1 2 2 i e e
+ E <mi5 + mié) Je1(i3,14,15,i6,i7)
1
— g[fn(a, i4,15,16,i7) + f71(i3, 14,6, i5, 17)]
1
+ 1 [fg4(i3, i4,i5,16,17) + fg4(i3, 4,16, i5,17)
— f713(i3,14,i5,i6,17) — f73(i3,14, i6, i5, i7)]}.

(93f)
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For the last expression, the factors of miz4 and mi27 in the
denominators may at first appear to lead to divergences
if the corresponding gauge bosons are massless. However,
it is straightforward to show that, in that case and for
il,i2 not would-be Goldstone bosons, the SVV[il,i3,i4, 1],
SVVIi2,i3,i7, 1] vertices also vanish. This expression simpli-
fies to a relatively short form similarly to Myvvvv, except
that the reduction is different for ml2 = mi27 as compared to
the non-degenerate case.

s(i3) s(i5)

Zyvsvs

11%)7 = SSVI[il, 3,4, 1] SSV[i2, 5, i6, 1]
SSVV[i3,is, i4, 16, 1] f107(i3, i4, i5, i6)
= —SSVl[il,i3,i6, 1] SSV[i2,17, i4, 1]
SSVIi3, i5, 14, 1] SSVIis, 7, i6, 1] f107(i3,16, 7, i4)
+ SSVI[il, i3, 4, 1] SSV[i2, 5, i6, 1] SSV[i3, 17, i4, 1]

SSvVIis, 7,16, 1] fio7(i3, i4, i5, i6). (96)

The first diagram contributes to topology My ssy s or I(()i)l s
while the second is a non-1PI diagram; schematically:

v(id) s(i5)
éj\} a N
S(B o N_ - Sﬁ:)w_ _s_(12)
5(i3) v(i6)

4.2.8 Reducible diagrams containing scalars and vectors

of O(g%
The nominally highest-order diagrams in the gauge coupling
consist of just two topologies, reduced from the original four:

8

T =Myvyys + Vyvvsy. 94)

The expressions for these are:

Myvyyys = SVVI[il, i3,i6, 1] SVV[i2, 4, 17, 1] SVV[is, i3, i4, 1]
SVV[is, i6,i7, 1]

1
X {f53(i3,i4, i5,16,i7) + 3 fr7(i3,14, i5, i6, 17)} ,
(95a)
Vyyvsy = SVVI[il,i3,i4, 1] SVV[i2, 3,17, 1]
SVV[is, i4,i6, 1] SVV[i5, i6,i7, 1]

1
X {f96(i3,i4, i5,i6,i7) + 3 fe1(i3,14, i5, i6, 17)}.
(95b)

4.2.9 Special topologies: s’

Recall that [T5:¢" = 1'1%)7 +7 1(%)2 These two diagrams contain
reducible couplings; the first has a four-point scalar—vector
coupling, and the second contains ghosts. However, when
we remove the four-point vector—scalar interactions and the
ghosts we find topologies that are either not IPI or contain
internal propagators. The first of these is I%; :

@ Springer

The second interesting topology is Zﬁ)z :

I3 = ss88lil, 2,15, 16, 1] SUULS, —i4, i3, 1]
Suuli6, —i3, 4, 1] f112(i3, i4, i5, i6)
J— l 2 2 2 2 . . .
— 5 lni] +Inlz - n7.13 SSV[11,13,I4, l]
SSVIi2, 13,17, 1] VVV[i4, i5, i6, 1] VVVI[i5, i6, 7, 1]
f112(5. 16, i4,17)

- % SVV[il,i3,i4, 1] SVVI[i2, 3,17, 1]

VVV[id, i5, 16, 11 VVVI[is, i6, 17, 1] f112(i5. 16, i4, i7)
+ % SSSS[il, i2. 15, i6, 1] SVV[is. i3, 4, 1]
SVVIi6, i3, 14, 1] f112(i5, i6, i4, i7)

— % Ssslil,i2.i7, 1] SVVI[i7, 5,6, 1]

VVV[i3, i4, 15, 1] VVV[i3,i4. 16, 1] f112(i3.14.i5.i6).  (97)

Here we have used Eq.(54) and substituted Eq.(55) into

Eq.(56). The topologies on the right-hand side correspond
2 2 2

to Iég)g (Vsvvvv), Ifoz) (Vyvvvvy), Ifl)6 (Wssvy) and

an extra diagram, schematically:



Eur. Phys. J. C (2020) 80:417 Page 23 of 64 417

u(i4)

s(i2) s(i1)

There is therefore some ambiguity in how to treat these
two special classes. In the first case, it is probably simpler
to retain a definition for the four-point scalar—vector interac-
tions and work with 11%)7 rather than reducing it. For the
second case, the simpler approach depends on the treatment
of tadpole diagrams: if we use a standard approach and do
not include “internal” propagators, then it may be easier to
retain ghost couplings/propagators for just this one class and
work with Z{2) . On the other hand, if we treat tadpoles by

The set of diagrams that survive in the Landau gauge are

3
2),6=0 2 : 2,
n=0

where the superscript (2, n) indicates O(2n) in the gauge
couplings. Then we have

2,0) Tss Trrrs Tssrr Tssss Tsss
720 _ (99a)
=0 (D (D) (D (1) (1) »
: Igl_ o ggso ?960 Iy, Ty,
7@ _ Tlsv_o + TI‘IFF_VO_'_ T]S‘SSKO’ (99b)
£=0 Iéz),é— I( ),§= I( ).6=
£=0 £=0 (=0 £=0 £=0 —£=0
T2y = 5?%—0 + T<V1)V o+ T<1V>Vss—so + T<§>S o+ E‘%st—tﬁ (1).6=0 T(‘l/)vg% me=0> (990
a Io;_’o ve 1,7 v 1ys A ST S Ve
@3 _ Tyyg
Ts:o = I(‘l/)‘,/s=o’ (994d)
21
where

including internal propagators, then all of the topologies on
the right hand side of the above diagram already exist as sets
of couplings that we should evaluate. In this case it must be
simpler/faster to work with the right-hand side of Eq. (97).

4.3 Comparison with Landau gauge

To make the connection with the results of Refs. [122,123]
completely explicit, we shall present here the expressions for
the tadpoles in the Landau gauge and make the connection
with our diagrams in the Appendix.

—£=0
T%VVV = SVVI[il,i2,i5, 1] VVVI[i2, i3, i4, 1] VVVI[i3, i4, i5, 1] X

[t§3: O2,13,i4,i5) — 2155 (12, 13, i4, i5)

(1,1), =0

—til'l)’szo(iz, i5,i4) — [4 (i2, i5,i3)
+ 18 500 s ) 4 1501, i3)]

= SVV[il, 2,15, 1] VVV][i2, i3, i4, 1] VVVI[i3, i4, i5, 1]
By (2,13, 14, 15) . (100)
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The topologies (and therefore labelling of the couplings)
are the same in Landau gauge as for our Feynman-gauge
results in the Appendix, but we add the superscript £ = 0
here. We do not give the explicit expressions for these, since
several are rather long — they contain many more integrals
than the Feynman-gauge case — but they are provided as part
of TLDR.

