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Abstract Taking O(D, D) covariant field variables as its
truly fundamental constituents, Double Field Theory can
accommodate not only conventional supergravity but also
non-Riemannian gravities that may be classified by two non-
negative integers, (n, n̄). Such non-Riemannian backgrounds
render a propagating string chiral and anti-chiral over n and n̄
dimensions respectively. Examples include, but are not lim-
ited to, Newton–Cartan, Carroll, or Gomis–Ooguri. Here we
analyze the variational principle with care for a generic (n, n̄)

non-Riemannian sector. We recognize a nontrivial subtlety
for nn̄ �= 0 that infinitesimal variations generically include
those which change (n, n̄). This seems to suggest that the
various non-Riemannian gravities should better be identified
as different solution sectors of Double Field Theory rather
than viewed as independent theories. Separate verification of
our results as string worldsheet beta-functions may enlarge
the scope of the string landscape far beyond Riemann.
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1 Introduction

This paper is a sequel to [1] which proposed to classify all
the possible geometries of Double Field Theory (DFT) [2–7]
by two non-negative integers, (n, n̄). The outcome – which
we shall review in Sect. 2 – is that only the case of (0, 0)

corresponds to conventional supergravity based on Rieman-
nian geometry. Other generic cases of (n, n̄) �= (0, 0) do not
admit any invertible Riemannian metric and hence are non-
Riemannian by nature. Strings propagating on these back-
grounds become chiral and anti-chiral over n and n̄ dimen-
sions respectively.

The non-Riemannian property is a point-wise or local
statement [8–12] and differs from the global notion of ‘non-
geometry’ [13–17] which is also well described by DFT
[18–32]. Possible examples of non-Riemannian geometries
include Newton–Cartan geometry [33–35] as (1, 0), stringy
Newton–Cartan [36] as (1, 1), (wonderland) Carroll geome-
try [37,38] as (D − 1, 0), and non-relativistic Gomis–Ooguri
string theory [39] as (1, 1). These are of continuous interest,
e.g. [40–58]. Further, the fully O(D, D) symmetric vacua
of Double Field Theory turn out to be ‘maximally’ non-
Riemannian, being of either (D, 0) or (0, D) type, com-
pelling string to be completely chiral or anti-chiral. A remark-
able insight from [11] is that, the ordinary Riemannian space-
time arises after spontaneous symmetry breaking of these
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fully O(D, D) symmetric vacua while identifying the Rie-
mannian metric, gμν , as a Nambu–Goldstone boson.

In this work we attempt to explore the dynamics of the
generic (n, n̄) sector in Double Field Theory. We analyze
with care the relevant variational principle and recognize
a nontrivial subtlety: when nn̄ �= 0, the resulting Euler–
Lagrangian equations of motion depend whether the varia-
tions of the action keep the values of (n, n̄) fixed or not. This
rather unexpected subtle discrepancy contrasts DFT with the
traditional approaches to the various non-Riemannian grav-
ities.

The organization of the present paper is as follows.
In the remaining of this Introduction, to put the present

work into context and set up notation, we describe DFT as
the O(D, D) completion of General Relativity along with a
relevant doubled string action.

In Sect. 2, we review the (n, n̄) classification of the non-
Riemannian DFT geometries from [1].

In Sect. 3, we revisit the variational principle in DFT and
confirm that the known Euler–Lagrangian equations, or ‘Ein-
stein Double Field Equations’ (1.3) are still valid for non-
Riemannian sectors.

In Sect. 4, now keeping (n, n̄) fixed, we reanalyze the vari-
ational principle and show that the full Einstein Double Equa-
tions are not necessarily implied when nn̄ �= 0. We explain
the discrepancy, and further propose a non-Riemannian dif-
ferential tool kit as a ‘bookkeeping device’ to expound the
equations.

We conclude in Sect. 5, followed by Appendix A and B.

1.1 Double Field Theory as the O(D, D) completion of
General Relativity

While the initial motivation of Double Field Theory was to
reformulate supergravity in anO(D, D) manifest manner [2–
7] ([59–61] for reviews), through subsequent further devel-
opments [62–65], DFT has evolved and can be now identi-
fied as a pure gravitational theory that string theory seems
to predict foremost1 and may differ from General Relativ-
ity as it is capable of describing non-Riemannian geometries
[1]. Specifically, DFT is the string theory based, O(D, D)

completion of General Relativity (GR): taking the O(D, D)

symmetry as the first principle, DFT geometrises not merely
the Riemannian metric but the whole massless NS-NS sec-
tor of closed string as the fundamental gravitational multi-
plet, hence ‘completing’ GR. Further, the O(D, D) symme-
try principle fixes its coupling to other superstring sectors
(R-R [68–71], R-NS [72], and heterotic Yang-Mills [73–
75]). Having said that, regardless of supersymmetry, it can
also couple to various matter fields which may appear in
lower dimensional effective field theories [72,76,77], just as

1 At least formally let alone its phenomenological validity, c.f. [66,67].

GR does so. In particular, supersymmetric extensions have
been completed to the full (i.e. quartic) order in fermions for
D = 10 cases powered by ‘1.5 formalism’ [78,79], and the
pure Standard Model without any extra physical degrees of
freedom can easily couple to DFT in an O(D, D) symmetric
manner [80].

Schematically, governed by the O(D, D) symmetry prin-
ciple, DFT may couple to generic matter fields, say collec-
tively ϒ , which should be also in O(D, D) representations:∫

1
16πG e−2d S(0) + Lmatter(ϒ,∇Aϒ). (1.1)

Here, d is the O(D, D) singlet DFT-dilaton, S(0) is the DFT
scalar curvature, and ∇Aϒ denotes the covariant derivative
of a matter field. To manifest the O(D, D) symmetry, the
action is equipped with an O(D, D) invariant metric,

JAB =
(
0 1
1 0

)
, (1.2)

which, with its inverse J AB , is going to be always used
to lower and raise the O(D, D) vector indices (Latin cap-
ital letters). It splits the doubled coordinates into two parts,
x A = (x̃μ, xν) and ∂A = (∂̃μ, ∂ν). Note that the dou-
bling of the coordinates is crucial to manifest the O(D, D)

symmetry in DFT. Like GR, the General Covariance (DFT-
diffeomorphisms) of the action (1.1) naturally gives rise to
the definitions of the O(D, D) completions of the Einstein
curvature, GAB [81] and also the Energy-Momentum tensor,
TAB [65], of which the former and the latter are respectively
off-shell and on-shell conserved. Equating the two, they com-
prise theO(D, D) completion of the Einstein field equations,
or the Einstein Double Field Equations (EDFEs) [65,82],

GAB = 8πG TAB . (1.3)

We summarize the basic geometrical notation of DFT in
Table 1,2 while the DFT-diffeomorphisms are generated by
the so-called generalized Lie derivative [3,7]: acting on a
tensor density with weight ωT ,

δξTA1···An = L̂ξTA1···An = ξ B∂BTA1···An + ωT ∂Bξ B TA1···An

+
n∑
j=1

(∂A j ξB − ∂BξA j )TA1···A j−1
B
A j+1···An .

(1.4)

In particular, being a scalar density with weight one (ωT = 1),
the exponentiation e−2d is the integral measure of DFT.

It is noteworthy and relevant to this work that, all the geo-
metrical notation of the covariant derivative, ∇A, and the

2 The expression of SAB in Table 1 is newly derived from [63] using
	ACD	CBD = 	BCD	CAD = 1

2 	ACD	BCD and 	CAD	DBC =
	CAD	CBD − 1

2 	ACD	BCD which hold due to the symmetric prop-
erties, 	[ABC] = 0 and 	A(BC) = 0.
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Table 1 Geometric notation for DFT. For latest exposition see e.g. section 2 of [65]

Integral measure e−2d (weight one scalar density)

Projectors
PAB = PBA = 1

2 (JAB + HAB), P̄AB = P̄BA = 1
2 (JAB − HAB)

PA
B PB

C = PA
C , P̄A

B P̄B
C = P̄A

C , PA
B P̄B

C = 0

Christoffel symbols
	CAB = 2

(
P∂C P P̄

)
[AB] + 2

(
P̄[AD P̄B]E − P[AD PB]E

)
∂D PEC

−4
(

1
PM M−1

PC[A PB]D + 1
P̄M M−1

P̄C[A P̄B]D
) (

∂Dd + (P∂E P P̄)[ED]
)

Covariant derivatives PA
C P̄B

D∇CVD , P̄A
C PB

D∇CVD , PAB∇AVB , P̄ AB∇AVB

Semi-covariant derivative ∇CVD = ∂CVD − ωV	E
ECVD + 	CD

EVE

Compatibility ∇C PAB = ∇C P̄AB = ∇CJAB = 0, ∇Cd = − 1
2 e

2d∇C
(
e−2d

) = 0

Scalar curvature S(0) = HAB SAB

Ricci curvature (PS P̄)AB = PA
C P̄B

DSCD

Einstein curvature GAB = 4P[AC P̄B]DSCD − 1
2JAB S(0)

Semi-covariant curvature SAB = 2∂A∂Bd − e2d ∂C
(
e−2d 	(AB)

C
) + 1

2 	ACD	B
CD − 1

2 	CDA	CD
B

Variational property δSAB = ∇[Aδ	C]BC + ∇[Bδ	C]AC

Energy-Momentum tensor T AB = e2d
(

8P̄ [A
C PB]

D
δLmatter
δHCD

− 1
2J AB δLmatter

δd

)

Conservation ∇AGAB = 0 (off-shell), ∇AT AB = 0 (on-shell)

EDFEs GAB = 8πG TAB

curvatures, S(0),GAB , can be constructed strictly in terms
of O(D, D) covariant field variables, notably the O(D, D)

invariant DFT-dilaton, d, and the O(D, D) covariant DFT-
metric, HAB (“generalized metric”), or more powerfully
O(D, D) covariant DFT-vielbeins, without necessarily refer-
ring to conventional, undoubled O(D, D) breaking super-
gravity variables. Similarly, a doubled string action can be
constructed in terms of O(D, D) covariant objects as we
review below.

1.2 Doubled but at the same time gauged string action

One of the characteristics of DFT is the imposition of the
‘section condition’: acting on arbitrary functions in DFT, say

r , and their products like 
s
t , the O(D, D) invariant
Laplacian should vanish

∂A∂ A = 0 : ∂A∂ A
r = 0, ∂A
s∂
A
t = 0. (1.5)

We remind the reader that the O(D, D) indices are raised
with J AB . Upon imposing the section condition, the gener-
alized Lie derivative (1.4) is closed by commutators [3,7],

[
L̂ζ , L̂ξ

]
= L̂[ζ,ξ ]C ,

[ζ, ξ ]MC = ζ N ∂N ξM − ξ N∂N ζ M

+ 1
2ξ N ∂MζN − 1

2ζ N ∂MξN . (1.6)

The section condition is mathematically equivalent to the
following translational invariance [8,83],


r (x) = 
r (x + �), �A∂A = 0, (1.7)

where the shift parameter, �A, is derivative-index-valued,
meaning that its superscript index should be identifiable as a
derivative index, for example �A = 
s∂

A
t . This insight
on the section condition may suggest that the doubled coor-
dinates of DFT are in fact gauged by an equivalence relation,

x A ∼ x A + �A, �A∂A = 0. (1.8)

Each gauge orbit, i.e. equivalence class, represents a sin-
gle physical point. As a matter of fact in DFT, the usual
infinitesimal one-form of coordinates, dx A, is not DFT-
diffeomorphism covariant,

δ(dx A) = d(δx A) = dξ A

= dx B∂Bξ A �= dx B(∂Bξ A − ∂ AξB). (1.9)

However, if we gauge the one-form by introducing a
derivative-index-valued connection, we can have a DFT-
diffeomorphism covariant one-form, provided that the gauge
potential transforms appropriately,

Dx A = dx A − AA, AA∂A = 0,

δ(Dx A) = Dx B(∂Bξ A − ∂ AξB),

δAA = Dx B∂ AξB . (1.10)

It is also a singlet of the coordinate gauge symmetry (1.8):
δx A = �A, δAA = d�A, δ(Dx A) = 0. The gauged one-
form then naturally allows to construct a perfectly symmetric
doubled string action [8,84],

1
4πα′

∫
d2σ

[
− 1

2

√−hhαβDαx
ADβx

BHAB

−εαβDαx
AAβA

]
, (1.11)
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which enjoys symmetries like global O(D, D), target space-
time DFT-diffeomorphisms, worldsheet diffeomorphisms,
Weyl symmetry, and the coordinate gauge symmetry.3 All
the background information is encoded in the DFT-metric,
HAB .

