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Abstract This paper is devoted to explore the cosmic evo-
lution of non-flat Friedmann Robertson Walker universe
through generalized ghost pilgrim dark energy model in the
background of f (R) gravity. For this purpose, we consider
two well known scale factors, i.e., power-law and unified
scale factors in terms of red shift parameter. For these scale
factors, we reconstruct the given dark energy model in f (R)

gravity and determine its stability/instability through squared
speed of sound parameter. In order to discuss the behavior
of reconstructed and dark energy models, we evaluate well
known cosmological parameter such as equation of state
parameter along with ω–ω′ plane. In addition to this, we
also investigate compatibility of new models with standard
cosmological models through state-finder parameters. The
density parameter is formulated for both ordinary matter as
well as dark energy components and results are compared
with Planck 2018 constraints. It is concluded that cosmolog-
ical parameters reveal consistency with recent observations
while the value of density parameter suggested by Planck
2018 is achieved by power-law scale factor in most of the
cases as compared to unified scale factor.

1 Introduction

The late-time accelerated expansion of the Universe is known
as the most mysterious ideology of the cosmology. The stan-
dard hot big-bang phenomenon is the most engaging cosmo-
logical model to date. The study of the universe through dif-
ferent strategies revealed that currently the universe is under-
going through accelerating expansion. It was 1998 when this
expansionary phenomenon was (firstly) traced by Type Ia
Supernova observations [1] and then later confirmed by Cos-
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mic Microwave Background (CMB) observations [2]. This
phenomenon is expected to be occurred due to an extraor-
dinary sort of energy component with negative pressure. As
the origin and nature of such component is still a mystery, it
is dubbed as dark energy (DE).

Cosmological constant is the simplest candidate to explain
DE phenomenon thus the cosmological constant model
(�CDM) is consistent with current observations. But
�CDM model suffered from the cosmological constant
issue [3]. What is the reason behind the fact that vacuum
energy is less than its estimated amount? In order to inspect
the issue, two versatile approaches were adopted, one of
which is the modification in geometric part of Einstein–
Hilbert action (known as modified theories of gravity). Sec-
ondly, different dynamical DE models have also been pro-
posed in context of quantum gravity and general relativity
(GR) to describe DE. The matter modification facilitates
with various DE models such as phantom, Chaplygin gas,
k-essence, quintessence, holographic etc. [4].

In the background of quantum gravity, Holographic DE
(HDE) model have been proposed on the basis of Holo-
graphic principal [5] the energy density of which is given

by μd = 3h2m2
pL

−2. Where mp = (8πG)− 1
2 exhibits

reduced Plank’s mass, L denotes the infrared (IR) cutoff
which describes the universe mass and h is dimensionless
HDE constant parameter introduced for convenience.

The proposal of Veneziano ghost DE (ρ� = αH ,
where α is a constant having dimension [energy]3) lies
in the category of dynamical DE models which plays a
crucial role in the accelerated expansion of the universe
[6,7]. The incentive of this model comes from Veneziano
ghost of quantum chromodynamics (QCD) that is ben-
eficial to solve U (1) problem in QCD. The fundamen-
tal characteristic of this model is that Veneziano ghost
(being unphysical in quantum field theory development
in the Minkowski spacetime) gives non-trivial physical
impacts in Friedmann Robertson–Walker (FRW) universe
[8].
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Vacuum energy is ghost field which can be utilized to
describe the time varying cosmological constant in a space-
time [9]. In vacuum ghost field, the energy density is directly
proportional to �3

QCD , where �3
QCD is QCD mass scale and

H is Hubble parameter, is known as ghost dark energy (GDE)
[10]. In QCD, the general vacuum energy of veneziano ghost
field have the form H +O(H2) [11] is known as generalized
GDE (GGDE). It is important to note that by taking the sec-
ond order term, one can obtain the preferable compatibility
with observational data as compare to GDE. In GGDE, the
energy density is of the form μd = ζH +βH2, where ζ and
β are constants [12]. The ordinary ghost DE can be helpful
in describing the early evolution of the universe. Wei [13]
reconsidered this as pilgrim DE (PDE). In accordance with
the Wei, the creation of black hole (BH) can be prevented
through fitting resistive force that is able to anticipate the
matter collapse. In this scenario, phantom-like DE can per-
form significant role that contains strong repulsive force as
compare to the quintessence DE. Moreover, the useful role
of phantom-like DE in case of BH’s mass has been exam-
ined in numerous ways. One of them is the accretion phe-
nomenon which favors the possibility of prevention of BH
creation due to the existence of phantom-like DE in the uni-
verse. The GGDE density after the addition of PDE parameter
becomes

μd = (ζH + βH2)η.