Ignoring for the moment cases where some masses vanish,
and using the loop functions defined in Ref. [119] and the
notation

1 al hJ
—|—2g1

2 2 2
Dyp w2 [fﬁv (g, mj, ma)]'

b(l) ppIl’
ga (1 )M Mjl/
(102b)
In Refs. [122,123] the topology TS; 8 was missing. Our new

approach, however, pays immediate dividends when we con-
sider some masses to be vanishing. We find, for example, that

11(0,k,0) = 0, (103a)
1
Dyl f()] = %i’(y) (101a)  Finlt7(0.6,1,0)] = —i Rss (mp, ) + i By (0.7, 7)),
(103b)
Dy [ f(0)]= ylgg Dy y[f ()], (101b)
where Rgg(x,y) is defined in Refs. [123,136]; using the
we find the following expressions for the tadpoles: express.ions in the Appendix we can ﬁnd'the. finite part of all
of the integrals even in the case of vanishing masses. The
second term on the right-hand side of Eq.(103b) clearly
Tadpole topology Label Finite Part Our function
I(()ll) TSES=0 _%a(il)ij Aikk p 2 mZ[fss(m-z m/%)] aDij yijkk 1.k, )
Iéi) TSES:SO 7% AADijk gijk fsss(m,,mz mz A ADijk gijk 12, j, k)
Ié;) TSES=SOS 7%61(11)1'1‘ aikl ikl Dng,mz,[fsss(ml,nivml )] aWDij gikl g jkl 76, k.1, §)
I(();) TSE;O _%aik(il) gaaik Dm’2 z[fvs(mza,m,vz)] _gikGD gaaik t§=0(i,k,a)
b T‘s/?o 1 gabii gabGD) 1y ” g[fvs(mﬁsmf)] g@bii gabiD tézo(a )
7y Téssv 3 a0 g g Do ol fssy (), 1) a™kD gail okl (720G, j.a. 1)
77 Tyyss T g gali ghi Dy ) fisy (i, ) g gaid g 70w, i, ) b)
iy Tisvy — g gl qli(h p , ,,,Z[fvvs(ma,m2 m)] g1 g1 i) {520 4 b, )
Ié%) TSE;‘Q _2gabl(ll) abi fvvs(ma,mz mlz) gam(u) amt (l ab)
) Tyvsv —1 8 g gD Do o[ fyvs (i, m,%,mZ)] g g gD (50001, 0)
70, 70 7 70 — 1 gabe gidbe gad() Dy . [ fuange (0. 1. 1) gabe gidbe gad(ih) 7= o 0 (abe.d)

The fermionic diagrams are:

0 _ 1
Fm[TEFFV] =2g%"3k, ERe[MKI/ y! 1(1])]
D2 a2 [fppv(m%,mi,mﬁ)]
+g?l al’ S)ie[ I7@1) ij,]

2 2 2
[fﬁv(mp iy, 1)

1} Dyg o | Frpy () ||

+g?J g(;/l SRQI:M]K MK] ij/ yKK/(ll)]
Dm%,m I:fFFV(mI’mjam )] (102a)

1
0 J =1
FIH[TVVFF] 5 87" 8by

2 2 2
Dmg’m}zj[fFFV(mlva’mu):I

g?bh
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arises from an infra-red divergence; such divergences are the
counterparts of the expansions found in Ref. [123], where
the equivalent for Eq. (103b) is

szGm%; I:fSSS(m%;, mi, mIZ)] = Rss(m%, mlz)

_ B (0.7, m? ) tog 2—% +0(m) (104)
with the renormalisation scale Q. Instead of an expansion in
the mass of the Goldstone bosons, we use dimensional reg-
ularisation in order to regularise the infra-red divergences.
Then we should find that the infra-red divergent parts in
the two-loop calculation cancel exactly against equivalent
parts coming either from putting the Goldstone-boson masses
on-shell in the one-loop parts, or using “consistent tadpole
solutions” (by using tree-level masses in the one-loop cal-
culation). We intend to elaborate further on this connection
elsewhere.
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4.4 Standard Model calculation

Our self-energies up to second order in the gauge coupling
have been compared with the expressions in Ref. [121], and,
as we have shown above, the tadpoles in the Landau gauge
exactly match those found in Ref. [122]. In order to explicitly
cross-check our Feynman-gauge result, and the combinations
of classes, it would be desirable to have models to compare to.
However, as described in the introduction, the only example
where scalar electroweak corrections have been computed is
for the Higgs mass in the Standard Model. Since the results
are very long, these have been made public in the form of
computer codes SMH [17], mr [18,19] and SMDR [25].

The result used in mr has been computed including tad-
poles viainternal propagators in a general gauge, and is excel-
lent for a numerical calculation. However, the expressions in
SMH are actually written in a sufficiently convenient form to
be translated into code readable by Mathematica, and so
we were able to use it for an analytical cross-check of our
results. On the other hand, the result there is in Landau gauge,
and combines the tadpoles with self-energy contributions via
Eq. (7).

Therefore we have cross-checked our results against the
Standard Model by the following procedure:

e We calculated the tadpoles and Higgs self-energies in
the Landau gauge using the FeynArts model file for
the SM (with some modifications that will be described
elsewhere), and using TwoCalc, TARCER and our own
reduction to reduce the basis of integrals to those that can
be evaluated by TSIL. We compared the analytic expres-
sions with those in SMH and found perfect agreement in
all terms. For this calculation we computed self-energies
and counterterms separately, rather than using the BPHZ
method (in the SM all necessary counterterms can be
reduced to just evaluating two-point functions since there
are sufficiently many tree-level relationships among the
parameters).

e Using the same method, we performed the same calcu-
lation in Feynman gauge. The results differ from SMH
only by the treatment of tadpole diagrams once we take
p? equal to the tree-level Higgs mass. This leads to 899
self-energy diagrams based on the initial 121 generic
classes in FeynArts, and 75 one-loop self-energy dia-
grams with one-loop counterterm insertions (plus 161
tadpoles and 25 one-loop tadpoles with one-loop coun-
terterm insertions).

e We performed the same calculation using only the topolo-
gies of our 58 combined classes with the combined loop
functions as given in this section. This yielded only 425
self-energy diagrams (and, of course, includes the coun-
terterm contributions). Upon reducing to the TSIL basis

we find exact agreement of all terms with the above “brute
force” approach.

5 Conclusions

We have given expressions for scalar self-energies and tad-
poles at the complete two-loop order in Feynman gauge. With
the aim of being flexible, we have given the results for all
renormalised component diagrams, and also a much shorter
version where the diagrams are combined into just 16 tad-
pole and 58 self-energy topologies, provided that the external
scalars are not (would-be) Goldstone bosons. The results are
provided in the most compact analytical form that we could
give, but are also available electronically as a new package
TLDR at http://tldr.hepforge.org (where more tools and cal-
culations will be added over time) so that they can be easily
applied. We also include online all of the replacement rules
and degeneracies for each diagram with routines for extract-
ing the finite part.

This work closes a gap in the literature that has existed for
at least sixteen years. However, thanks to the technology and
techniques that we have developed, it is just the first step in
a new program of completing the electroweak corrections in
generic theories. The logical next step is an implementation
in a general code such as SARAH so that they can be applied
to any model automatically. The following steps are:

1. Gauge-boson and mixed gauge—scalar self-energies. In
particular, the latter are required for decay processes,
while the former are essential for the extraction of elec-
troweak parameters.