2 Review of [1]: classification of the non-Riemannian
DFT geometries

The section condition can be generically solved, up to
O(D, D) rotations, by enforcing the tilde coordinate inde-
pendency: ∂̃μ ≡ 0 ⇒ ∂A∂ A = 2∂μ∂̃μ ≡ 0. Choos-
ing �A = cμ∂ Axμ = (cμ, 0) for (1.8) and similarly
AA = Aμ∂ Axμ = (Aμ, 0), we note that the tilde coor-
dinates are indeed gauged: (x̃μ, xν) ∼ (x̃μ + cμ, xν),
Dx A = (dx̃μ − Aμ, dxν). With respect to this choice of the
section, the well-known parametrization of the DFT-metric
and the DFT-dilaton in terms of the conventional massless
NS-NS field variables [88,89],

HAB =
(

gμν −gμσ Bσλ

Bκρgρν gκλ − Bκρgρσ Bσλ

)
,

e−2d = e−2φ
√|g|, (2.1)

reduces DFT to supergravity. In this case, the single expres-
sion of the EDFEs (1.3) unifies all the equations of motion
of the three fields, {gμ, Bμν, φ}. Further, after Gaussian inte-
gration of the auxiliary gauge potential, Aμ, the doubled-yet-
gauged string action (1.11) reproduces the standard undou-
bled string action.

Yet, this is not the full story. The above parametriza-
tion (2.1) is merely one particular solution to the defining
relations of the DFT-metric:

HAB = HBA, HA
CHB

DJCD = JAB . (2.2)

DFT and the doubled-yet-gauged string action work well,
provided these conditions are fulfilled. For example, instead
of (2.1), we may let the DFT-metric coincide with the
O(D, D) invariant metric,

HAB =
(
0 1
1 0

)
, (2.3)

such that HA
B = δA

B . This is a vacuum solution to DFT, or
to the ‘matter-free’ EDFEs, GAB = 0 (1.3), which is very
special in several aspects. Firstly, compared with (2.1), there
cannot be any associated Riemannian metric gμν and hence it

3 See also [85] for Green–Schwarz doubled superstring, [66] for dou-
bled point particle, and [86,87] for ‘exceptional’ extensions.

does not allow any conventional or Riemannian interpretation
at all. It is maximally non-Riemannian. Secondly, it is fully
O(D, D) symmetric, being one of the two most symmetric
vacua of DFT,HAB = ±JAB . Thirdly, it is moduli-free since
it does not admit any infinitesimal fluctuation, δHAB = 0
[75].4 And lastly but not leastly, upon this background, the
auxiliary gauge potential, Aμ, appears linearly rather than
quadratically in the doubled-yet-gauged string action (1.11).
Consequently it serves as a Lagrange multiplier to prescribe
that all the untilde target spacetime coordinates should be
chiral [8] (c.f. [90,91]),

∂αx
μ + 1√−h

εα
β∂βxμ = 0. (2.4)

An intriguing insight from [11] is then that, the usual super-
gravity fields in (2.1) would be the Nambu–Goldstone modes
of the perfectly O(D, D) symmetric vacuum (2.3).

Given the Riemannian and maximally non-Riemannian
backgrounds, (2.1) v.s. (2.3), one may wonder about the exis-
tence of more generic non-Riemannian geometries (c.f. [8,
10] for other examples and also [22] for ‘timelike’ dual-
ity rotations). This question was answered in [1]: the most
general solutions to the defining properties of the DFT-
metric (2.2) can be classified by two non-negative integers,
(n, n̄),

HAB =
(

Hμν −Hμσ Bσλ + Yμ
i X i

λ − Ȳμ
ı̄ X̄ ı̄

λ

BκρHρν + Xi
κY

ν
i − X̄ ı̄

κ Ȳ
ν
ı̄ Kκλ − BκρHρσ Bσλ + 2Xi

(κ Bλ)ρY
ρ
i − 2X̄ ı̄

(κ Bλ)ρ Ȳ
ρ
ı̄

)
, (2.5)

where i, j = 1, 2, . . . , n, ı̄, j̄ = 1, 2, . . . , n̄ and 0 ≤ n+n̄ ≤
D.

(i) While the B-field is skew-symmetric as usual, Hμν and
Kμν are symmetric tensors whose kernels are spanned by
linearly independent vectors,

{
Xi

μ, X̄ ı̄
ν

}
and

{
Yμ
j , Ȳ ν

j̄

}
,

respectively,

HμνXi
ν = 0, Hμν X̄ ı̄

ν = 0,

KμνY
ν
j = 0, Kμν Ȳ

ν
j̄ = 0. (2.6)

(ii) A completeness relation must be satisfied

HμρKρν + Yμ
i X i

ν + Ȳμ
ı̄ X̄ ı̄

ν = δμ
ν. (2.7)

From the linear independency of the zero-eigenvectors,{
Xi

μ, X̄ ı̄
ν

}
, orthogonal/algebraic relations follow

Yμ
i X j

μ = δi
j , Ȳμ

ı̄ X̄ j̄
μ = δı̄

j̄ ,

Yμ
i X̄ j̄

μ = Ȳμ
ı̄ X j

μ = 0,

HρμKμνH
νσ = Hρσ , KρμH

μνKνσ = Kρσ . (2.8)

4 Put HA
B = δA

B in (3.5).
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Intriguingly, the B-field (hence ‘Courant algebra’) is uni-
versally present regardless of the values of (n, n̄), and con-
tributes to the DFT-metric through an O(D, D) adjoint
action:

HAB = BA
CBB

DH̊CD, (2.9)

where H̊ corresponds to the ‘B-field-free’ DFT-metric,

H̊AB =
(

H Yi (Xi )T − Ȳı̄ (X̄ ı̄ )T

Xi (Yi )T − X̄ ı̄ (Ȳı̄ )T K

)
,

(2.10)

and B is an O(D, D) element containing the B-field,

BA
B =

(
δμ

σ 0
Bρσ δρ

τ

)
, BA

CBB
DJCD = JAB . (2.11)

It is also worth while to note the ‘vielbeins’ or ‘square-roots’
of Kμν and Hμν :

Kμν = Kμ
aKν

bηab,

Hμν = Hμ
aH

ν
bη

ab,

Kμ
aHμ

b = δab,

KμaH
νa = KμρH

ρν, (2.12)

where a, b are (D − n − n̄)-dimensional indices subject to a
flat metric, say ηab , whose signature is arbitrary. Essentially,{
Kμ

a, Xi
μ, X̄ ı̄

μ

}
form a D×D invertible square matrix whose

inverse is given by
{
Hμ

a,Y
μ
i , Ȳμ

ı̄

}
as

Kμ
aH ν

a + Xi
μY

ν
i + X̄ ı̄

μȲ
ν
ı̄ = δμ

ν. (2.13)

In fact, the analysis of the DFT-vielbeins corresponding to
the (n, n̄) DFT-metric (2.5) carried out in [1] shows that the
local Lorentz symmetry group, i.e. spin group is

Spin(t + n, s + n) × Spin(s + n̄, t + n̄). (2.14)

Here (t, s) is the arbitrary signature of ηab or the nontrivial
signature of Hμν and Kμν satisfying t + s + n + n̄ = D. Of
course, once the spin group of any given theory is specified, it
is fixed once and for all. Thus, each sum, t+n, s+n, s+n̄, and
t+n̄, should be constant. For example, the Minkowskian D =
10 maximally supersymmetric DFT [85] and the doubled-
yet-gauged Green-Schwarz superstring action [79], both hav-
ing the local Lorentz group of Spin(1, 9) × Spin(9, 1), can
accommodate (0, 0) Riemannian and (1, 1) non-Riemannian
sectors only (see [12] for examples of supersymmetric non-
Riemannian backgrounds). Nevertheless, we may readily
relax the Majorana–Weyl condition therein [79,85] and
impose the Weyl condition only on spinors, such that the
local Lorentz group can take any of Spin(t̂, ŝ) × Spin(ŝ, t̂)
with t̂ + ŝ = 10. The allowed non-Riemannian geometries
will be then (n, n) types with n = n̄ running from zero to
min(t̂, ŝ) [1]. On the other hand, bosonic DFT does not care

about spin groups and hence should be free from such con-
straints. It can admit more generic (n, n̄) non-Riemannian
geometries.

Crucially, the (n, n̄) parametrization of the DFT-metric
(2.5) possesses two local symmetries, namely GL(n) ×
GL(n̄) rotations and Milne-shift transformations. TheGL(n)

× GL(n̄) symmetry rotates the i, j, . . . and ı̄, j̄ , . . . indices
of the component fields: with infinitesimal local parameters,
wi

j and w̄ı̄
j̄ ,

δGLX
i
μ = X j

μ w j
i , δGLY

μ
i = −wi

j Yμ
j ,

δGL X̄
ı̄
μ = X̄ j̄

μ w̄j̄
ı̄ , δGLȲ

μ
ı̄ = −w̄ı̄

j̄ Ȳμ
j̄ ,

δGLd = 0, δGLH
μν = 0, δGLKμν = 0, δGLBμν = 0.

(2.15)

The Milne-shift symmetry generalizes the so-called ‘Galilean
boost’ in the Newtonian gravity literature [40,41]. It acts with
infinitesimal local parameters, Vμi and V̄μı̄ ,5

δMY
μ
i = HμνVνi , δMȲ

μ
ı̄ = Hμν V̄ν ı̄ ,

δMKμν = −2Xi
(μKν)ρH

ρσVσ i − 2X̄ ı̄
(μKν)ρH

ρσ V̄σ ı̄ ,

δMBμν = −2Xi[μVν]i + 2X̄ ı̄[μV̄ν]ı̄
+ 2Xi[μ X̄ ı̄

ν]
(
Y ρ
i V̄ρ ı̄ + Ȳ ρ

ı̄ Vρi
)
,

δMd = 0, δMX
i
μ = 0, δM X̄ ı̄

μ = 0, δMH
μν = 0.

(2.16)

Remarkably, both transformations, (2.15) and (2.16), leave
the DFT-metric invariant,

δGLHAB = 0, δMHAB = 0, (2.17)

as the two local symmetries are actually parts of the under-
lying local Lorentz symmetries (2.14).