The generalized ghost version of PDE is used to describe
the fate of BH in the presence of great amount of phantom
energy in the universe [14].

There exist so many past related work based on our
analysis. Nojiri and Odintsov [15–17] worked on differ-
ent modified gravities for dark energy. They considered
the different forms of cosmological parameters in order
to study the f (R), f (G) and f (R,G). Barrow and Lid-
dle [18] studied the generalization of intermediate inflation
model with the help of scale factor to analyze the early uni-
verse.

Fernandez [19] examined an association between inter-
acting and non interacting GDE, dark sector components
as well as the kinetic k-essence field. He evaluated that
cosmic evolution of the GDE dominated universe can per-
fectly narrate a kinetic k-essence scalar field. In order to
investigate the current cosmic expansion, Malekjani [20]
examined the GGDE model from a statefinder diagnostic
analysis in the background of a flat FRW universe. Sharif
and Jawad [21,22] investigated the evolution of PDE model
regarding same universe model while considering a rela-
tion between DE and cold dark matter (CDM). The same
authors [23,24] studied the dynamics of interacting/non inter-
acting GGPDE model with basic cosmological parameters
and investigated the stability of DE model while consider-
ing FRW model. Sharif and Zubair [25] discussed the PDE

model by considering f (R) gravity with infrared (IR) cut-
offs.

Jawad and Rani [26] considered Horava–Lifshitz f (R)

to reconstructed the GGPDE model and the same authors
reconstructed PDE model in the background of f (G)

gravity, respectively. They conclude that the recontracted
dynamical model points out towards different DE scenar-
ios. Zubair and Abbas [27] reconstructed the f (R, T ) the-
ory (T represents trace of energy momentum tensor) by
taking into account Garcia–Salcedo GDE models. They
examined the stability criteria of ghost f (R, T ) models
and observed that the newly constructed model shows cor-
respondence with to quintessence and phantom regions.
Fayaz et al. [28] when considered the same model in the
background of anisotropic f (R, T ) gravity they also con-
cluded similar DE regions. Sharif and Nazir [29] extended
the work for same DE model while considering f (T )

gravity in addition to which they studied thermodynam-
ical law and the behavior of entropy production term.
Sharif and Nazir [30] considered well known scale fac-
tors to study the cosmological consequences of the recon-
structed GGPDE F(T, Tg) models. They graphically ana-
lyzed the influence of reconstructed models and EoS param-
eters by considering scale factors. They presumed that
all of the outcomes are in concurrence with PDE phe-
nomenon.

Sharif and Nazir [31] analyzed the cosmological con-
ditions of GGPDE with F(T , Tg) in terms of red-shift
parameter. They considered power-law scale factor, scale
factor for unified phases and intermediated scale factor to
study the reconstructed models. They evaluated the recon-
structed models and their corresponding equation of state
(EoS) parameter for the different choices of scale factors.
They also explored the behavior of deceleration parameter,
ω−ώ plane and state-finder parameters. Sharif and Nawazish
[32] explored the interacting and non-interacting GGPDE in
f (R) gravity through some standard cosmological parame-
ters. They examined the cosmic evolution for FRW universe
using red-shift parameter. They studied the current cosmic
expansion with flat and non-flat geometry for interacting
models.