2. Threshold corrections to match general theories onto the
Standard Model via a pole-matching technique. Naively
this requires matching gauge-boson masses, but as shown
in Ref. [103] we only need the derivatives of the scalar
self-energies, and gauge threshold corrections at zero
Higgs expectation value.

3. Muon decay in general theories. This is required for
extraction of the Higgs electroweak expectation value
in fixed-order calculations. It is a four-point fermion
amplitude, so is combinatorially much more complicated
than two-point functions, but since it is at zero external
momentum we do not have any new problems related to
s, and the loop functions all reduce to the same ones
used in the tadpoles.

4. Fermion self-energies, in particular to calculate the top-
quark mass.

We have applied our results to the Standard Model and
compared to the existing expressions in the literature, find-
ing perfect agreement. However, since the only analytically
available calculation was performed in Landau gauge, it was

@ Springer


http://tldr.hepforge.org

417 Page 26 of 64

Eur. Phys. J. C (2020) 80:417

not possible to compare our Feynman-gauge calculation with
an independent check. However, by combining the diagrams
with all tadpole diagrams it should be possible to give an
explicitly gauge-independent result that could also be com-
pared with mr. Moreover, using the results from Sect.3 it
should also be possible to implicitly sum over all Goldstone-
boson propagators in our general result, transforming their
couplings and masses into those of gauge bosons. We leave
these developments to future work.
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Appendix
A Integral relations

In this appendix, we introduce the notation for the integrals
that are used in the list of results for tadpoles and self-energies
in Appx. B. After mentioning some general relations among
these integrals, the reduction rules that are necessary in this
article are displayed. Finally, the UV-divergent parts of the
basic set of scalar integrals are given.

A.1 Notation and symmetries
We mostly follow the notation of Ref. [129],
_ dq1d'q, 1

"o e T ) )

(1052)
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Y[Jl]v] — / ddql ddqz k]21 o k?a
e (17> @x =] (k2 =) (k2 — )
(105b)

with the indices iy, ..., iy, j1,---, jo € {1,2,3,4,5}, the
dimension d = 4 — 2 € with the ultra-violet regulator €, the
dimensional regulator u, and the kinematic variables

kr=q1+p, ksa=qp—q,

ks =q2+p

ky =qu,
ks =g, (106)
that depend on the loop momenta g1, g> and the external
momentum k¢ = p. In addition, we use sub-indices a and b
in order to distinguish denominators of the same kinematic
type, but with possibly different masses.

The set of different two-point integrals can be reduced by
using shift and mirror symmetries of the loop momenta (see
Ref. [129]). They can be applied by exchanging the indices
of the kinematic variables in the integrals in the following
ways,

l<2and4 < 5,1« 4and2 < 5,

l<5and2 < 4, (107a)
1 <> 3if 2 absent, 2 <> 3 if 1 absent,

3 < 4if 5absent, 3 <> 5if 4 absent, (107b)
1 <> 2 if 3 absent, 4 <> 5 if 3 absent. (107¢)

We also introduce the following notation for one-loop inte-
grals appearing in counterterms:

op _/ dq, !
U R Q! (k121 _m121)<k’2” _mizﬂ) |

(108a)
2 2
OY[Jl Jol __ / ddql kjl B .kjo
iy 27 a2 (12 5 ’
1me 2w ) (kil_miz])'“(kin_mtzn)
(108b)

withiy, ..., i, j1, ..., Jo € {1, 2}. For scalar one-loop inte-
grals with at most two propagators, we adapt the well-known
notation of Passarino and Veltman [150]:

Ty = Ao(r) . Ty = Bo(0. 1. 7).

"7, = Bo(p? m, m3) (109)
The reduction of one-loop integrals with more than two prop-
agators will be addressed together with the two-loop integral
reduction in Appx. A.3.

For convenience, we also introduce the following symbols
in order to denote a sum of one- or two-loop tensor integrals:
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ciljnjrol+-4crljr--jrol _ 1 Yi[ljll""jlo]

11+l “eln

A+ e yd (110a)
()Yiclu[.]:ll“'jlu] et erlirirol _ 1 OY.[]:INI"“]-IO]

1ln i1--+Ip

+-te OY.[jrl.mer] (1 lob)

i1-+ip

with integer coefficients c1, ..., ¢, of the products of kine-
matic variables in the numerators with indices jip, ..., jro-

A.2 Reduction of tensor integrals

Tensor integrals that carry identical indices in the super- and
subscript can be reduced easily via

Y[]lX]n] — Yl[lfllJo] +m)2c Y[]l]a] (111)

i-Xeelpy TpeXeiy *
After the repeated application of Eq. (111) to a given integral,
the following cases appear: two loop integrals whose inte-
grand does not depend on both loop momenta are equal to
zero; the reduction of scalar integrals with a numerator equal
to 1 is described in Appx. A.3; the reduction of the remaining
tensor integrals is described e.g. in Refs. [129,151]. Reduc-
tion rules for the integrals appearing in this article that are
valid for all different kinematical configurations (with the
exception of vanishing external momentum p) are given in
the following:

[4] _ yl1I+[3]
Vi, =Y,1,3 - (112a)
[5] _ yl21+(3]
i, =Y,5 (112b)
[5] __ yl4l+le]
i, =Yi,1,04 - (112c¢)
2] [11+[6]
L1p34 = Y1,1,34 - (1124d)
[5] __ yl4l+le]
i, =Yi,0,3 (112e)
1 1
[31 _ [11+[2]+[4]1+[5]1—[6] ([11-[2D)([41-[5D
Vs = 5 [Yms 2 Y5 ;
(112f)
1
[51 _ [1]1=[2]-[3]-[4]-[6] ([21-[6])([31—[41)
Y =—3 [Y1234 Y1103 ] g
(112g)
1
[5] _ [11=[2]-[3]-[4]-[6] ([2]1-[6D(3]1-[4D
Y34 = ) [ 11,234 + Y1, 023 ] )
(112h)
Y155J _ 1 Y([2]—[3])([4]—[6]) _ Y([2]—[3]+[4]—[6])([24]—[36])
141234 — d—1 1415234 141517234
+l d Y([1]—[2]—[3]—[41—[6])([1]—[2]—[3]—[4]—[6])
4d—1 141,234
([21=[6D)([31-[4D ([ 1]-[2]-[3]—[4]—-[6])
+2Y 1, 1234
([21-[6D (121-[61)([31-[4D([31-[4]) :
+ v BIleh | (112i)

When applying Eq.(111) to Eq.(112i) also the following
integrals appear after taking into account the symmetry rela-
tions in Egs. (107):

Y1[5]1h1/3 =Ti,1,3 + P’ T,1,13 (113a)
Vi s =T, +m Th,0. (113b)
Yl[j]1b1/1’3 = T, 1,13 + 13 Ti,1,103 (113c¢)
Yil 1123 = Tiat12s + 18 Ti,1, 0123 (113d)

Yl[fﬂws =Ti,1,3 + (m% + P2> Ti,1,173
+ 3 p? Ti 1,113 - (113e)

A.3 Reduction of scalar integrals
A.3.1 General relations

Our aim s to reduce all scalar two-loop integrals into the basis
of integrals that can be evaluated numerically by the code
TSIL [133]. We begin by reducing to the unrenormalised
basis

2 2 2 2 2 2 2
T34 = —I<m1, Iy, In4) » Tisg = U<m2, my, g, In4) s
2 2 2 2
Ti1234 = —V(mz,ml,mg,m) ,

2 2 2 2 2 2
T34 = —S<m2, m;, m4) , Tz = T(mz, m;, m4) ,

Tio345 = —M<mf, mZ, m3, nj, m%) :
OT;, = —A@m}), °Ti» =B, m),
(114)

where we include the one-loop integrals A and B that are
known analytically.’