Upon the (n, n̄) background, the doubled-yet-gauged
worldsheet string action (1.11) reduces to

1
2πα′

∫
d2σ

[
− 1

2

√−hhαβ∂αx
μ∂βx

νKμν

+ 1
2εαβ∂αx

μ∂βx
νBμν + 1

2εαβ∂α x̃μ∂βx
μ

]
, (2.18)

which should be supplemented by the chiral and anti-chiral
constraints over the n and n̄ directions,

Xi
μ

(
∂αx

μ + 1√−h
εα

β∂βxμ
)

= 0,

X̄ ı̄
μ

(
∂αx

μ − 1√−h
εα

β∂βxμ
)

= 0. (2.19)

These constraints are prescribed by the integrated-out auxil-
iary gauge potential AA (1.10).

5 Through exponentiations, finite Milne-shift transformations can be
achieved, which turn out to get truncated at finite orders, for example
eδMYμ

i = Yμ
i + HμνVνi . See Eq.(2.16) of [1] for the full list.
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Comment 1. Matching with the content of the non-
Riemannian component fields,

{Hμν, Kρσ , Xi
μ, X̄ ı̄

ν,Y
ρ
j , Ȳ σ

j̄ , Bμν}, (2.20)

and the undoubled string worldsheet action resulting from
(1.11), one can identify the original Newton–Cartan [33–
35] as (1, 0), Stringy Newton–Cartan [36] as (1, 1), Car-
roll [37,38] as (D−1, 0), and Gomis–Ooguri [39] as (1, 1):
see [1,11,57] for the details of the identifications. Further,
the isometry of the (1, 1) flat DFT-metric matches with the
non-relativistic symmetry algebra such as Bargmann alge-
bra [10], while the notion of T-duality persists to make sense
in the non-relativistic string theory [47]. These all seem to
suggest that DFT may be the home, i.e. the unifying frame-
work, to describe various known as well as yet-unknown non-
Riemannian gravities.6 Having said that there are also a few
novel ingredients from DFT, such as the localGL(n)×GL(n̄)

symmetry (2.15), the notion of ‘Milne-shift covariance’ as we
shall discuss below (2.24), (2.26), and the very existence of
the DFT-dilaton of which the exponentiation, e−2d , gives the
integral measure in DFT being a scalar density with weight
one,

δξd = − 1
2e

2dLξ

(
e−2d

)
= − 1

2e
2d∂μ

(
ξμe−2d

)

= ξμ∂μd − 1
2∂μξμ. (2.21)

Comment 2. It is worth while to generalize the decomposi-
tion (2.9) to an arbitrary DFT tensor,

T̊A1A2···An := (B−1)A1
B1(B−1)A2

B2

· · · (B−1)An
Bn TB1B2···Bn , TA1···An

= BA1
B1 · · ·BAn

Bn T̊B1···Bn . (2.22)

Under diffeomorphisms, while the DFT tensor TA1···An is
surely subject to the generalized Lie derivative (1.4), the cir-
cled quantity, T̊A1···An , is now governed by the undoubled
ordinary Lie derivative which can be conveniently obtained
as the truncation of the generalized Lie derivative by choosing
the section, ∂̃μ ≡ 0, and setting the parameter, ξ A = (0, ξμ)

as ξ̃ν ≡ 0:

δξ T̊A1···An = Lξ T̊A1···An

= ξμ∂μT̊A1···An + ωT ∂μξμ T̊A1···An

+
n∑
j=1

(∂A j ξB − ∂BξA j )T̊A1···A j−1
B
A j+1···An .

(2.23)

6 Similarly, inequivalent parametrizations of the DFT-vielbeins, or U-
duality-covariant generalized metric, correspond to the conventional
distinctions between IIA and IIB [79,85], or IIB and M-“theories” [92].

Further, by construction, a DFT tensor is Milne-shift invari-
ant. Yet, the circled one is Milne-shift covariant in the fol-
lowing manner,

δMTA1···An = 0, δMT̊A1···An

=
n∑
j=1

− δMBA j
B T̊A1···A j−1BA j+1···An . (2.24)

Explicitly, for a DFT vector, VA = BA
B V̊B , we have (c.f. [76,

93])

δξ V̊A =
(

δξ V̊μ

δξ V̊ν

)
=

(Lξ V̊μ

Lξ V̊ν

)

= ξρ∂ρ V̊A + ωV ∂ρξρ V̊A

+(∂AξB − ∂BξA)V̊ B = Lξ V̊A,

δMV̊A =
(

δMV̊μ

δMV̊ν

)
=

(
0

−δMBνρ V̊ ρ

)

= −δMBA
B V̊B . (2.25)

That is to say, the circled quantities, T̊A1···An , V̊A, are ‘B-field
free’, subject to the ordinary Lie derivative, and Milne-shift
covariant rather than invariant. More specifically, the undou-
bled lower Greek indices are Milne-shift covariant, while the
upper ones are invariant: from (2.10), (2.16), (2.25),

δMV̊ν = −δMBνρ V̊
ρ,

δMV̊
μ = 0,

δMKμν = δMH̊μν = −δMBμρH̊ρ
ν − δMBνρH̊μ

ρ

= −δMBμρ(Y ρ
i X i

ν − Ȳ ρ
ı̄ X̄ ı̄

ν) − δMBνρ(Y ρ
i X i

μ − Ȳ ρ
ı̄ X̄ ı̄

μ),

δM(Yμ
i X i

ν − Ȳμ
ı̄ X̄ ı̄

ν) = δMH̊μ
ν

= −δMBνρH̊μρ = δMH̊ν
μ = −δMBνρH̊ρμ = −δMBνρH

μρ,

δMHμν = δMH̊μν = 0. (2.26)

For consistency, we also note for the O(D, D) invariant met-
ric,

JAB = J̊AB,

δMJ̊AB = −δMBA
C J̊CB − δMBB

C J̊AC = 0. (2.27)

3 Variational principle around non-Riemannian
backgrounds

Here we revisit with care the variational principle for a gen-
eral DFT action coupled to matter (1.1) especially around
non-Riemannian backgrounds. While the variations of the
matter fields lead to their own Euler–Lagrange equations of
motion, the variations of the DFT-metric and the DFT-dilaton
give [65]
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δ

∫
1

16πG e−2d S(0) + Lmatter

= 1
16πG

∫
e−2d

[
δHAB

{
(PG P̄)AB − 8πG(PT P̄)AB

}

+ 2
D δd(GA

A − 8πGTAA)
]
. (3.1)

Here GAB and TAB are respectively the stringy or O(D, D)

completions of the Einstein curvature [81] and the Energy-
Momentum tensor [65], as summarized in Table 1. The above
result is easy to obtain once we neglect a boundary contribu-
tion arising from a total derivative [63]:

1
16πG e

−2d HABδSAB = ∂A
(
e−2d 1

8πGHB[Aδ	CB
C]) ,

(3.2)

and take into account a well-known identity which the
infinitesimal variation of the DFT-metric should satisfy
[7,62,94],

δHAB = 2P(A
C P̄B)

DδHCD . (3.3)

Equation (3.2) holds due to the nice variational property
of the semi-covariant curvature, δSAB = ∇[Aδ	C]BC +
∇[Bδ	C]AC , and the compatibility of the derivative, ∇AJBC

= 0, ∇AHBC = 0, ∇Ad = 0, see Table 1. Equation (3.3)
holds because the DFT-metric is constrained to be a sym-
metric O(D, D) element (2.2), see also (3.5) below. This is
the reason why in the variation of the action (3.1) δHAB

is contracted with a projected quantity, i.e. (PG P̄)AB −
8πG(PT P̄)AB . Equation (3.1) is then supposed to give the
EDFEs, GAB = 8πGTAB (1.3) [65], as the two variations,
δHAB and δd, give the projected part and the trace part sep-
arately,

(PG P̄)AB = 8πG(PT P̄)AB, GA
A = 8πGTA

A, (3.4)

which comprise the full EDFEs. While there is no issue on
the equation of motion of the DFT-dilaton, i.e. the trace
part in (3.4), there might be some ambiguity on the DFT-
metric variation especially around a non-Riemannian back-
ground. For example, let us take one of the two maxi-
mally non-Riemannian, fully O(D, D) symmetric vacua, as
HAB = JAB . Because it does not allow any infinitesimal
variation or moduli, δHAB = 0 [75], the induced variation
of the action is null and therefore it should not generate any
nontrivial Euler–Lagrange equation of motion. Nevertheless,
in this case the ‘barred’ projector vanishes automatically,
P̄AB = 0, and the projected part of the EDFEs in (3.4) is satis-
fied rather trivially. It appears that we have a slightly puzzling
situation for the non-Riemannian background, HAB = JAB :
it allows no infinitesimal variation δHAB = 0 and hence one
may expect that the variation of the action should be trivial
and there should be no nontrivial Euler–Lagrange equation
of motion of the DFT-metric. This is all true, but nevertheless

the full EDFEs are still valid! (though in a trivial manner as
P̄ = 0).

Below, through Sects. 3.1 and 3.2, we shall rigorously
revisit the variational principle of DFT around a generic
non-Riemannian background. Basically, we are question-
ing whether it is really safe from (3.3) to put δHAB =
2P(A

C P̄B)
DMCD and read off the Euler–Lagrange equation

of motion of the DFT-metric as ifMCD is a generic symmet-
ric matrix. To answer this, we shall directly identify the truly
independent degrees of freedom in the infinitesimal fluctua-
tions of an arbitrary (n, n̄) non-Riemannian DFT-metric, as
(3.12). We shall confirm that the full Einstein Double Field
Equations are still valid for non-Riemannian sectors, either
trivially due to projection properties or nontrivially from the
genuine variational principle.

3.1 Variations of the DFT-metric around a generic (n, n̄)

background

Here we shall identify the most general form of the infinites-
imal fluctuations around a generic (n, n̄) DFT-metric (2.5).
The fluctuations must respect the defining properties of the
DFT-metric (2.2) and hence satisfy

δHAB = δHBA, δHA
BHB

C + HA
BδHB

C = 0. (3.5)

It follows that δHA
B = −HA

CδHC
DHD

B , and hence
equivalent (3.3) holds. In particular, δHA

B is traceless,

δHA
A = 0. (3.6)

That is to say, the trace of the DFT-metric, HA
A = 2(n− n̄),

is invariant under continuous deformations.
Without loss of generality, like (2.9), we put

δHAB =
(

1 0
B 1

) (
α γ

γ T β

) (
1 −B
0 1

)
,

α = αT , β = βT .