In the paper, we study cosmological behavior of recon-
structed GGPDE f (R) models with respect to red-shift
parameter z. We study these reconstructed f (R) models
by squared speed od sound, EoS parameters, ω–ω′ and r–
s planes. Also, we formulate both DE as well as ordinary
matter density parameters. The paper is arranged as fol-
lows. In the next section, we provide basic introduction to
f (R) gravity along with GGPDE and FRW universe mod-
els. In Sects. 3 and 4, we graphically analyze the behavior
of reconstructed GGPDE f (R) model through cosmologi-
cal parameters. Finally, we summarize the results in the last
section.
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2 f (R) gravity

The line element of standard FRW model can be given as

dš2 = dt2 − â2(t)

[
dr2

1 − kr2 + r2dθ2 + r2 sin2 θdφ2
]

,

(1)

here â(t) is the scale factor and k defines the curvature index
that classifies universe as open (k = −1), flat (k = 0) and
closed (k = 1). Recent observations provide evidences about
the flat geometry but there also exist some arguments that
support the idea of closed geometry (non-flat geometry) due
to the contribution of small fraction of positive curvature.
In non-flat geometry, the closed models exhibit substantially
higher lensing amplitudes than in �CDM , so combining
with the lensing reconstruction (which is consistent with a
flat model) pulls parameters back into consistency with a spa-
tially flat universe [33]. The f (R) theory of gravity modifies
Einstein–Hilbert action as

Š =
∫

d4x
√−g

f (R)

2κ2 + ˇlm , (2)

where f (R) represents the function of Ricci scalar R, g is the
determinant of the metric tensor gμν and ˇlm denotes the mat-
ter Lagrangian. Varying the above action w.r.t metric tensor
yields following fourth order field equation

1

2
f (R)gμν −FRRμν −∇μ∇νFR+gμν∇δ∇δFR+κ2T̂ (m)

μν ,

(3)

where, FR defines the derivative of general function f with
respect to R, ∇μ is the covariant derivative, � = ∇δ∇δ

and T̂ (m)
μν is the energy–momentum tensor. For perfect fluid

energy–momentum tensor is of the form

T̂ (m)
μν = (μ̂m + p̂m)υμυν + p̂mgμν,

Fluid particles have four velocity as υμ = (1, 0, 0, 0) while
μ̂m is the energy density and p̂m represents the pressure of
byronic matter and CDM. Following is the equivalent form
of above field Eq. (3)

Ĝμν = κ2T̂ e f f
μν = κ2

FR

(
T̂ (m)

μν + T̂ (c)
μν

)
,

where T̂ e f f
μν denotes Einstein effective energy–momentum

tensor and higher order curvature terms T̂ (c)
μν are defined by

T̂ (c)
μν =

(
f (R) − RFR

2

)
gμν + ∇μ∇νFR − gμν∇δ∇δFR .

(4)

Using Eqs. (1) and (3), the Friedmann equations become

H2 + k

â2 = κ2

3
(μm + μc), (5)

H2 + 2 ¨̂a
a

+ k

â2 = −κ2(ρm + ρc), (6)

where H = ˙̂a
â , μm = μ̂m

FR
, ρm = ρ̂m

FR
and the contribution of

higher order curvature terms in energy density and pressure
are respectively given below

μc = 1

FR

(
RFR − f (R)

2
− 3H ṘFRR

)
, (7)

ρc = 1

FR

(
f (R) − RFR

2
+ R̈FRR + Ṙ2FRRR + 2H ṘFRR

)
.

(8)

The total energy density is given by μT = μm + μc while
ρT = ρm+ρc is the total pressure. Both preserve total energy
conservation as follows

μ̇T + 3H(μT + ρT ) = 0.

Now, in order to explore the cosmic expansion and current
acceleration we reconstruct general f (R) model by simply
equating the energy densities of f (R) gravity and GGPDE
model as follows

(ζH + βH2)η = RFR − f (R)

2
+ 3H ṘFRR . (9)

The above equation in terms of t , becomes

(ζH + βH2)η = R ḟ (t) − Ṙ f (t)

2Ṙ
+ 3H

(
Ṙ f̈ (t) − R̈ ḟ (t)

Ṙ2

)
.

(10)

3 Power-law scale factor

The mathematical form of this scale factor is given by [15]

â(t) = c0t
n,

where n > 0, c0 > 0. This significant scale factor is consis-
tent with accelerating universe for n > 1 while it corresponds
to decelerating phase for n < 1. In particular, it character-
izes radiation and matter dominated epochs of decelerating
cosmos for n = 0.5 and n = 0.66, respectively. Here we
obtain the corresponding Hubble parameter, Ricci scalar and
energy density of GGPDE model as

H = n

t
, R = 12n2

t2 − 6n

t2 + k

â2

μd = (ζ(nt−1) + β(nt−1)2)η = ζ η(nt−1)η + ηζη−1β(nt−1)η+1.