While TSIL is capable of delivering these bare integrals,
it finds them by solving differential equations for “renor-
malised” versions; and indeed it is these renormalised inte-
grals that we actually need for practical applications. This
finite basis is [146]

1
Sx,y,2) = ehglo {S(x, v,2) — - [Ax) +A®Q) +A@)]

1
—2—62[X+y+Z]

1 p2

2¢2 TV

5 The integral 7’34 is also known analytically, and is therefore available
in other private codes (such as SARAH). Closed analytic expressions for
some integrals with special kinematic configurations can be found e.g.
in Refs. [152,153].

(115a)
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0
T(xvy»Z)E_—S(Xﬁy,Z), (115b)
0x
I(x7y7Z)ES(x7y,Z) 5 ’ (115C)
p>=0
1
U(.X, v, 2, M) - hm {U(-xv v, 2, M) - —B(.X, J’)
e—0 €
+ ! ! (115d)
2¢2 2e]’
0
V(x’y,z»u)z_a_U(X,y,Z’“)a (1156)
y
M(x,y,z,u,v) = lim M(x, y, z, u, v). (115f)
e—0
while the one-loop integrals are®
A(x) = lim [A(x) + f] = x (logx — 1) , (116a)
e—0 €
1
B(x,y) = lim |:B(x, y) — —]
e—>0 €
= —log p* — f(xy) — fa(x-), (116b)
where
1
fB(x) =log(l —x) — x log (1 — —) —1,
X
PrtxtyE (PP +x+y) —d4px
Xt = 3 , (117)
2p
and we define
— X
logx = log @ , (118)

where Q is the renormalisation scale.

In this appendix we shall give the expressions for diagrams
in terms of the bare integrals. As described in the text, this
is because the reduction is different for different configura-
tions of masses (coincident masses, vanishing masses, special
kinematic configurations, certain on-shell conditions).

After applying the symmetry relations of Eqs. (107), the
following different scalar integrals remain:

T3, T2z, Tiza, 1234, Tiza, Tioas, Ti234s,
(1192)
T2, T3, Tig1,23, Ti,1,34 T\,1,234 ,
(119b)
T3, Ti123, Tia,13s,  Ti,1,1234 (119¢)
T3, T2z, Tig,r3s, T1,1,1717234 -
(119d)

6 The symbols A and B should not be confused with the integrals Ag
and By of Egs. (109).

@ Springer

The integrals in Eq.(119a) differ from the others since no
index appears repeatedly. From those, the integrals that are
not part of Egs. (114) can be decomposed into a product of
two one-loop integrals,

Tis = Ao(m%) A0<m§) , (120a)
Tizs = Bo(p?. ml. m3) Ao(rd) (120b)
Ti245 = Bo(pz, m, m%) By (Pz, mj, mg) . (120c)

The integral T,1,2 is equal to zero in each kinematical
configuration; the remaining integrals with the repeated
indices 1, and 1, can be decomposed via partial-fraction
expansion if the corresponding masses my, and my, are not
equal to each other (the same rule applies to the one-loop
integrals of Eq. (108)),

Tin.. — Tipn...
Ti,1pn-- = 0—2 (121)
m%a _‘mlb

Instead, if the masses are equal, a dedicated reduction of
the integral is required. The same rule applies to the mass-
less propagators with index 1”. In addition to these obvious
degeneracies, special kinematical configurations for the other
masses and/or the external momentum need to be taken into
account in order to avoid manifest poles in the reduction
formulas. We do not take into account accidental thresholds
when one mass is equal to the sum of two others (unless one
of these masses is equal to zero).

A.3.2 Reduction rules

We have derived the reduction formulas for all integrals
that appear in ’tHooft-Feynman gauge with the help of
TwoCalc, TARCER [130] and the recurrence relations in
Ref. [132]. Instead of writing out the full expression for
each integral with multiple index 1, we present the respec-
tive results in terms of recurrence relations (see Ref. [131])
in the following. In some cases closed forms are given.” We
make use of the shorthands

Amlz”%"b% = m? + mj —i—mi -2 (ml2 In? —i—m? .m% ~|—m§ m%) ,
(122a)
1 0
U > »=——A =m’—mi—m. (122b)
),y m 2 amz i,m?,m% i Jj k
1

7 Reduction rules for integrals with higher powers of massive propa-
gators can be computed by evaluating the derivative with respect to the
mass at this propagator while keeping all other masses as independent
variables.
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The reduction of all scalar one-loop integrals is given by®
0T1...1 and 0T]’...1' :

N N !
0 d—2n+2
Ti.1. =——="T1..4
-~ 2(m-1m -
r(n—4
= — n_l( ) y A0<m%) , (123a)
(—m)” T I(1-9)
Ty =0, (123b)
—
0T1...1 2.2
N e
ny ny
= [(d —3ny) Und 2, p? +2(n; — nz)m%]
0T 1200 — 12 Am%,m%,pz OT 1 2.2
ny ny ny np+l
+ ny (2m§ — um%,n’%,pz) 0T14..1 2.0
ny—=1 np+l1
—2n m%OTl...l 2..2
— e —
ny+1 np—1
+2(d—n; — ng)OTl...l 2.2
— A~
ny n2—l
—2d-—n; —n2)°T1.q 2.2, (124a)
— A~
nyp—1 ny
d 2 1 u
\)/-/l n—1 Amf 2, p? ~-
d—n 1
1A,
nﬁ,n%,pz n—2
Up2mdnd
+ A Oy
Amz 2, p? T
n—2 1 0
- 0 (124b)
n—1 Amz 2. p? T_KI-*
OT|p2:1[ﬁ . (d 2n) (d —n — 1) 0 |p2:1[ﬁ (124c)
LY T 2d-n—-2)(m— e LY
h_2 d—n—1 2_ 2!
oplrsm _ - - oglpi=m. (124d)
2 (d —2n— 1)m2 ——
! d—n—1, " 124
Ty..iy = —m Ty..1 . (124e)

n n—1
The required reduction rules for the scalar two-loop inte-

grals follow from

Ti..13and Ty...173
N’ -

n n

T'(n—9)
= (~m)" ' rmr(1-9)

T3, (125a)

8 The extension of these rules to two-loop integrals that factorise into
a product of one-loop integrals is straightforward.