(3.7)

With this ansatz, the former condition in (3.5) is met and the
latter gives

γYi (X
i )T − γ Ȳı̄ (X̄

ı̄ )T + αK

+Yi (X
i )T γ − Ȳı̄ (X̄

ı̄ )T γ + Hβ = 0,

βYi (X
i )T − βȲı̄ (X̄

ı̄ )T

+γ T K + Kγ + Xi (Yi )
Tβ − X̄ ı̄ (Ȳı̄ )

Tβ = 0,

γ H + αXi (Yi )
T − α X̄ ı̄ (Ȳı̄ )

T + Yi (X
i )Tα

−Ȳı̄ (X̄
ı̄ )Tα + Hγ T = 0. (3.8)

We need to solve these three constraints. For this, we uti-
lize the completeness relation (2.13), and decompose each
of {α, β, γ } into mutually orthogonal pieces,
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αμν = Hμ
a H

ν
bα

ab + Yμ
i Y ν

j α
i j + Ȳμ

ı̄ Ȳ ν
j̄ α ı̄ j̄

+2H (μ
aY

ν)
i αai + 2H (μ

aȲ
ν)
ı̄ αaı̄ + 2Y (μ

i Ȳ
ν)
ı̄ αi ı̄ ,

βμν = Kμ
aKν

bβab + Xi
μX

j
νβi j + X̄ ı̄

μ X̄
j̄
ν βı̄ j̄

+2K(μ
a Xi

ν)βai + 2K(μ
a X̄ ı̄

ν)βaı̄ + 2X(μ
i X̄ ı̄

ν)βi ı̄ ,

γ μ
ν = Hμ

aKν
bγ a

b + Hμ
a X

i
νγ

a
i

+Hμ
a X̄

ı̄
νγ

a
ı̄ + Yμ

i Kν
aγ i

a + Yμ
i X j

ν γ i
j + Yμ

i X̄ j̄
ν γ i

j̄

+Ȳμ
ı̄ Kν

aγ ı̄
a + Ȳμ

ı̄ X j
ν γ ı̄

j + Ȳμ
ı̄ X̄ j̄

ν γ ı̄
j̄ , (3.9)

where, since α, β are symmetric,

αab = αba, αi j = α j i ,

α ı̄ j̄ = αj̄ ı̄ , βab = βba,

βi j = β j i , βı̄ j̄ = βj̄ ı̄ . (3.10)

We remind the readers that, using the (D−n−n̄)-dimensional
flat metric, ηab, we freely raise or lower the indices, a, b.
Now, with the decomposition (3.9), it is straightforward to
see that (3.8) implies

αa
i + γ i

a = 0, αa
ı̄ − γ ı̄

a = 0,

βai + γai = 0, βaı̄ − γaı̄ = 0,

αab + βab = 0, γab + γba = 0, αi j = 0,

α ı̄ j̄ = 0, βi j = 0, βı̄ j̄ = 0, γ i
j = 0, γ ı̄

j̄ = 0. (3.11)

Thus, the independent degrees of freedom for the fluctuations
consist of

α(ab) = −β(ab), γ[ab], γ a
i = −βa

i ,

γ a
ı̄ = βa

ı̄ , γ i
a = −αa

i ,

γ ı̄
a = αa

ı̄ , αi ı̄ , β j j̄ , γ
i
ı̄ , γ j̄

j . (3.12)

In total, as counted sequently as

1
2 (D − n − n̄)(D − n − n̄ + 1)

+ 1
2 (D − n − n̄)(D − n − n̄ − 1)

+2(D − n − n̄)(n + n̄) + 4nn̄ = D2 − (n − n̄)2,

(3.13)

there are D2 − (n − n̄)2 number of degrees of freedom
which matches precisely the dimension of the underlying
coset [11],

O(D, D)

O(t + n, s + n) × O(s + n̄, t + n̄)
. (3.14)

Furthermore, if we employ the DFT-vielbeins,7 VAp, V̄A p̄,
the projected part of the EDFEs (3.4) is equivalent to[
(PG P̄)AB − 8πG(PT P̄)AB

]
V A

pV̄
B
p̄ = 0. (3.15)

7 The only required property of the DFT-vielbeins is VApVB
p +

V̄A p̄ V̄B
p̄ = JAB . See [75] for a related discussion.

As the local Lorentz vector indices p and p̄ run from one
to D + n − n̄ and D − n + n̄ respectively, there are in total
(D + n − n̄) × (D − n + n̄) = D2 − (n − n̄)2 number of
components in (3.15) which coincides with the total number
of independent fluctuations of the (n, n̄) DFT-metric (3.13).
As the number of the equations and the fluctuations are the
same, we may well expect that the former should be implied
by the variational principle generated by the latter. Below, we
confirm this directly through explicit computation, without
using the DFT-vielbeins.

3.2 Einstein Double Field Equations still hold for
non-Riemannian sectors

Now, we proceed to organize the variation of the action
induced by that of the (n, n̄) DFT-metric (3.1) in terms of the
independent degrees of freedom for the fluctuations (3.12).

We apply the prescription (2.22) and write a pair of circled
‘B-field-free’ symmetric projectors,

P̊AB = P̊BA = (B−1)A
C (B−1)B

D PCD

= 1

2

(
H HK + 2Yi (Xi )T

K H + 2Xi (Yi )T K

)
,

˚̄PAB = ˚̄PBA = (B−1)A
C (B−1)B

D P̄CD

= 1

2

( −H HK + 2Ȳı̄ (X̄ ı̄ )T

K H + 2X̄ ı̄ (Ȳı̄ )T −K

)
, (3.16)

which satisfy P̊A
B + ˚̄PA

B = δA
B , P̊A

B ˚̄PB
C = 0, and useful

identities,

Kμa P̊μ
A = Hμ

a P̊μA, X̄ ı̄
μ P̊

μ
A = 0,

Ȳμ
ı̄ P̊μA = 0,

Kμa
˚̄Pμ

A = −Hμ
a

˚̄PμA, Xi
μ

˚̄Pμ
A = 0,

Yμ
i

˚̄PμA = 0.

(3.17)

We also introduce a shorthand notation for the Einstein Dou-
ble Field Equations,

EAB := GAB − 8πGTAB,

ÊAB := (B−1)A
C (B−1)B

DECD . (3.18)

Hereafter, hatted quantities contain generically the H-flux,

Hλμν = ∂λBμν + ∂μBνλ + ∂νBλμ, (3.19)

but, like the circled ones, there is no apparent bare B-field in
them.

123



Eur. Phys. J. C (2020) 80 :101 Page 9 of 19 101

It is now straightforward to compute the variation in (3.1),

δHAB(PE P̄)AB

= 2γ a
i X

i
μ(P̊ Ê ˚̄P)μνH

ν
a + 2γ a

ı̄ H
μ
a(P̊ Ê ˚̄P)μ

ν X̄ ı̄
ν

−2γ i
aY

μ
i (P̊ Ê ˚̄P)μνH

νa + 2γ ı̄
a H

μ
a(P̊ Ê ˚̄P)μν Ȳ

ν
ı̄

+αi ı̄ Yμ
i (P̊ Ê ˚̄P)μν Ȳ

ν
ı̄ + γ i

ı̄ Y
μ
i (P̊ Ê ˚̄P)μ

ν X̄ ı̄
ν

+γ ı̄
i X

i
μ(P̊ Ê ˚̄P)μν Ȳ

ν
ı̄ + βi ı̄ X

i
μ(P̊ Ê ˚̄P)μν X̄ ı̄

ν

+2
(
α(ab) − γ [ab]) Hμ

a(P̊ Ê ˚̄P)μνH
ν
b. (3.20)

Each term is independent and thus, from the variational prin-
ciple, should vanish individually on-shell,

Xi
μ(P̊ Ê ˚̄P)μνH

ν
a = 0, Hμ

a(P̊ Ê ˚̄P)μ
ν X̄ ı̄

ν = 0,

Yμ
i (P̊ Ê ˚̄P)μνH

ν
a = 0,

Hμ
a(P̊ Ê ˚̄P)μν Ȳ

ν
ı̄ = 0, Yμ

i (P̊ Ê ˚̄P)μν Ȳ
ν
ı̄ = 0,

Yμ
i (P̊ Ê ˚̄P)μ

ν X̄ ı̄
ν = 0,

Xi
μ(P̊ Ê ˚̄P)μν Ȳ

ν
ı̄ = 0, Xi

μ(P̊ Ê ˚̄P)μν X̄ ı̄
ν = 0,

Hμ
a(P̊ Ê ˚̄P)μνH

ν
b = 0. (3.21)

In total, as counted sequently as,

2(D − n − n̄)(n + n̄) + 4nn̄ + (D − n − n̄)2

= D2 − (n − n̄)2, (3.22)

there is D2 − (n − n̄)2 number of independent on-shell rela-
tions, or EDFEs, in consistent with (3.13).

Up to the completeness relations (2.7), (2.13), and the
identities (3.17), the first and the seventh in (3.21), the first
and the eighth, the third and the fifth, the third and the sixth,
the second and the last, the fourth and the last imply respec-
tively,

Xi
μ(P̊ Ê ˚̄P)μν = 0, Xi

μ(P̊ Ê ˚̄P)μν = 0,

Yμ
i (P̊ Ê ˚̄P)μν = 0, Yμ

i (P̊ Ê ˚̄P)μ
ν = 0,

Hμ
a(P̊ Ê ˚̄P)μ

ν = Kμa(P̊ Ê ˚̄P)μν = 0,

Hμ
a(P̊ Ê ˚̄P)μν = Kμa(P̊ Ê ˚̄P)μν = 0. (3.23)

Finally, the first and the last, the second and the fifth, the third
and the last, the fourth and the fifth give

(P̊ Ê ˚̄P)μν = 0, (P̊ Ê ˚̄P)μν = 0,

(P̊ Ê ˚̄P)μν = 0, (P̊ Ê ˚̄P)μ
ν = 0. (3.24)

In this way, all the components of (P̊ Ê ˚̄P)AB vanish and the
full EDFEs persist to be valid universally for arbitrary (n, n̄)

backgrounds.

Comment. From (3.17), off-shell relations hold among the
components of the EDFEs,

(P̊ Ê ˚̄P)μ
ν = Kμρ(P̊ Ê ˚̄P)ρν + Xi

μY
ρ
i (P̊ Ê ˚̄P)ρ

ν,

(P̊ Ê ˚̄P)μν = −(P̊ Ê ˚̄P)μρKρν + (P̊ Ê ˚̄P)μρ Ȳ
ρ
ı̄ X̄ ı̄

ν,

(P̊ Ê ˚̄P)μν = −Kμρ(P̊ Ê ˚̄P)ρσ Kσν + Kμρ(P̊ Ê ˚̄P)ρσ Ȳ
σ
ı̄ X̄ ı̄

ν

−Xi
μY

ρ
i (P̊ Ê ˚̄P)ρ

σ Kσν

+Xi
μY

ρ
i (P̊ Ê ˚̄P)ρσ Ȳ

σ
ı̄ X̄ ı̄

ν, (3.25)

such that the full EDFEs are satisfied if

(P̊ Ê ˚̄P)μν = 0, Yμ
i (P̊ Ê ˚̄P)μ

ν = 0,

(P̊ Ê ˚̄P)μν Ȳ
ν
ı̄ = 0, Yμ

i (P̊ Ê ˚̄P)μν Ȳ
ν
ı̄ = 0, ÊA

A = 0.

(3.26)

4 What if we keep (n, n̄) fixed once and for all?

As it is a outstandingly hard problem to construct an action
principle for non-Riemannian gravity (c.f. [45,46,48] for
recent proposals), we may ask if the DFT action restricted to a
fixed (n, n̄) sector might serve as the desired target spacetime
gravitational action, c.f. (4.21). In this section, seeking for the
answer to this question, we reanalyze the variational principle
of DFT, crucially keeping (n, n̄) fixed. To our surprise, we
obtain a subtle discrepancy with the previous section where
the most general variations of the DFT-metric were analyzed.
We shall see that, when the values of (n, n̄) are kept fixed
and nn̄ �= 0, not all the components of the EDFEs (3.26) are
implied by the variational principle.