In order to evaluate reconstructed GGPDE f (R) model, we
substitute corresponding GGPDE density in Eq. (10) with
â = a0(1 + z)−1 and obtain a differential equation. Upon
numerically solving this differential equation, we get recon-
structed GGPDE f (R) model in terms of z. To examine
the evolution of this model, we consider two values of PDE
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Fig. 1 Plots of power-law reconstructed GGPDE f (R) model for k = 1 (upper plane) and k = −1 (lower plane) with η = 0.99 (left) and
η = −0.99 (right)

parameter, i.e., η = 0.99 and η = −0.99 and three distinct
values of n = 0.5, 0.66, 1.5 in the background of closed as
well as open universe models. The rest of the parameters are
taken as ζ = 0.5, β = −0.5, a0 = 2.5 and c0 = 1.9.

The plots for f (R) model versus red-shift parameter z are
displayed in Fig. 1 for both closed and open universe mod-
els. The upper plane of Fig. 1 identifies positively increas-
ing trajectories of GGPDE f (R) model for k = 1 with
η = 0.99 (left panel) and η = −0.99 (right panel). In the
lower panel, the left plot incorporates negatively increasing
curves of f for k = −1 and all considered values of n. In
the right plot, the GGPDE f (R) model evolves negatively
for n = 0.5 whereas a transition appears from positive to
negative regime for n = 0.66 and 1.5. In order to ana-
lyze the stable/unstable behavior of reconstructed GGPDE
f (R) model, we consider squared speed of sound parameter
defined as

ν2
s = μ̇c

ρ̇c
. (11)

For positive values of ν2
s , the stable behavior of model

appears whereas in case of negative values, the parameter
identifies instability of the model. In Fig. 2, the upper plane
exhibits behavior of squared speed of sound parameter for
k = 1 with η = 0.99 (left plot) and η = −0.99 (right plot).
In both left and right plots, the model remains stable in the
surrounding of matter dominated era while in the background

of radiation dominated era, the GGPDE model experiences
a transition from stable to unstable state. In the presence of
DE, the GGPDE model gets stable after crossing the limit
z = 1 (left plot) whereas negatively increasing trajectory
identifies model instability. In lower plane, the trajectories
of ν2

s are plotted against z for k = −1 with η = 0.99 (left
plot) and η = −0.99 (right plot). For n = 0.5, the curve
evolves from positive to negative region implying transition
from stable to unstable state (left plot) whereas positively
increasing trajectory specifies stable GGPDE f (R) model
(right plot). When n = 0.66, the model remains unstable
as PDE parameter is positive (left plot) whereas for nega-
tive PDE parameter (right plot), the model ia found to be
unstable initially and gets stable as z increases. In case of
n = 1.5, the squared speed of sound parameter specifies
model’s stability (left panel) and instability (right panel)
for positive and negative values of PDE parameter, respec-
tively.

The EoS parameter identifies various stages of accelerat-
ing as well as decelerating cosmos such as when ω = 1

3 ,
0 and −1, it preserves consistency with radiation, matter
and DE eras. Furthermore, this parameter splits DE era into
quintessence and phantom phases for −1 < ω ≤ − 1

3 and
ω < −1, respectively. For higher order curvature terms, it is
defined as

ω = μc

ρc
,
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Fig. 2 Plots for Power-law squared speed of sound versus z

where ω represents effective EoS parameter. This parameter
not only distinguishes the cosmos into different eras but also
determines the rate of expansion with the help of ω′. Caldwell
and Linder [34] used this strategy for the first time to explore
the behavior of quintessence DE model. They suggested that
ω–ω′ plane corresponds to freezing region if ω < 0, ω′ < 0
and for ω < 0, ω′ > 0, thawing regions is appeared. Recent
observational analysis interpret that the cosmos experiences
a greater rate of expansion in freezing region as compared to
thawing region.