Ty..113=0, (125b)
——
Ti123 and Tyr...1723 ¢
2 u
T3 = T3 + - ]2m,§ T13
A2 p? 2 my
I g3 Ty, (126a)
Aud 2 p?
|pP=mi _d—2
T, .., = T3, (126b)
1123 4
4 my
T 1
1123 =
p m — p?)
d—n
1 Ty..123
n=2
d—2n+1
S (B ) Ty...m} . (1260)
n—1 ——
n—1
Tlp =m _ Val(n+2-d) |p?=m
1..-123 22n+1 dm% F(n+———)[‘(1—%) 23
! (126d)
Ti..134 and Ty...1734 2
N A Yad
T 1 {d —2n+1 T
e = u s
]\,-]*34 Am%,m%,mz n—1 m%,m%,mﬁ 1\;34
n 2 n—1
d—n
+ T1..134
n—1
N "’; n—2 p
gt T113 = 27 T1o13
+um2 11 T1 14 "
—_
n—2 "
_n—lTL;lﬂ} (1273)
= _ Plns1-9) r=r?
LA ) @-n-nrmria-94)?
" (127b)
7 1
V34 = ——————
o (m-m)
d—n d—2n+1
(4= = 52 ()
n-2
Tu%], (127¢)
= _ 2 JATat2-d) ERe
L8 T T T 3 - (-9 ¢
(127d)
Ty..v3yy =0, (127e)
——

n

T11234:

d—2
Ti1234 = - +(d-3)
1
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U 2 p? U2 12 ml
Ll ST gy
A2 Dl

+ﬁ<%hhk_mﬁﬁ)mﬂ

m \ Ak p2 Al
2 u 2 2 u 2
my m2,1n7 m2 mz,m1
- - )T
+m%<Amz > Ao o o 2344
’”2 P my, s, iy
" p? .t 3
T A . o [(d —2) T134 — (3d — 8) Tr34]
M S . p?
2m (m3 — p?)
- T3
my Amz,m%,pz
d 2 71177 T3 +7M i g T4 }
T Ap2 2 2 A2 o
(128a)
=t 11
T34 amt d—3
Up oo U 2 2
[(d 2)? (Am3 M T+ Am4' - T14>
1 o
—(d—2)T3a
plp*=m plp?=m plp=m
+Bd—=8)Tysy 2m3 2/334 2m4 2/344
_L jpem 2m mp—m e
2234 2/334
2m e Amf,mg,n&
20 |
2/344
m A2k
21112 Amz 2.
[ |p*=m;
d-2)Tisa—(d—8) Tyh, ™ |, (128b)
| =m 1 1
Ty = _21112 d_3
pm=mt | lm=mt =t
2 mz T3 '+ Ty — Tysy
N d—2
20 A i 2

d—2 (Up2 m md =
[d3< pzmlznt ne e )

g le‘mrm%], (128¢)
T}pz,:rﬁ’mgzm% _ L 3d—-10)(3d —38)
11234 8mi (2d—7)(d—3)
|p?=m m=m
234/
1 (d—4)d-2)>? -
R Ly (128d)
8ml  (d—3)
Ty..1234:
N
n
. 1
11234 = —5——
= mer
3d—2n—6 p . )
dron—g T 1134

n—1 n
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1..12234
——

n—1
R (Ty...12334 — T1'...1'334)
n—1 n

2m‘2t
(Tv...v2344 — Ty...17344)
n — 4 —— ——
n

n—1
1 |: d—2
+
m%—mﬁ d+2n —
217
d+2n—4
Zmﬁ
d+2n—4

(Tl’ 123 — Tr..124)
——

n n

Ty..172334
——

n—1
T1’4--1’2344] ,

——

n—1

plt=m _ 1 lp=m

’ ’ = -~ . ’ !’
1"---1234 2n—1 1"---1'2234

n n—1

1 d -2 )pzzm ‘p —n'%
+ |: (T IR S .
Il’l% _ Ini 2n—1 17..-1'23 17---124
R e | 2 e
3 = Y |pP=m
oo et 5 TI’---1/2§44:| ;. (129b)
—— ——

(129a)

S|

2
n—1 n—1
d—2 1 | =
— T — — T3
2m§ 2n—1 P T o L-172334

n n

1 3d—-2n—-6 |n12=m2 |m2:m2
N (sl
Hé—pz 2n—1 17---1"234 1---134

2
_ A T‘f”z”’2
o — 1 V12234

|} =} 1
Tyt =
—

n—1
_ 4m (T\;nzfm% = )]
2n— 1 Loz T A ) |
B S e P
T}/I’ ,mz,m4 mo_ 3 |/’ D 4 3
11234 d—2n—2 4m%mz 11234
" 3d-2n-4 T|p:m2,mg:mg”l
16mnd (d —2n—2) L%
d-2)d-1 "
_S(d—Zn—2)(d—n—1)

(129¢)

|p*=m) | =z
( Ty T2 Tl’ 134 (129d)
% v ——
2(2d—2n—3) m§+p2
Ty..103y = Tl’ 1234
n n—l
3d —2n—4 1 T
- — — ) 11234 5
d—2n—-2 (m% _ pz) T::
}pzzm% 3d —2n—6 1 |p2=m%
T/ 94 — ~ T o~ = T A ’ 192747 * 1296
1...1'23'4 2d—2n—54m% 17...1'23'4 ( )

n n—1

Additional integrals are introduced by the previous reduc-
tions. They can be further reduced by the following relations:
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Ty..12234:
-

n

T1’ 12234 = |:(2d 2n—35) T1’ 1234 — Ty ..12234
n’é p? N

n n n—1

— 23 Ty.2334 — 2104 T1/...1/2344} , (130a)
—_— N

n n
2_ 2 1 2_ 2
|p?=n; 7P =m
Ty o34 = Im |:(3d 2n—8) ( Veza — T 134)
—— m —— ~——
n ) n n+1
—2m Tl‘ff;@ —Ty..17334
—— S~~~

n+l1

—ond <T1'/?.2.?;”§44 - Tl’---1’344>i| . (130m)
n n+l1
Ty..12334:
[
T, _ 43,
112334 = - 11234
d-2 2m? .
T, a2 17124 — TS o2 1/-.-1'2344
(m3 - m4) M (m3 - m4) el
m + m} d—2
% Ty.va33a — —— Tr.rz ), (131a)
(m3 - mézt) n—1 2m3 n
rlm=r3 d—2n-2
V33 = 2n—1 (m% — pz)
[d—zT}mg:mg 3d—2n—6 _|md=n
4m§ 1134 42 11234
n—1
B |r=n? =2
5Ty vase + Ty 3
m3 —— ——
n—1 n—1
L
4m§
d=3 ( |g=mz d—2
2n— 1 T&;‘L’m‘_ 2m
n—1
Ty.y 2d — 20— 5) TS 131b
1-123) + ( n YTy 1934 | > ( )
— —
plp?=mmi=m 1 '
112334 42
|p?=m,mi=m o |p?=m), my=ng
[(2d—2n—5)T1/ 1234 B ST YA
—— ——
" = (131c)
Ty..1334:
[———
T _ d—2n-—1 T T
11334 = m% o 1134 %—mﬁ 1“.11334,
" (132a)
me=m? d—n— 2 —m2
T1|,.ff1,3§4 =— Tl|?%l,3j , (132b)
~~— 3 ~—

The integrals with multiple index 4 can be reduced after
using the symmetry relation 3 <> 4. All remaining integrals
belong to the set of Eq.(114) after applying the symmetry
relations of Egs. (107).