4.1 Variational principle with fixed (n, n̄)

We start with (3.1) which gives the variation of the general
DFT action induced by the DFT-metric. With fixed (n, n̄),
the variation of the DFT-metric therein should comprise the
variations of the (n, n̄) component fields:

δH = B
(

δH −HδB + δ
[
Yi (Xi )T − Ȳı̄ (X̄ ı̄ )T

]
δBH + δ

[
Xi (Yi )T − X̄ ı̄ (Ȳı̄ )T

]
δK + δB

[
Yi (Xi )T − Ȳı̄ (X̄ ı̄ )T

] − [
(Xi (Yi )T − X̄ ı̄ (Ȳı̄ )T

]
δB

)
BT . (4.1)
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Further, from their defining relations, (2.6), (2.7), the vari-
ations of the (n, n̄) component fields are not entirely inde-
pendent. They must meet

δYμ
i = −HμρδKρσY

σ
i − Yμ

j δX j
ρY

ρ
i − Ȳμ

j̄ δ X̄ j̄
ρY

ρ
i ,

δȲμ
ı̄ = −HμρδKρσ Ȳ

σ
ı̄ − Yμ

j δX j
ρ Ȳ

ρ
ı̄ − Ȳμ

j̄ δ X̄ j̄
ρ Ȳ

ρ
ı̄ ,

δXi
μ = −KμρδHρσ Xi

σ − X j
μδY ρ

j X
i
ρ − X̄ j̄

μδȲ ρ
j̄ Xi

ρ,

δ X̄ ı̄
μ = −KμρδHρσ X̄ ı̄

σ − X j
μδY ρ

j X̄
ı̄
ρ − X̄ j̄

μδȲ ρ
j̄ X̄ ı̄

ρ, (4.2)

δHμν = −HμρδKρσ H
σν − 2Y (μ

i H ν)ρδXi
ρ

−2Ȳ (μ
ı̄ H ν)ρδ X̄ ı̄

ρ,

δKμν = −KμρδHρσ Kσν − 2δY ρ
i Kρ(μX

i
ν)

−2δȲ ρ
ı̄ Kρ(μ X̄

ı̄
ν). (4.3)

From (2.12), we also note

δKμν = 2K(μ
aδKν)a, δHμν = 2H (μ

aδH
ν)a, (4.4)

which imply in particular,

δKμνY
μ
i Ȳ

ν
ı̄ = 0, δHμνXi

μ X̄
ı̄
ν = 0. (4.5)

It is then evident from (4.2), (4.3), and (4.4) that we have
freedom to choose either {δKμ

a, δXi
ρ, δ X̄ ı̄

σ } or {δHμ
a, δY

ρ
i ,

δȲ σ
ı̄ } as independent variations. Each of them has (formally)

D2 number of degrees of freedom.
Now, we substitute (4.1) into (3.1), and utilize (4.2), (4.3),

(4.4), (4.5) to obtain

δ

∫
1

16πG e−2d S(0) + Lmatter

=
∫

1
4πG e−2d

[
2δKνaKμ

a(P̊ Ê ˚̄P)(μν)

+Y ρ
i (P̊ Ê ˚̄P)ρ

μδXi
μ − δ X̄ ı̄

μ(P̊ Ê ˚̄P)μρ Ȳ
ρ
ı̄

−δBμν(P̊ Ê ˚̄P)μν
]

=
∫

1
4πG e−2d

[
2δH νaHμ

a(P̊ Ê ˚̄P)(μν)

+Xi
ρ(P̊ Ê ˚̄P)ρμδYμ

i

−δȲμ
ı̄ (P̊ Ê ˚̄P)μ

ρ X̄ ı̄
ρ − δBμν(P̊ Ê ˚̄P)μν

]
. (4.6)

The variational principle implies either from the second line
of (4.6),

Kμρ(P̊ Ê ˚̄P)ρν + (P̊ Ê ˚̄P)νρKρμ = 0, Y ρ
i (P̊ Ê ˚̄P)ρ

μ = 0,

(P̊ Ê ˚̄P)μρ Ȳ
ρ
ı̄ = 0, (P̊ Ê ˚̄P)[μν] = 0, (4.7)

or alternatively from the third line of (4.6),

Hμρ(P̊ Ê ˚̄P)ρν + (P̊ Ê ˚̄P)νρH
ρμ = 0, Xi

ρ(P̊ Ê ˚̄P)ρμ = 0,

(P̊ Ê ˚̄P)μ
ρ X̄ ı̄

ρ = 0, (P̊ Ê ˚̄P)[μν] = 0. (4.8)

Although (4.7) and (4.8) appear seemingly different, they are
– as should be – equivalent. In fact, they are both equivalent
to

(P̊ Ê ˚̄P)μν = 0, (P̊ Ê ˚̄P)μν = 0,

(P̊ Ê ˚̄P)μ
ν = 0, (P̊ Ê ˚̄P)μν = Xi

μY
ρ
i (P̊ Ê ˚̄P)ρσ Ȳ

σ
ı̄ X̄ ı̄

ν,

(4.9)

which are, from (3.25), further equivalent to more concise
ones,

(P̊ Ê ˚̄P)μν = 0, (P̊ Ê ˚̄P)μν Ȳ
ν
ı̄ = 0,

Yμ
i (P̊ Ê ˚̄P)μ

ν = 0. (4.10)

Appendix A carries our proof.
The surprise which is manifest in (4.9) is that, when

nn̄ �= 0 the variational principle with fixed (n, n̄) does
not imply the full EDFEs (3.26): it does not constrain

Y ρ
i (P̊ Ê ˚̄P)ρσ Ȳ σ

ı̄ . However, as we have shown in the previous
section, within the DFT frame they should vanish on-shell,

Y ρ
i (P̊ Ê ˚̄P)ρσ Ȳ σ

ı̄ = 0, and the full EDFEs should hold. We
shall continue to discuss and conclude in the final Sect. 5.

4.2 Difference between keeping (n, n̄) fixed or not

In order to understand the discrepancy in the resulting Euler–
Lagrangian equations, (3.24) vs. (4.9), here we investigate
how the infinitesimal variations of the component fields of
the (n, n̄) DFT-metric (4.1),{
δHμν, δKρσ , δXi

μ, δY ν
j , δ X̄ ı̄

ρ, δȲ σ
j̄ , δBμν

}
, (4.11)

contribute actually to the α, β, γ variables defined in the
generic variation of the DFT-metric (3.7),

(
α γ

γ T β

)
=

(
δH −HδB + δ

[
Yi (Xi )T − Ȳı̄ (X̄ ı̄ )T

]
δBH + δ

[
Xi (Yi )T − X̄ ı̄ (Ȳı̄ )T

]
δK + δB

[
Yi (Xi )T − Ȳı̄ (X̄ ı̄ )T

] − [
(Xi (Yi )T − X̄ ı̄ (Ȳı̄ )T

]
δB

)
. (4.12)

With (3.9), one can identify the contributions thoroughly:

αab = −Hμ
aH

ν
bδKμν = −2δKρ(aH

ρ
b),

βab = −αab = −2Kρ(aδH
ρ
b) = −KμaKνbδH

μν,

αai = −HρaδXi
ρ,

βai = −KρaδY
ρ
i + Hρ

aδBρσY
σ
i ,

123



Eur. Phys. J. C (2020) 80 :101 Page 11 of 19 101

αaı̄ = −Hρaδ X̄ ı̄
ρ,

βaı̄ = −KρaδȲ
ρ
ı̄ − Hρ

aδBρσ Ȳ
σ
ı̄ ,

αi j = 0, βi j = 0,

α ı̄ j̄ = 0, βı̄ j̄ = 0,

αi ı̄ = 0, βi ı̄ = −2Y ρ
i δBρσ Ȳ

σ
ı̄ , (4.13)

and

γ a
i = Kρ

aδY ρ
i − HρaδBρσY

σ
i = −βa

i ,

γ a
ı̄ = −Kρ

aδȲ ρ
ı̄ − HρaδBρσ Ȳ

σ
ı̄ = βa

ı̄ ,

γ i
a = −Xi

ρδHρσ Kσa = −αa
i ,

γ ı̄
a = X̄ ı̄

ρδHρσ Kσa = αa
ı̄ , γ i

j = 0,

γ ı̄
j̄ = 0, γ i

ı̄ = −Xi
ρδȲ ρ

ı̄ ,

γ ı̄
i = X̄ ı̄

ρδY ρ
i , γab = −γba = −Hρ

aH
σ
bδBρσ . (4.14)

This is consistent with the general result of (3.11). However,
one surprise is that αi ı̄ must be trivial when the (n, n̄) com-
ponent fields (4.11) are varied while keeping (n, n̄) fixed.

To identify the significance of the αi ı̄ parameter, we focus
on the induced transformation of Hμν ,

Hμν −→ H ′μν � Hμν + 2Y (μ
i Ȳ ν)

ı̄ αi ı̄ . (4.15)

Geometrically the deformation of 2Y (μ
i Ȳ ν)

ı̄ αi ı̄ is ‘orthogonal’
to Hμν , and thus we expect it should reduce the kernel of
Hμν . To verify this explicitly, we solve for the eigenvectors
of H ′μν with zero eigenvalue,

H ′μνXν = 0. (4.16)

Without loss of generality, utilizing the completeness rela-
tion, KμaH νa + Xi

μY
ν
i + X̄ ı̄

μȲ
ν
ı̄ = δμ

ν , we decompose the
zero-eigenvector,

Xν = Kνac
a + Xi

νci + X̄ ı̄
ν c̄ı̄ , (4.17)

substitute this ansatz into (4.16), and acquire the conditions
the coefficients should satisfy,

ca = 0, αi ı̄ ci = 0, αi ı̄ c̄ı̄ = 0. (4.18)

This shows that there are in total (n − rank [αi ı̄ ]) + (n̄ −
rank [αi ı̄ ]) = n + n̄ − 2 × rank [αi ı̄ ] number of zero-
eigenvectors. Moreover, from the invariance, δHA

A = 0 (3.6),
we note that the deformation by the αi ı̄ parameter actually
changes the type of the ‘non-Riemannianity’ as

(n, n̄) −→ (
n − rank [αi ı̄ ], n̄ − rank [αi ı̄ ]) . (4.19)

This essentially explains why αi ı̄ vanishes in (4.13) where the
(n, n̄) component field variables are varied with fixed values
of (n, n̄), or fixed ‘non-Riemannianity’. It is intriguing to

note that the deformation makes the DFT-metric always less
non-Riemannian.8

4.3 Non-Riemannian differential geometry as bookkeeping
device

This subsection is the last one before Conclusion, and is
somewhat out of context. At first reading, readers may

glimpse (4.21) in comparison with (4.20), and skip to the
final Sect. 5.