The evolution of both closed as well as open cosmos from
decelerating to accelerating phase of expansion is given in
Fig. 3. The effective EoS parameter determines a decelerated
phase of expansion when z ≤ 0.9, z ≤ 0.85 in the upper left
plot and z ≤ 1, z ≤ 0.82 in the lower left plot, respectively.
The accelerated phase of expansion is identified for z ≥ 0.78
and z ≥ 0.6 in both upper as well as lower left plots. In
the upper right plot, the negatively increasing trajectories
correspond to phantom phase for both n = 0.5 and n =
0.66. In the lower right plot, the effective EoS parameter
is compatible with phantom phase for n = 0.5 whereas in
case of n = 0.66, the parameter specifies both decelerated
and accelerated phases. In the context of DE era, a smooth
transition from decelerated to accelerated phase is appeared
for both positive as well as negative values of PDE parameter
in the background of closed and open universe models. In
Fig. 4, we discuss the rate of accelerated expanding cosmos

through ω–ω′ plane in the background of closed and open
universe models with positive and negative PDE parameter.
In the upper plane, the negative trajectories of ω′ ensure the
presence of freezing region for n = 0.5 and n = 0.66 while
thawing region is identified for n = 1.5. In the lower plane
when n = 0.5, the parameter ω′ evolves negatively with
ω < 0 implying the existence of freezing region while the
positive variation of ω–ω′ plane leads to incompatible result
for n = 0.66. In case of n = 1.5, ω–ω′ plane locates thawing
region as ω′ > 0 when ω < 0.

The deceleration parameter q measures the rate of expan-
sion and defined as

q = 1

2
+ 3

2
ω.

The positive value (q > 0) exhibits decelerating behavior
while q = 0 indicates constant expansion and for negative
values (q < 0), it corresponds to accelerating rate of expan-
sion. Sahni et al. [35] described state-finder parameters given
by

r = q + 2q2 − q̇

H
, s = r − �T

3q − 3�T
2

.

These are two dimensionless parameters which evaluate the
compatibility of reconstructed models with standard cosmo-
logical models. The CDM limit is indicated by (r, s) = (1, 1)

whereas for (r, s) = (1, 0), the model preserves consistence
with�CDM model. The Chaplygin gas model is appeared for
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Fig. 3 Plots for power-law EoS parameter versus z

Fig. 4 Plots for power-law ω–ω′ versus z
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Fig. 5 Plots for r–s versus z

s < 0, r > 1 while s > 0, r < 1 region defines quintessence
and phantom phases. Figure 5 determines correspondence
between reconstructed GGPDE f (R) and standard cosmo-
logical models. In the upper left plot, the GGPDE f (R) is
compatible with Chaplygin gas model as for r > 1, s < 0
for all considered values of n. For n = 0.5 and n = 0.66,
the consistency between Chaplygin gas and GGPDE models
is established while the reconstructed model is incompati-
ble to any standard cosmological model for n = 1.5 in the
right upper plot. The GGPDE model corresponds to Chaply-
gin gas model for n = 0.5 and 1.5 while this compatibility
disturbed for n = 0.6 (left lower plot). For n = 0.5, the
reconstructed model preserves consistency with Chaplygin
gas model while the trajectories for n = 0.66 and n = 1.5
leads to some new model (lower right plot).

The evaluation of fractional densities corresponding to
ordinary matter and DE plays a vital role to measure the con-
tribution of these elements in the cosmos as for flat universe
model, the densities define �m+�c = 1 whereas for non-flat
universe model, this equality becomes �m + �c = 1 + �k .
According to some recent observations, there are some evi-
dences in favor of closed universe model with fractional den-
sity �k � 0.01. From observations of Planck 2018, it is sug-
gested that �m � 0.3111 and �c � 0.6889. In Fig. 6, we
discuss the contribution of ordinary matter fractional density
in the background of radiation, matter and DE dominated
eras. The graphical interpretation indicates that when z = 0,

Fig. 6 Evolution of matter density parameter versus z

the trajectories of fractional density provide �m = 0.7, 0.5
and 0.2 for n = 0.5, 0.66 and 1.5, respectively. In this regard,
fractional density parameter of ordinary matter preserves
consistency with Planck’s 2018 constraints in the presence of
DE. Figure 7 explores the behavior of DE fractional density
parameter in the context of closed and open universe mod-
els. In the upper plane, the positively increasing curves show
that the DE fractional density is consistent with Planck con-
straints for n = 0.66, 1.5 (left plot) while in case of n = 0.5,
�c = 0.28 implying inconsistent result. In the right plot, the
Planck’s suggested value of �c is obtained for all considered
values of n. In the lower plane, the compatibility is preserved
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Fig. 7 Evolution of dark energy density parameter versus z

in the presence of radiation and DE dominated eras (left plot)
while �c is consistent for all chosen values of n (right plot).