A.4 Vanishing external momentum

In the limit of vanishing external momentum, p — 0, many
of the reduction rules cannot be applied directly due to man-
ifest poles in p?. However, if this condition is imposed
onto the integrals in the first place, their reduction becomes
much easier. Symbolically, the implementation of this limit
amounts to performing the index substitutions 2 — 1
and 5 — 4 (the masses are relabelled accordingly, but in
order to distinguish the possibly different masses of repeated
indices, new subscripts are introduced).

For the tensor integrals, only the first reduction in
Eq. (112f) requires some special care, since it contains an
explicit pole in p?. The momentum-free equation reads

[3] 1]+[4]
Y1245(P = 0) - Y1 1,,4 4 = Y1 1pdady (133)
which corresponds to the first term on the right-hand side
of Eq. (112f) with p — 0. For all other tensor reductions in
Egs. (112) the limit p — 0 can be taken explicitly.

In addition to the types of integrals in Egs. (119), the fol-
lowing scalar integrals appear after taking into account the
symmetry relations of Eq.(107) and partial-fraction decom-
position via Eq. (121):
T34, Tiizza. (134)

Tz, Tiss,

Further integrals with multiple massless propagators with
index 1’ can be solved with the recurrence relations given
above. In general, the solutions for the integrals of Eq. (134)
with repeated index i can be derived by computing the deriva-
tive with respect to the mass m; of the scalar integral with
fewer repetitions of i. The results that are not contained in
Eqs. (125)—(132) read

Ti..13..3 and Ty...173..3 ¢
N N e
ny  n3 ng 3
Ti.13.3
=
’1] ”3
D -9 st
(~m)" " T T (1= 4) (~m)" ! T T (1 - 4)
(135a)
(135b)

Ty..173.3 =0,
— A~
ny n3
Ti..13..34and Ty...173...34:
N N, !

ny  n3 ny  n3
0=(m3—-1) Und T1.13.34

)11 n3
—(m3—=DTr.13.34+m3—1)T1.13.3
——— — — A~
nlfl n3 ny n3
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+d-=2n—n3+1)T1.13.34
——

nyp n3—1
—2nym Ty 334, (136a)
—— A~
ny+1 n3—1
m=nt 1 d—2n
T|1334/: 2[ - Tm%rr3123
— P~ 2I2’11 d—n1—n3—1 ————
ny n3 n n3
d— _ _2
o dmmem gl L (136b)
d—ny—n3—1 22
ny n3—1
|y =1 d—2ny —n3—1 _|m=md
Tl/-ﬁl/ 33”_34 = 1 Tl/-ﬁl/ ;”34 . (136C)
S~ 3 S~~~
noon3 ni+1 n3—1

A.5 UV divergences

The remaining scalar integrals are UV divergent in general.
In dimensional regularisation, these UV divergences can be
parametrised by the regulator €. For the two-loop two-point
integrals appearing in this article, the terms that diverge in the
limit e — 0 are known analytically; the finite terms are eval-
uated numerically with the help of TSIL. In the following
we list these UV divergences explicitly with the considered
order in € indicated in the superscript of the integrals:
T134:

2 1
Ty = 5 (md 48 + ). (137a)
S 0
Tl|§4 =3 ( i+ m +m4) + Al)e (m%)
0
A (w3) + Al (3). (137b)
Tr34:
ez 1
Ty =5 (md+m+nf). (138a)
el 1 el 2
T2{34 =5 (m2 +m+ m4) + Al) (mz)
0 0 1
Al (m%) Al (mﬁ) -0 (138b)
T1234
ez 1
Tiy =5 (139a)
{e’l 1 ‘é
Ty = 5T B, (P ml,mz) (139b)
T334 and T34
e 1
Ty =5+ (140a)
-1 1 1
T = 5+ Al (3). (140b)
m,
e 1
T2/2/34 = _z s (140C)
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lemt 1 € 2 2 2
Tyys =5~ B (p ,m3,m4>, (140d)
T11234:
672
T1|1234 =0, (141a)
! 1 p? m2 m% |e
T, = 2 A,
11234 Amf,m%,,ﬂ[ 2 0 ( )+ (m )
GO
T, ( 1 (02, 2 ) 1)] (141b)
2_0 2 1
T1|1p2’241 ") (141¢)
1
T‘pz,zm%e]=i{ ! |:3 2 2 2
112'34 m% Amfm%.mﬁ 8 m1 Bucsun
0 €
<ml +aal’ () +aal (m4))
—4m3 ] — A|€ (ms)Al€ (mzzt)]
IS 3
— — 1, 141d
7oz ()= (1410
T S 1 0
T1|f)2/34/1 T ?A(') () (14le)
T11234:
< ! 142
Tyypy = m—p?’ (142a)
671 1 €
T1|,1,234 = "’%j | (0 3, m?t)
1 | 2
+——— (22 +24; (m
(m2 — p? 2 [ 0 ( 2)
- (m% +p ) B (p2, 0, m%)] : (142b)
22 2 1
Tllfll”zs? = _Tn% ) (142¢)
_m2 € ] € €
rlromet ET [m% Al (m )+B‘ (0.m3,m) -3
(1424d)
e 1
N = 5023 (142¢)
‘e_' 1 1
T

1234 = 2(m§ — ) (m% _ p2)2
|:2p + ZA‘E (m%) m% + p2) B({;O (pz, 0, m%)] s

(142f)
2op2 2 1
rlromet i (142g)
_m2 € -1 ] ] EO
T1|p1/23 yo = B [m% A‘o (m%) - 2:| ; (142h)
T 12345
e
Ti5345 =0, (143a)
—1
T1|§345 =0. (143b)
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B List of renormalised Feynman diagrams

The complete list of renormalised two-loop diagrams (with polynomial remainder in the UV regulator 1/¢) for tadpoles and
self-energies in "t Hooft-Feynman gauge is shown in the following. Contributions that only exist in the MS scheme are marked
by Sis. At first, we repeat the previously known results of Refs. [121,122] in our nomenclature, and then we list all new

results.