While the various (n, n̄) non-Riemannian geometries are
universally well described by DFT through O(D, D) covari-
ant tensors – as summarized in Table 1 – it may be desirable
in practical computations to break the manifest O(D, D)

symmetry spontaneously by fixing the section, ∂̃μ ≡ 0,
and dismantle the O(D, D) covariant tensors or curvatures
into smaller modules which should be still covariant under
undoubled ordinary diffeomorphisms, B-field gauge sym-
metry, and GL(n) × GL(n̄) local rotations. We remind the
readers that in the case of the (0, 0) Riemannian sector, the
O(D, D) singlet DFT scalar curvature reduces to four mod-
ules (c.f. [27,95,96]):

S(0)

∣∣
(0,0) Riemannian = Rg − 1

12H
λμν

Hλμν

+4�φ − 4∂μφ∂μφ. (4.20)

Here in this last section, we propose an undoubled non-
Riemannian differential tool kit, such as covariant derivative
and curvature, for an arbitrary (n, n̄) sector. It descends from
the DFT geometry, or the so-called “semi-covariant formal-
ism” [63], and generalizes the standard Riemannian geom-
etry underlying (4.20) in a consistent manner. It breaks the
manifest O(D, D) symmetry spontaneously, but preserves
the ordinary diffeomorphisms, B-field gauge symmetry, and
theGL(n)×GL(n̄) local symmetries as desired. In particular,
it enables us to extend the Riemannian expression of (4.20) in
a way ‘continuously’ to the generic (n, n̄) non-Riemannian
case,

S(0)

∣∣∣
(n,n̄) fixed

= R − 1
12 H

λρHμσ H ντ
HλμνHρστ

−HλμνH
λρ

(
Yμ
i D

νXi
ρ − Ȳμ

ı̄ D
ν X̄ ı̄

ρ

)

+4Kμν

(
DμDνd − Dμd Dνd

)
. (4.21)

We commence our explanation. First of all, Dμ is our
proposed ‘upper-indexed’ covariant derivative:

Dμ = Hμρ∂ρ + �μ + ϒμ + ϒ̄μ, (4.22)

8 In a way, on the space of full DFT geometries, the (0, 0) Rieman-
nian geometry corresponds to an open set as det(Hμν) �= 0, while the
genuine non-Riemannian geometries form a closed set, det(Hμν) = 0.
Infinitesimally, it is impossible to leave an open set but possible to leave
a closed set.
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which preserves both the undoubled diffeomorphisms (2.23)
and the GL(n) × GL(n̄) local symmetries (2.15) as is
equipped with proper connections: for undoubled ordinary
diffeomorphisms,

�μν
λ = − 1

2∂λH
μν − Hρ[μ∂ρH

ν]σ Kσλ

−Hρ[μ∂ρY
ν]
i X i

λ − Hρ[μ∂ρ Ȳ
ν]
ı̄ X̄ ı̄

λ

+
(

2Hρ[μY ν]
i ∂[τ Xi

ρ] − 2Hρ[μȲ ν]
ı̄ ∂[τ X̄ ı̄

ρ]
)

×
(
Y τ
j X

j
λ − Ȳ τ

j̄ X̄
j̄
λ

)
, (4.23)

and for GL(n) × GL(n̄) rotations,

ϒμ i
j = −2HμρY σ

j ∂[ρXi
σ ], ϒ̄μ ı̄

j̄

= −2Hμρ Ȳ σ
j̄ ∂[ρ X̄ ı̄

σ ]. (4.24)

We also denote a diffeomorphism-only preserving covariant
derivative by

Dμ = Hμρ∂ρ + �μ, (4.25)

and write for (4.22) and (4.24),

Dμ = Dμ + ϒμ + ϒ̄μ,

ϒμ i
j = Xi

ρD
μY ρ

j = −Y ρ
j D

μXi
ρ,

ϒ̄μ ı̄
j̄ = X̄ ı̄

ρD
μȲ ρ

j̄ = −Ȳ ρ
j̄ D

μ X̄ ı̄
ρ. (4.26)

Taking care of both spacetime and GL(n) ×GL(n̄) indices,
Dμ acts on general tensor densities in a standard manner:

DλTμi ı̄
ν j j̄ = Hλρ∂ρT

μi ı̄
ν j j̄ − ωT�

λρ
ρT

μi ı̄
ν j j̄

+�λμ
ρT

ρi ı̄
ν j j̄ − �λρ

νT
μi ı̄

ρ j j̄

+ϒλi
kT

μkı̄
ν j j̄ + ϒ̄λı̄

k̄ T
μi k̄

ν j j̄

−ϒλk
j T

μi ı̄
νkj̄ − ϒ̄λk̄

j̄T
μi ı̄

ν j k̄ . (4.27)

On the other hand, Dμ cares only the spacetime indices and
ignores any GL(n) × GL(n̄) indices,

DλTμi ı̄
ν j j̄ = Hλρ∂ρT

μi ı̄
ν j j̄ − ωT�

λρ
ρT

μi ı̄
ν j j̄

+�λμ
ρT

ρi ı̄
ν j j̄ − �λρ

νT
μi ı̄

ρ j j̄ . (4.28)

For example, we have explicitly

DμXi
ν = Hμρ∂ρX

i
ν − Xi

ρ�μρ
ν + ϒμi

j X
j
ν

= Hμρ(K H)ν
σ ∂[ρXi

σ ],
Dμ X̄ ı̄

ν = Hμρ∂ρ X̄
ı̄
ν − X̄ ı̄

ρ�μρ
ν + ϒ̄μı̄

j̄ X̄
j̄
ν

= Hμρ(K H)ν
σ ∂[ρ X̄ ı̄

σ ]. (4.29)

It is instructive to see that the far right resulting expressions in
(4.29) are clearly covariant under both diffeomorphisms and
GL(n)×GL(n̄) local rotations, as the ρ, σ indices therein are
skew-symmetrized and also contracted with Hμρ , (K H)ν

σ .
However, without the GL(n)×GL(n̄) connections, we note

DμXi
ν = Hμρ∂ρX

i
ν − �μρ

νX
i
ρ

= Hμρ
[
(K H)ν

σ + 2X j
νY

σ
j

]
∂[ρXi

σ ], (4.30)

and this breaks the GL(n) × GL(n̄) local symmetry.
Further, for the DFT-dilaton we should have

Dμd = Dμd = − 1
2e

2d Dμ
(
e−2d

)

= Hμρ∂ρd + 1
2�μρ

ρ, (4.31)

where we have explicitly

�μρ
ρ = Hμν

(
1
2 H

ρσ ∂νKρσ + Y ρ
i ∂ρX

i
ν + Ȳ ρ

ı̄ ∂ρ X̄
ı̄
ν

)

= − 1
2 Kρσ ∂μHρσ + Kρσ ∂σ Hμρ − ∂ρH

μρ. (4.32)

Because Hμν and Kρσ are generically degenerate, the con-
ventional relation (2.1) between the DFT-dilaton, d, and the
string dilaton, φ, cannot hold. We stick to use the DFT-dilaton
all the way.9

The connections do the job as they transform properly
under the diffeomorphisms (2.23), (2.25) and the GL(n) ×
GL(n̄) local rotations (2.15),

δξ�
μν

λ = Lξ�
μν

λ + Hμρ∂ρ∂λξ
ν,

δGL�
μν

λ = 0,

δξϒ
μi

j = Lξϒ
μi

j ,

δGLϒ
μi

j = ϒμkwk
i − w j

kϒμi
k − Hμρ∂ρw j

i ,

δξ ϒ̄
μı̄

j̄ = Lξ ϒ̄
μı̄

j̄ ,

δGLϒ̄
μı̄

j̄ = ϒ̄μk̄w̄k̄
ı̄ − w̄j̄

k̄ϒ̄μı̄
k̄ − Hμρ∂ρw̄j̄

ı̄ . (4.33)

In particular, Xi
μ�μν

λ, X̄ ı̄
μ�μν

λ, and Hρ[λ�μ]ν
ρ are covari-

ant tensors which might be viewed as “torsions”.
Finally, we define an upper-indexed Ricci curvature,

Rμν := Hμρ∂ρ�σν
σ − Hσρ∂ρ�μν

σ + �μν
ρ�σρ

σ

−�σμ
ρ�ρν

σ

+2
(
Y σ
i D

μXi
ρ + Ȳ σ

ı̄ D
μ X̄ ı̄

ρ

)
�ρν

σ , (4.34)

which is diffeomorphism andGL(n)×GL(n̄) covariant, as it
comes from the following commutator relation that is clearly
also covariant,
[
Dμ,Dν

]
Tν + 4

(
Y σ
i D

μXi
ρ + Ȳ σ

ı̄ D
μ X̄ ı̄

ρ

)
Hρν∂[σ Tν]

+2
(
Y ν
i D

μXi
ρ + Ȳ ν

ı̄ D
μ X̄ ı̄

ρ

)
DρTν = −RμνTν. (4.35)

A scalar curvature follows naturally,

R := KμνR
μν, (4.36)

which debuted in (4.21).

9 We tend to believe that the conventional string dilaton, φ, is an artifact
of the (0, 0) Riemannian geometry and the DFT-dilaton, d, is more
fundamental as being an O(D, D) singlet.
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Our covariant derivative is “compatible” with the (n, n̄) com-
ponent fields in a generalized fashion:

DλHμν + 2Y (μ
i H ν)ρDλXi

ρ + 2Ȳ (μ
ı̄ H ν)ρDλ X̄ ı̄

ρ = 0,

Y ρ
i D

μX j
ρ = 0, Ȳ ρ

ı̄ D
μ X̄ j̄

ρ = 0,

DλKμν + 2Xi
(μKν)ρD

λY ρ
i + 2X̄ ı̄

(μKν)ρD
λȲ ρ

ı̄ = 0,

Dλδμ
ν = 0, Dλδi

j = 0, Dλδı̄
j̄ = 0. (4.37)

Another characteristic is that, if we add one more torsion
linear in the H-flux to the �-connection,

�̂μν
λ := �μν

λ + 1
2 H

μρH νσ
Hρστ

(
Y τ
j X

j
λ − Ȳ τ

j̄ X̄
j̄
λ

)
,

D̂μ := Hμρ∂ρ + �̂μ, (4.38)

the hatted new connection becomes Milne-shift covariant as
well, in the sense of (2.16), (2.25), (2.26),

δM�̂μν
λ = − 1

2δMBλρĤ
μνρ, δMĤ

λμν = 0, (4.39)

where Ĥλμν is a diffeomorphism covariant, GL(n)×GL(n̄)

invariant, and Milne-shift invariant H-flux,

Ĥ
λμν = Ĥ

[λμν] := HλρHμσ H ντ Hρστ + 6Hρ[λYμ
i D

ν]Xi
ρ

−6Hρ[λȲμ
ı̄ D

ν] X̄ ı̄
ρ. (4.40)

The GL(n)×GL(n̄) connections (4.26) are inert to the addi-
tion of the H-flux-valued-torsion (4.38) as

ϒμ i
j = Xi

ρD
μY ρ

j = Xi
ρD̂

μY ρ
j = ϒ̂μ i

j ,

ϒ̄μ ı̄
j̄ = X̄ ı̄

ρD
μȲ ρ

j̄ = X̄ ı̄
ρD̂

μȲ ρ
j̄ = ̂̄ϒμ ı̄

j̄ , (4.41)

while they transform under the Mine-shift as δMϒμi
j =

−2HρσVρ jD
μXi

σ , δMϒ̄μı̄
j̄ = −2Hρσ V̄ρj̄D

μ X̄ ı̄
σ .