4 Unified scale factor

The scale factor for unified phases discusses both matter as
well as DE dominated eras. It is defined as [16]

â(t) = m0t
h2 exp(h1t),

where h1 and h2 are arbitrary constants. The corresponding
Hubble parameter, Ricci scalar and GGPDE density are given
by

H = h1 + h2

t
R = 12

(
h1 + h2

t

)2

− 6

(
h2

t2

)
+ k

â2 ,

μd = ζ η

(
h1 + h2

t
)η + ηζη−1β(h1 + h2

t

)η+1

.

For very small value of t , we obtain H(t) ∼ h2
t exhibiting

the existence of perfect fluid with ω = 2
3h

−1
2 − 1. How-

ever, when t is extremely large, H → h1 resulting constant
Hubble parameter represents the de Sitter universe. Such a
Hubble parameter provides a transition from matter to DE
dominated era. For unified scale factor, in order to examine
the behavior of reconstructed f (R) models, we substitute
corresponding values of Hubble parameter, Ricci scalar and
energy density in Eq. (10) with â = a0(1 + z)−1 and upon

numerically solving the differential equation, we get recon-
structed GGPDE f (R) model in terms of z. The evolution of
this reconstructed model is examined for two values of PDE
parameter, i.e., η = 0.99 and η = −0.99 and three distinct
values of h2 = 0.75, 1.5, 2.5.

The variation of GGPDE f (R) model versus red-shift
parameter z forη = 0.99 (left) and−0.99 (right) along closed
and open universe models is displayed in Fig. 8. In both
upper and lower left plots, the function f tends to increase
positively while trajectories of f evolve positive to nega-
tive in both upper and lower right plots for all values of h2.
Figure 9 represents the stability analysis of GGPDE f (R)

model against red-shift parameter. The positively increas-
ing behavior of ν2

s indicates that the reconstructed model is
stable in the background of both closed and open universe
models. Figure 10 describes the behavior of reconstructed
model through effective EoS parameter. For all considered
values of h2, the parameter identifies decelerated expanding
phase for large values of z while crossing the quintessence
phase, it finally corresponds to the phantom phase near z = 0
which is current state of the cosmos.

In Fig. 11, the existence of thawing/freezing regions is
examined via ω–ω′ plane. In the upper left plot, the trajec-
tories of ω–ω′ ensure the presence of thawing and freezing
regions for h2 = 0.75, 1.5 and 2.5, respectively. In upper
right plot, there is a transition from thawing to freezing region
when h2 = 0.75 and 1.5 while for h2 = 2.5, the variation of
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Fig. 8 Plots of unified phase reconstructed GGPDE f (R) model for k = 1 (upper panel) and k = −1 (lower panel) with η = 0.99 and η = −0.99

Fig. 9 Plots for squared speed of sound versus z
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Fig. 10 Unified phase EoS parameter versus z

Fig. 11 Evolution of ω–ω′ versus z
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Fig. 12 Trajectories of r–s plane versus z

ω–ω′ plane locates thawing region. For open universe model
with positive PDE parameter (lower left plot), the graphical
interpretation corresponds to thawing region for all chosen
values of h2 whereas in the right plot, freezing and thawing
regions exist for h2 = 0.75 and h2 = 1.5, 2.5, respectively.
Figure 12 measures the compatibility of GGPDE f (R)model
with standard cosmological models through r–s parameters.
In the context of closed universe with positive PDE param-
eter (upper left plot), the reconstructed model admits con-
sistence with chaplygin gas model for h2 = 0.75 and 1.5.
For h2 = 2.5 with z ≥ −10, it corresponds to quintessence
and phantom phases whereas the compatibility with Chap-
lygin gas model is preserved for negative PDE parameter
(upper and lower right plots). The same behavior appears in
the background of open universe with positive PDE param-
eter for h2 = 0.75 and 1.5 while the GGPDE model lost its
compatibility for h2 = 2.5.