B.1 Tadpole diagrams

B.1.1 Known results

S(3)
" sy 7 SSSlil,i2, i3, 1] SSSS[i2, i3, i4, i4, 1] X
T - = _¢ * S(i4) 1(1
01 ; i el 2 2 2 _ 2 mh . m
S(i1) NN P {e [Ao(mm) + myy BO(O’ mlzﬁfz)} Tll3<mIZVIT33’In14>}
s(i2)
S(i5) , ~ -’- ~
7
0 / I SSSlil. i2,i5. 1] SSS[i2, i3, i4. 1] SSS[i3. i4.i5, 1] X
T R — S(i4) S(i3) 1(1
7 s N : 1 {g 30(0’ Hh-zz,m?s) - T1134(Ir5'22*mi25’ mfz»m.-ﬁ)}
o\
S(i2)N < "_ _
S(i4)
PN
/
0 / SSS[i2,i3,i4, 1] SSSS[il, 2, i3, i4, 1] X
T - ——@-—-=-—-- (1
24 . . 2 2 2 2 2 2
S(i1) \ S(i3) 3 {g [A0<mi2) + AO(mB) + A0<mi4)] - T134<mizvmi3’mi4>}
AN
~N —_ P
s(i2)
mip mi3 mis Re[FFS[i2. i3, id, 1] FFS[i2. i5. il, 1] FFS[i3. i5. i 1]] X
1
| 2{= £ 800, ) + Tvsa (o . s )|
F(i5) + my3 Me[FFS[i2, i3, i4, 1] FFS[i2, 5, i1, 2] FFS[i3, i5, i4, 1] X
1 ) 2\ Loyl 2 2
) . 2 {7 < [AO(IFL;3> + A0<mi4) +7ry (mi2’m15>j|
Iys - - F(i3)
S(i1) 1
+ Y1[1]34 (”11'22’ mi25v mi23’ mi24)}
F(i2) + [miz + mis] Ne[FFSIi2,i3,14, 1] FFS[i2,i5, i1, 1] FFSIi3, i5, i4, 2]] X
1 oyli( 2 (431141 2 >
{— p [2 A0<miz4) +7Y (miz’mizs)] + Y5 (mizsﬂ%'zsﬁ mi3’mi24)
mi3 miy Me[FFS[i3, i4, i2, 1] FFS[i3, 14,5, 1]] SSS[il. i2,i5, 1] X
8(i5) , 1 > LRI
/ —c BO<0’mi22’ mis) + T1134<m1'29m15’ mm”'m)
z_(g]6) o F(iS) T.)&EFFS[B,M, i2, 1] FFS[i3, 4,15, 2]] SSSlil, i2,i5, 1] X
S(il 1
W 3 {5 (o) =2 () o 0, )
5(2) <

[1=[31-141( 2 2 2 2
— Vs (miz, M5, M3, mi4>}
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B.1.2 New results with vectors

8(i3) SSSlil,i2,i3, 1] SSVVI[i2, 13, i4, i4, 1] X
ah ! Y22, Bo (0, . 2 2 — buse) Ag(m?
Iy —--¢ V(i) 5 4= = [2m Bo (0 b ) + @ — s ) Ao (1)
(i)
N -~ +(2_5W€)T113(H$2’mi237mi24>}
S(i2)
v(i3) . o
SSVVIi4, 4, 12,13, 1] SVVI[il,i2,i3, 1] X
1 /—\\ UL A (2 2 — S €) my Bo(0, my, m
I(g3) - - = ) S(i4) 2 g[ 0<mi4)+( — Oy €) miy ()( ,miz,InB)]
s(i1)
N7 — (2 —dws€) 7113(171.'22,1“33’1’1124)}
V(i2)
SsvV[il,i2,i3, 1] x
V(i3) [4 VVVV[i2, i3, i4, 4, 1] + VVVV[i2, 13, i4, i4, 2] + VVVVI[i2, i3, i4, i4, 3]] x
1 1
(1) . 2 {_ p (2 — dys€) |:A()(mi24) +mi24 BQ(O, mi22>mi23)j|}
Lo - v(id) o
S(il) Svvlil,i2,i3, 1] x
[(4 — 28y €) VVVVI[i2, i3, 14, 14, 1] + VVVVIi2, i3, 4, i4, 2] + VVVVIi2, i3, i4, i4, 3]] X
V(i2)

1
3 {(2 — S5 ©) Ti1a (s, s, mﬁ)}

SSSli2.i3.i4, 1] SSVI[il, i2, i5, 1] SSVI[i3. i4. 15, 1] X

% { 1 [Ao(mizz) - A0<H1124)] - Yﬁ;m (mlzzm‘zsmlzz 14)}

€

SSS[il, i2.i5, 1] SSVIi2. i3, i4, 1] SSVI[i3, i5. i4, 1] X
11
5 {— - [Ao(mi23) f202- Sme)A0<nii24)

(o) B0 )+ 201 (o )|

2[11—[3]1+2[4]1( 2 2
+ Y134 (miz’ s, 3, 1”?4)}

SSV[i3, 4,2, 1] SSVI[i3, i4, 15, 1] SVVI[il, i2,i5, 1] X
i {2 T let) () 2 )
—2(2 — Sys€) (n% + fn.-24) 30(0, m, miZS)]

[1]—-2[3]-2[4] 2 2 2
— Vi (”1122 5, m;3, mi4)}

SSvVlil,i2.i5, 1] SSVI[i2.13,i4, 1] SVVI[i3, i4.i5, 1] X

% E [240(m ) + 307 (. ) + 2.2 = s ) Aoy )|

3[1-[31+41( 2 2 2
_yll[fﬁjl Bl [J<mi2*mi5smi23*mi4>}
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SSSlil,i2,i5, 1] SVV[i2, 3,4, 1] SVVI[is, i3, 14, 1] X

sG5) | -~
),
/
1Y) .
7! - v(i3) 1(2
19 S(i1) 5 {EBO(O’ mi22vmi25) —Q2-é&re) T1134(mi22vmi25’mi23vmi24)}
\
502 <
V(i5) ~
AN
W \\ SVV[il, 2,5, 1] SVV[i3, i2, i4, 1] SVVI[i3, i4, 15, 1] X
7 1
21 {— ~ Q2 Syse) B()(O, . mi25) + Q2= Syse) T1134(mf2, s, md, mi24)}
€
SSVIil, i2.i5, 1] SVVIi2, i3, i4, 1] VVVIi3, i4. 5, 1] X
[ 3 u s R
7 3 {-2emsmo () - ao(i)]
420 - 2800 YL (i )|
SVV[il, i2,i5, 1] VVV[i2, i3, i4, 1] VVVI[i3, i4, 15, 1] X
v(i5) 0 2 i
7 {7 Q- 4we) [0 40 () +9 Ao ()
PR 2\ _oyplli( 2 2
I%) - = v(i3) +9 (mi3 * mi“) Bo (0’ 5, miS) i (”32’ mls)]
8(i1) 11 .
“ 3 3 - 26me)0Y1[1]<m1-22, m?;)
vi2) +36 - 2éwe) YH;X[SHM] (IniQZy miZS, s, ”1124)}
V(i)
SSVVIil, i2, i3, i4, 1] SVV[i2, i3, i4, 1] X
1 2 . 2 2
oo (L) o 1) )]
s(i1) v(i3)
\ / — (2= b5 2 2 2
. , 2 = s €) Tisa (i, . zm)}
~ —_ P
S(i2)
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B.1.3 New results with fermions and vectors

mip m3 mys Re[FFS[i2, 15,1, 1] FFV[i2, i3, i4, 2] FFV[i3,i5, 14, 1]] X

4 {g Bo<0, i, mi25> — (2 —dwse) T1134(Hh-22, ms, 3, Iﬁ)}

+ myj3 Me[FFSi2.i5. i1, 1] FFV[i2. i3, id, 1] FFV[i3, 15, i4, 2]] x
1
4 {g [2 A()(mi23> + 207} (s, ) + 2 — S ©) Ao (ma)}
1 2 2 2 2
—2-dwe) yl[l]34<mi2’ ms» M3, m—i4>}
+ [miz Ne[FFS[i2.i5, i1, 1] FFV[i2, i3, i4, 2] FFV[i3. 15, 4, 2]

+ mis Me[FFS[i2. 5.1, 1] FFVI[i2, i3, i4, 1] FFVI[i3, i5, i4, 1]]] x
! Toym >
2 {_ . [ Yy (ng,mis) +@2- 5WG)A0<”$4>}