After all, in terms of a hatted covariant derivative,

D̂μ := Hμρ∂ρ + �̂μ + ϒ̂μ + ̂̄ϒμ, (4.42)

we can dismantle the DFT curvatures into a H-flux-free (cir-
cled) term and evidently H-flux-valued ones:

S(0) = S̊(0) − 1
12 H

λρHμσ H ντ
HλμνHρστ

−HλμνH
λρ

(
Yμ
i D̂

νXi
ρ − Ȳμ

ı̄ D̂
ν X̄ ı̄

ρ

)
,

Yμ
i (P̊ Ŝ ˚̄P)μ

ν = Yμ
i (P̊ S̊ ˚̄P)μ

ν + Yμ
i

[
Hμρσ

(
Ȳ [ρ
ı̄ D̂ν] X̄ ı̄

λ

− 1
2Y

ρ
j D̂

νX j
λ

)
Hλσ + 1

4 H
νσ e2dD̂ρ

(
e−2d

Hρσμ

)]
,

(P̊ Ŝ ˚̄P)μν Ȳ
ν
ı̄ = (P̊ S̊ ˚̄P)μν Ȳ

ν
ı̄ +

[
Hρσν

(
Y [ρ
i D̂μ]Xi

λ

− 1
2 Ȳ

ρ
j̄ D̂

μ X̄ j̄
λ

)
Hλσ + 1

4 H
μσ e2dD̂ρ

(
e−2d

Hρσν

)]
Ȳ ν
ı̄ ,

Yμ
i (P̊ Ŝ ˚̄P)μν Ȳ

ν
ı̄ = Yμ

i (P̊ S̊ ˚̄P)μν Ȳ
ν
ı̄

+ 1
2Y

μ
i Ȳ

ν
ı̄

[
e2dD̂ρ

(
e−2d

Hρμν

)

+ 1
2 H

αβHγ δ
HμαγHνβδ

]
,

(P̊ Ŝ ˚̄P)μν = (P̊ S̊ ˚̄P)μν − 1
8e

2d∂λ(e−2d
Ĥ

λμν)

+ 1
16 H

μρH νσ HαβHγ δ
HραγHσβδ

+ 3
8

[
Hμρ

(
Hλ[νY σ

i D̂
τ ]Xi

λ − Hλ[ν Ȳ σ
ı̄ D̂

τ ] X̄ ı̄
λ

)

+(μ ↔ ν)
]
Hρστ , (4.43)

where, as it should be obvious from our notation, we set
ŜAB := (B−1)A

C (B−1)B
DSCD , and the circled quantities

are all H-flux free: from Table 1 or [63,65],

S̊AB = 2∂A∂Bd − e2d ∂C

(
e−2d 	̊(AB)

C
)

+ 1
2 	̊ACD	̊B

CD − 1
2 	̊CDA	̊CD

B, (4.44)

and, with (3.16),

	̊CAB := 2(P̊∂C P̊
˚̄P)[AB] + 2( ˚̄P [AD ˚̄PB]E

−P̊[AD P̊B]E )∂D P̊EC − 4

(
1

˚̄PGG−1

˚̄PC[A ˚̄PB]D

+ 1
P̊GG−1

P̊C[A P̊B]D
) (

∂Dd + (P̊∂E P̊ ˚̄P)[ED]
)

.

(4.45)

While we organize the H-flux-valued parts in terms of the
hatted covariant derivative, like (4.41), we have

D̂μXi
ν = DμXi

ν, D̂μ X̄ ı̄
ν = Dμ X̄ ı̄

ν,

D̂μd = Dμd, D̂μD̂νd = DμDνd. (4.46)

The only nontrivial distinction lies in

D̂ρ
(
e−2d

Hρμν

)
= Dρ

(
e−2d

Hρμν

)
+ HραHσβHρστ

×
(
Hαβ[μXi

ν]Y τ
i − Hαβ[μ X̄ ı̄

ν]Ȳ τ
ı̄

)
.

(4.47)

Since e−2d
Ĥ

λμν carries a unit weight, its contraction with
the ordinary derivative, ∂λ(e−2d

Ĥ
λμν), is also by itself dif-

feomorphism covariant. In this way, every single term in
(4.43) is symmetric under both undoubled diffeomorphisms
andGL(n)×GL(n̄) local rotations. On the other hand, as we
have singled out the H-flux-valued terms from the H-flux-
free parts, each individual term is not necessarily Milne-shift
covariant.

As advertised in (4.21), we may further dismantle S̊(0) as

well as (P̊ S̊ ˚̄P)μν into more elementary modules:

S̊(0) = R + 4Kμν

(
DμDνd − Dμd Dνd

)
,

(P̊ S̊ ˚̄P)μν = − 1
4 R

(μν) − 1
4

(
Yμ
i D

ρXi
σ

−Ȳμ
ı̄ D

ρ X̄ ı̄
σ

)(
Y ν
j D

σ X j
ρ

−Ȳ ν
j̄ D

σ X̄ j̄
ρ

) − 1
2D

(μDν)d. (4.48)

From (3.26), vanishing of all the five quantities in (4.43)
characterizes the (n, n̄) vacuum geometry of DFT.
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Comment 1. It is worth while to note

e−2d Kμν

(
DμDνd − 2Dμd Dνd

) = ∂μ(e−2dDμd), (4.49)

and rewrite the ‘kinetic term’ of the DFT-dilaton in (4.21),

4e−2d Kμν(D
μDνd − Dμd Dνd)

= 4e−2d KμνD
μd Dνd + 4∂μ(e−2dDμd). (4.50)

Comment 2. Especially when n + n̄ = D, i.e. in the
maximally non-Riemannian cases, all the quantities like

Hμν, Kρσ ,�λμ
ν, Ĥ

λμν,Dμd, Rμν, S(0), (P̊ Ŝ
˚̄P)μν are triv-

ial except the term of interest, Yμ
i (P̊ Ŝ ˚̄P)μν Ȳ

μ
ı̄ .

Comment 3. Restricted to the (0, 0) Riemannian case, we
have Kμν = gμν , Hμν = gμν , KμρHρμ = δμ

ν ,
and the vectors, {Xi

μ, X̄ ı̄
ν,Y

ρ
j , Ȳ σ

j̄ }, are trivially absent.

Both the � and �̂ connections (4.23, 4.38) coincide with
nothing but the standard Christoffel symbols with one index
raised by the Riemannian metric,

�̂μν
λ ≡ �μν

λ ≡ gμρ
{

ν
ρ λ

}
. (4.51)

Consequently, the proposed covariant derivative (4.25) and
Ricci curvature (4.34) reduce to the standard covariant
derivative and Ricci curvature in Riemannian geometry,

Dμ ≡ gμνν = gμν(∂ν + { ·
ν ·}),

Rμν ≡ gμρgνσ R
ρσ . (4.52)

Comment 4. Besides (P̊ S̊ ˚̄P)μν , we have not been able
to dismantle other circled H-flux-free DFT Ricci curva-
tures which carry at least one lower index. In addition to
Dμ = Hμρ∂ρ + �μ, separate type of covariant derivatives
containing Yμ

i ∂μ or Ȳμ
ı̄ ∂μ might help, c.f. (B.13).

Comment 5. Appendix B sketches how we have arrived at
the above proposal of the non-Riemannian differential tool
kit starting from the semi-covariant formalism of DFT. In any
case, our proposal is meant to provide a bookkeeping device
to expound the EDFEs into smaller modules and to single
out the H-fluxes. The actual computation of the variations
of the action, even with (n, n̄) fixed, are still powered by the
semi-covariant formalism, specifically (3.2).

5 Conclusion

The very gravitational theory string theory predicts may be
the Double Field Theory with non-Riemannian surprises,
rather than General Relativity based on Riemannian geom-
etry. The underlying mathematical structure of DFT unifies
supergravity with various non-Riemannian gravities includ-
ing (stringy) Newton–Cartan geometry, ultra-relativistic Car-
roll geometry, and non-relativistic Gomis–Ooguri string the-
ory. The non-Riemannian geometries of DFT can be classi-
fied by two non-negative integers, (n, n̄) [1].

We have analyzed with care the variational principle. We
have shown that the most general infinitesimal variations of
an arbitrary (n, n̄) DFT-metric have D2 − (n − n̄)2 number
of degrees of freedom, which matches with the dimension
of the underlying coset [11], O(D,D)

O(t+n,s+n)×O(s+n̄,t+n̄)
(3.14).

Through action principle, these variations imply the full Ein-
stein Double Field Equations (3.22), (3.24). However, nn̄
number of them change the value of (n, n̄), i.e. the type of
non-Riemannianity (4.19). Consequently, if we keep (n, n̄)

fixed once and for all, the variational principle gets restricted
and fails to reproduce the full EDFEs: the specific part,
Yμ
i (PE P̄)μν Ȳ ν

ı̄ , does not have to vanish on-shell (4.9).10

The EDFEs are supposed to arise as the string world-
sheet beta-functions [97,98]. For the doubled-yet-gauged
string action (1.11) upon an arbitrarily chosen (n, n̄) back-
ground, the (n, n̄)-changing variations of the DFT-metric
would correspond to marginal deformations. We must stress
that these deformations could not be realized by merely vary-
ing the background component fields with fixed (n, n̄) (4.13),
c.f. [52,54,56]. Nevertheless, it is natural to expect that nn̄

number of Yμ
i (P̊ Ê ˚̄P)μν Ȳ ν

ı̄ arise as the corresponding beta-
functions too. That is to say, at least for nn̄ �= 0, the quan-
tum consistency with the worldsheet string theory seems to
forbid us to fix (n, n̄) rigidly. We conclude that the vari-
ous non-Riemannian gravities should be identified as dif-
ferent solution sectors of Double Field Theory rather than
viewed as independent theories. Quantum consistency of the
non-Riemannian geometries calls for thorough investigation,
which may enlarge the scope of the string theory landscape
far beyond Riemann.
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ν directions,
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ı̄ ∂μ∂νd .

123



Eur. Phys. J. C (2020) 80 :101 Page 15 of 19 101

ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

Appendix

A Proof on the equivalence among (4.7), (4.8), (4.9), and
(4.10)

Taking
{
δKμ

a, δXi
ρ, δ X̄ ı̄

σ

}
as independent variations, from

the second line of (4.6), the variational principle implies (4.7)
which we enumerate here:

Kμρ(P̊ Ê ˚̄P)ρν + (P̊ Ê ˚̄P)νρKρμ = 0, (A.1)

Y ρ
i (P̊ Ê ˚̄P)ρ

μ = 0, (A.2)

(P̊ Ê ˚̄P)μρ Ȳ
ρ
ı̄ = 0, (A.3)

(P̊ Ê ˚̄P)[μν] = 0. (A.4)

Alternatively taking
{
δHμ

a, δY
ρ
i , δȲ σ

ı̄

}
as independent vari-

ations, we acquire from the third line of (4.6),

Hμρ(P̊ Ê ˚̄P)ρν + (P̊ Ê ˚̄P)νρH
ρμ = 0, (A.5)

Xi
ρ(P̊ Ê ˚̄P)ρμ = 0, (A.6)

(P̊ Ê ˚̄P)μ
ρ X̄ ı̄

ρ = 0, (A.7)

(P̊ Ê ˚̄P)[μν] = 0. (A.8)

Henceforth we show that Eqs. (A.1, A.2, A.3, A.4) and
Eqs. (A.5, A.6, A.7, A.8) are all equivalent to (4.9) as well as
to (4.10). The equivalence between (4.9) and (4.10) should
be obvious from the off-shell relation (3.25), and therefore
we focus on (4.9) which we recall for quick reference:

(P̊ Ê ˚̄P)μν = 0, (P̊ Ê ˚̄P)μν = 0,

(P̊ Ê ˚̄P)μ
ν = 0, (P̊ Ê ˚̄P)μν = Xi

μY
ρ
i (P̊ Ê ˚̄P)ρσ Ȳ

σ
ı̄ X̄ ı̄

ν .