11+[3]1-[4
R C )

V(i5)

Ay S(T) - - F(i3)

my3 mig Ne[FFV[i3, 4, i2, 1] FFV[i3. 14,15, 1]] SVV[il, i2.i5, 1] X
1
2 {; (2 — Sy €) BO(O, m, m?;) -2 —iwse) T1134(m1-22, m?g, m123, mﬁ;)}
+ Me[FFV[i3,i4,i2, 1] FFV[i3. 4,15, 2]] SVV[il,i2,i5, 1] X
1
{g [— (2—dwse) (m123 +mi24) BO(O! ., ”’125)
+1 G- 2650 ¥ (i 2 )|

1-B1-141( 2 2
— (I = éus€) Y1[1]34[ - ](mi27m125’mi3v”$4>}

my3 Re[FFS[i3. 14,12, 1] FFV[i3, 14,15, 2]] SSV[il, i2. 15, 1] X

1 2\, 0ylll ) U-Bl+41( 2 2 2
{E [2 Ao(mi3) +7r (miz2vmi5)] — Y3 (miZ*miS’Iné*mi4)
i3 < i4]

siy) ~ @ -
Ve ! .
m / ‘_ SSSlil,i2,i5, 1] SUU[I2, —i3, i4, 1] SUU[I5, —i4, i3, 1] X
T - - CU(4)  +U@3) 1 1
% s ' K 1 {— < 30(0’ ), mizs) + T1134(m,-22, s, my, mﬁ;)}
\ . .
82 < °-
u(is) .- .' > o
m " \\ SuUlil, —is5, i2, 1] SUU[I3, —i2, i4, 1] SUU[i3, —i4, i5, 1] X
T - + U(id) S(i3) 1 1
R S 3| £ B(0. ) + s s )|
R . /
u(i2) - . ._ Pl
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Ssv[il,i2.i5, 1] SUU[i2, —i3, 4, 1] UUV[—i4, i3,i5. 1] x

D .
7! * U(i3) 11
01 2 11—[3]+[4 2 2 2 2
14 K 5 {g [2'40(“1123) + Y1[1](m12sm125)} — ph P ](mi2~miSsmi3vmi4)}
[SUU[il, 5,12, 1] UUV[-i2, i3, i4, 1] UUV[ =3, i5, i4, 1]
. + SUULil, i5, —i2, 1] UUV[i2, —i3, i4, 2] UUVI[i3, —i5, i4, 2]]
1) . .
7t - v(i4) v U(i3) 1 (1
0y (1 2 2 2
5 s 1 g 1 {g (071} (. ) + @ = s © Ao(ny ) |
ot 1+[3]—[4
Ui2) ... - _Y1[1]34[ I ](mi22’mi25vmi23’mi24)}
[svv[n, 2,15, 1] UUV[—i3. 4, i2. 1] UUV[—id, i3, i5. 1]
+ SVV[il,i2.i5. 1] UUV[i3. —i4, i2, 2] UUV[id, —i3, 5, z]} x
1 o
) L u(i3) |

3 {é [% S ‘SWE)OYH](”%’ mlzs) —(2-dwe) (”1123 +m,-24> Bo<0, mizz’mizs)}

[1-B1-141( 2 2 2
RATEN (mi2’ M5, ”31 mi4)}

B.2 Self-energy diagrams

B.2.1 Known results with only scalars

s(i6)
/ - \
| )
\ e /
2) 5(4) 7 - =~ \ 8(i5) SsSlil, i3,i4, 1] SSS[i2, i3, 15, 1] SSSS[i4, 15, i6, i6, 1] X
2 11
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~N__ 7
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N\ /
~ e




417 Page 38 of 64

Eur. Phys. J. C (2020) 80:417

si6) _ @< s
s | N
° / I \ SSS[il,i3.6, 1] SSS[i2. 14,17, 1] SSS[i3, i4.15. 1] SSS[is, i6. 17, 1] X
v - == si5) @——— 1
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\ /
_____ _-.—_ _— — — =
s(i1) s(i2)
S(i4) S(i6) SSSlil, i3, 4, 1] SSS[i2, 5, i6, 1] SSSS[i3, i4.i5, i6, 1] X
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Pl A 2 2
- - — Ti245 mi3, my, mis, m; }
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B.2.2 Known results with scalars and fermions

my3 mig mig my7 Ne[FFS[i3,i4,15, 1] FFS[i3. 6,11, 1] FFS[i4, i7, i2, 1] FFS[i6, i7.i5, 1]] x
1

2 2 2 2
5 {T12345 <mi7v iy, nis, g, 1"13)}

+ mi3 mg Me[FFS[i3, 14,15, 1] FFS[i3. i6, il, 1] FFS[i4. 17,12, 1] FFS[i6. i7, i5, 2]] X
1

[21-[31+[5] 2 2 2
2 {Y12345 (mi23,m16,m,-25,mi4,mi7>}
+ mi3 mi7 Me[FFS[i3, 14,15, 1] FFS[i3, i6, i1, 1] FFS[i4. 17,12, 2] FFS[i6. i7, 5, 2]] %
1

[1-[B1+51-61( 2 2 2 2 2
2 {Y12345 (mﬁ’ RATIRUTE mi4,m1-7>}
+ m3 mig Me[FFS[i3, 14,15, 1] FFS[i3. i6, i1, 1] FFS[i4. 17,12, 2] FFS[i6. i7,i5. 1] X
Lf 2 2 2 o [41+(51—[6] ) >
3 {— - B(J(P ﬂmi3*mi6) + Yious (n%,mis,m%,mm,m%)

€

+ Ne[FFS[i3, 14,15, 1] FFS[i3, 16,11, 2] FFS[i4, 17,2, 2] FFS[i6, 17,15, 1]] X
1 2 2 0yl+R21-161(_ 2 2
1 {* < [Ao(mis) + Oy ](mi3’mi6):|

A151-B61( 2 2 2 2 2
+ Y535 (mif% Mig M5, My, mn)}

+[(3,i4) < (16,17)] + [(QL, i3, i6) < (i2, i4, i7)] + [(il, i3, 14) < (i2,17,16)]

mi3 mis mie Ne[FFS[i3, 15,14, 1] FFS[i3, i6, i1, 1] FFS[is, i6, 17, 1]] SSS[i2, 4,17, 1] x
. . 2 2 2 2 2
F(i6) ~  S(37) {Tl 2345 (mi7’ Mg M5, M6 » mﬂ)}
\ + mi3 Me[FFS[i3,i5,i4, 1] FFS[i3, i6, i1, 1] FFS[is, i6,17, 2]] SSS[i2, 14,17, 1] X
(2) : 2 2 > [21+(31-15] > >
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. - ; [ 2 2 2 211161 2 > >
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mj3 mg mis mi7 Re[FFS[i3,i4.i1, 1) FFS[i3. 17,12, 1] FFS[i4. 5. i6, 1] FFS[i5, 17,6, 1]] x
1
0 ) 2 o 2
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1 1
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5{ Yy (m J My, )+2Y 11234 (mm ., g3, mis’mi6>}
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B.2.7 New results with fermions and vectors
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