(A.9)

Proof It is manifest that (A.9) implies both Eqs. (A.1, A.2,
A.3, A.4) and Eqs. (A.5, A.6, A.7, A.8). Thus, we only need
to show the converse. Equations (A.4) and (A.8) are common
and give, combined with (3.17),

Xi
μ(P̊ Ê ˚̄P)μν = 0, (P̊ Ê ˚̄P)μν X̄ ı̄

ν = 0. (A.10)

With these in mind we first focus on the former set of
Eqs. (A.1, A.2, A.3, A.4), of which the first and the last imply

Kμρ(P̊ Ê ˚̄P)ρν = 0, (P̊ Ê ˚̄P)νρKρμ = 0. (A.11)

Consequently, with the completeness relation (2.7), the iden-
tities from (3.17), and (A.2), we note

(P̊ Ê ˚̄P)μ
ν = (K H)μ

ρ(P̊ Ê ˚̄P)ρ
ν + Xi

μY
ρ
i (P̊ Ê ˚̄P)ρ

ν

= Kμρ(P̊ Ê ˚̄P)ρν + Xi
μY

ρ
i (P̊ Ê ˚̄P)ρ

ν = 0.

(A.12)

Similarly we get with (A.3),

(P̊ Ê ˚̄P)μν = (P̊ Ê ˚̄P)μρ(HK )ρν + (P̊ Ê ˚̄P)μρ Ȳ
ρ
ı̄ X̄ ı̄

ν

= −(P̊ Ê ˚̄P)μρKρν + (P̊ Ê ˚̄P)μρ Ȳ
ρ
ı̄ X̄ ı̄

ν = 0,

(A.13)

and with (3.17), (A.4),

(P̊ Ê ˚̄P)μν = (HK )μρ(P̊ Ê ˚̄P)ρν

= Hμρ(P̊ Ê ˚̄P)ρ
ν = 0. (A.14)

It follows that

(P̊ Ê ˚̄P)μν =
[
(K H)μ

ρ + Xi
μY

ρ
i

]
(P̊ Ê ˚̄P)ρσ[

(HK )σ ν + Ȳ σ
ı̄ X̄ ı̄

ν

]

= −Kμρ(P̊ Ê ˚̄P)ρσ Kσν + Kμρ(P̊ Ê ˚̄P)ρσ Ȳ
σ
ı̄ X̄ ı̄

ν

−Xi
μY

ρ
i (P̊ Ê ˚̄P)ρ

σ Kσν + Xi
μY

ρ
i (P̊ Ê ˚̄P)ρσ Ȳ

σ
ı̄ X̄ ı̄

ν

= Xi
μY

ρ
i (P̊ Ê ˚̄P)ρσ Ȳ

σ
ı̄ X̄ ı̄

ν . (A.15)

Thus, Eqs. (A.1, A.2, A.3, A.4) are equivalent to (A.9).
We now turn to the latter set of equations (A.5, A.6, A.7,

A.8). In a parallel manner to (A.12), (A.13), we note from
(A.6), (A.7),

(P̊ Ê ˚̄P)ν
μ = (P̊ Ê ˚̄P)ν

ρ(K H)ρ
μ + (P̊ Ê ˚̄P)ν

ρ X̄ ı̄
ρ Ȳ

μ
ı̄

= −(P̊ Ê ˚̄P)νρH
ρμ,

(P̊ Ê ˚̄P)μν = (HK )μρ(P̊ Ê ˚̄P)ρν + Yμ
i X i

ρ(P̊ Ê ˚̄P)ρν

= Hμρ(P̊ Ê ˚̄P)ρν, (A.16)

which imply with (A.5),

(P̊ Ê ˚̄P)μ
ν = (P̊ Ê ˚̄P)νμ, (A.17)

and hence in particular,

Yμ
i (P̊ Ê ˚̄P)μ

ν = 0, (P̊ Ê ˚̄P)μ
ν X̄ ı̄

ν = 0,

Xi
μ(P̊ Ê ˚̄P)μν = 0, (P̊ Ê ˚̄P)μν Ȳ

ν
ı̄ = 0. (A.18)

Then with (A.8) and from

(P̊ Ê ˚̄P)μ
ν = (K H)μ

ρ(P̊ Ê ˚̄P)ρ
ν = Kμρ(P̊ Ê ˚̄P)ρν

= (P̊ Ê ˚̄P)νρKρμ = −(P̊ Ê ˚̄P)νρ(HK )ρμ

= −(P̊ Ê ˚̄P)νμ, (A.19)

we note

(P̊ Ê ˚̄P)μ
ν = 0,

(P̊ Ê ˚̄P)μν = 0. (A.20)
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It follows then, with (A.8), (A.10),

(P̊ Ê ˚̄P)μν = (HK )μρ(P̊ Ê ˚̄P)ρν

= Hμρ(P̊ Ê ˚̄P)ρ
ν = 0. (A.21)

Finally, as in (A.15), we have

(P̊ Ê ˚̄P)μν = Kμρ(P̊ Ê ˚̄P)ρν + Xi
μY

ρ
i (P̊ Ê ˚̄P)ρσ

[
(HK )σ ν

+Ȳ σ
ı̄ X̄ ı̄

ν

] = Xi
μY

ρ
i (P̊ Ê ˚̄P)ρσ Ȳ

σ
ı̄ X̄ ı̄

ν . (A.22)

Thus, Eqs. (A.5, A.6, A.7, A.8) are also equivalent to (A.9),
and this completes our Proof. ��

B Derivation of the non-Riemannian differential tool
kit from DFT

The non-Riemannian differential geometry we have pro-
posed in section 4.3, in particular the hatted �̂ connec-
tion (4.38), descends from the known covariant derivatives
in the DFT semi-covariant formalism [63]: specifically,11

PA
C P̄B

D∇CVD, P̄A
C PB

D∇CVD. (B.1)

In order to convert these into undoubled ordinary covariant
quantities —or to get rid of the bare B-field in them— we
multiply B−1 as in (2.22) and write

(B−1P)AC (B−1 P̄)BD∇CVD = P̊ AC ˚̄PBD∇̂C V̊D,

(B−1 P̄)AC (B−1P)BD∇CVD = ˚̄PAC P̊ BD∇̂C V̊D . (B.2)

Here we set

∇̂AV̊B := (B−1)A
C (B−1)B

D∇CVD

= ∂AV̊B + 	̂ABC V̊
C , (B.3)

and 	̂ABC is a naturally induced – or ‘twisted’ [100],
c.f. [101] – new connection,12

	̂CAB := (B−1)C
D(B−1)A

E (B−1)B
F	DEF + ∂CBAB

= 	̊CAB + ( ˚̄PC
ρ P̊A

σ P̊B
τ + P̊C

ρ ˚̄PA
σ ˚̄PB

τ )Hρστ

+(P̊ + ˚̄P)CAB
DEF∂DBEF . (B.4)

The very last term on the second line involves certain six-

indexed projectors formed by P̊A
B, ˚̄PA

B (c.f. Eq. (17) of
[63] and Eq. (2.26) of [65]), and is actually irrelevant as it
is always projected out in the final results. Using the new
connection (B.4) we can conveniently separate the B-field
contributions and eventually acquire the results (4.43).

Now, remembering P̊μν = − ˚̄Pμν = 1
2 H

μν (3.16) and

P̊A
B + ˚̄PA

B = δA
B , we subtract the two quantities in

11 While ∇CVD itself is not covariant, the projected ones in (B.1) are
covariant, and hence the name, ‘semi-covariant formalism’.
12 Note BA

B∂B = ∂A as ∂̃μ ≡ 0.

(B.2), and acquire a desired covariant derivative, or D̂μ =
Hμρ∂ρ + �̂μ (4.38):

2
[
(B−1P)λC (B−1 P̄)BD − (B−1 P̄)λC (B−1P)BD

]
∇CVD

=
(
D̂λV̊μ − 
̂λ

ρμV̊ ρ

D̂λV̊ ν + 1
2 Ĥ

λνσ V̊σ

)
, (B.5)

where, with shorthand notation,

(P̊	̂ ˚̄P)ABC := P̊A
D	̂DBE

˚̄PE
C ,

( ˚̄P	̂ P̊)ABC := ˚̄PA
D	̂DBE P̊

E
C , (B.6)

we set, extending (4.39),


̂λ
μν = 2(P̊	̂ ˚̄P)λμν − 2( ˚̄P	̂ P̊)λμν,

δM
̂λ
μν = −δMBμρ�λρ

ν + δMBνρ�̂λρ
μ,

�̂μν
λ = 2(P̊	̂ ˚̄P)μν

λ − 2( ˚̄P	̂ P̊)μν
λ,

δM�̂μν
λ = − 1

2δMBλρĤ
μνρ,

Ĥ
λμν = 4(P̊	̂ ˚̄P)λμν − 4( ˚̄P	̂ P̊)λμν, δMĤ

λμν = 0. (B.7)

With ∂A = (0, ∂μ) and ξ A = (0, ξμ) (2.23), using Eq. (2.43)
of [65], we get under diffeomorphisms,

δξ (P̊	̂ ˚̄P)ABC = Lξ (P̊	̂ ˚̄P)ABC + P̊A
ρ ˚̄PC

σ ∂ρ∂σ ξB

−P̊A
ρ ˚̄PCσ ∂ρ∂Bξσ ,

δξ (
˚̄P	̂ P̊)ABC = Lξ (

˚̄P	̂ P̊)ABC + ˚̄PA
ρ P̊C

σ ∂ρ∂σ ξB

− ˚̄PA
ρ P̊Cσ ∂ρ∂Bξσ . (B.8)

Hence both 
̂λ
μν and Ĥ

λμν are diffeomorphism covariant
(and surely GL(n) × GL(n̄) invariant) tensors.

Further, due to identities,

(P̊	̂ ˚̄P)A
μ
B = ( ˚̄P	̂ P̊)B

μ
A,

(P̊	̂ ˚̄P)μ(AB) = ( ˚̄P	̂ P̊)μ(AB), (B.9)

Ĥ
λμν and 
̂λ

μν are skew-symmetric,

Ĥ
λμν = Ĥ

[λμν], 
̂λ
μν = 
̂λ[μν], (B.10)

and we may express �̂μν
λ in different ways,

�̂μν
λ = −2(P̊	̂ ˚̄P)μλ

ν + 2( ˚̄P	̂ P̊)μλ
ν

= −2(P̊	̂ ˚̄P)λ
νμ + 2( ˚̄P	̂ P̊)λ

νμ. (B.11)

In particular, when the circled vector, V̊A = (0, V̊μ), is
derivative-index-valued as V̊μ ≡ 0, from (2.26) V̊μ becomes
Milne-shift invariant and so does D̂λV̊μ ,

δMV̊μ = 0, δM(D̂λV̊μ) = 0. (B.12)

Alternative combination of (B.1), rather than (B.5), can
give different type of covariant derivatives,

(Di V )μ := Y ρ
i

(
Hμσ ∂ρVσ − �μσ

ρVσ

)
,

(D̄ı̄ V )μ := Ȳ ρ
ı̄

(
Hμσ ∂ρVσ − �μσ

ρVσ

)
. (B.13)
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However, these can act only on one-form fields, and appear
not so useful.
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