Figure 13 evaluates the consistence of fractional density
parameter relative to ordinary matter against red-shift param-
eter. For h2 = 0.75 (left plot), �m = 0.31 at z = 0 (cur-
rent stage of cosmos) implying consistency with Planck’s
observations whereas the fractional density parameter attains
much smaller value for h2 = 1.5 and 2.5 (right plot). Fig-
ure 14 measures the variation of DE fractional density param-
eter versus z in the context of closed universe with positive
PDE parameter. The graphical analysis represents that frac-
tional density parameter admits consistency with Planck’s

constraints for h2 = 0.75 at z = 1 (left plot) while this con-
sistency is disturbed for h2 = 1.5 and 2.5 (right plot) due
to extreme small values of �c. For negative PDE parameter,
the DE fractional density remains small in the background
of closed and open universe models (Fig. 15). In Fig. 16, the
fractional density parameter of DE is found to be compatible
with Planck 2018 data for h2 = 1.5 (right plot) whereas for
h2 = 0.75 and h2 = 2.5 (left plot), the compatibility is lost
due to small values of �c.

5 Conclusion

In this paper, we have discussed cosmic evolution of non-
flat FRW universe GGPDE model in the background of
f (R) gravity. For this purpose, we have reconstructed f (R)

model using two well known scale factors, i.e., power-law
and unified scale factors in terms of red-shift parameter. In
order to determine the stability/instability of reconstructed
GGPDE f (R) models, we have considered squared speed of
sound parameter. We have investigated the behavior of recon-
structed GGPDE models via standard cosmological param-
eter such as effective EoS parameter. We have also explored
the variation of ω′ along ω to analyze the rate of acceler-
ated expansion. The compatibility of new models with stan-
dard cosmological models is discussed through state-finder
parameters. Furthermore, we have evaluated fractional den-
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Fig. 13 Evolution of matter density parameter versus z

Fig. 14 Evolution of dark energy density parameter versus z

Fig. 15 Evolution of dark energy density parameter versus z

Fig. 16 Evolution of dark energy density parameter versus z
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sities of ordinary matter and DE to measure the ratio of uni-
verse constituents. The results for both power-law and uni-
fied reconstructed GGPDE f (R) models are summarized as
follows.

Power-law GGPDE f (R) model

• The f (R) model evolves positively for k = 1 with η =
0.99 and η = −0.99 while it tends to increase negatively
k = 1 with η = 0.99 and experiences transition from
positive to negative region for η = −0.99.

• When k = 1 and η = 0.99, the model is found to be
stable initially but becomes unstable as z increases for
n = 0.5 and n = 0.66. When n = 1.5, the reconstructed
model admits a transition from stable to unstable state.
For η = −0.99, the GGPDE f (R) model gets stable and
unstable at z = 0 for n = 0.5, 0.66 and n = 1.5, respec-
tively. For k = −1 with η = 0.99, the model is found to
be stable in the present cosmos while prior to this stage,
it gets unstable whereas it remains unstable for all z in
the presence of decelerated epoch. In case of acceler-
ated expansion, the model is unstable at the present stage
while stability is achieved in the earlier phase. When
η = −0.99, the reconstructed model remains stable and
unstable for n = 0.5 and n = 1.5, respectively while
a transition from unstable to stable behavior appears for
n = 0.66.

• For k = 1 and k = −1 with η = 0.99, the effective EoS
parameter corresponds to both decelerated and acceler-
ated phases for n = 0.5 and n = 0.66. For k = 1 and
η = −0.99 , it coincides with phantom phase for both
n = 0.5 and n = 0.66 whereas in case of k = −1, the
parameter seems to be consistent with phantom phase
for n = 0.5. For n = 0.66, it characterizes both accel-
erated (initially) and decelerated phases. When n = 1.5,
the parameter experiences a phase transition from decel-
erated to accelerated phase of expansion for k = 1 and
k = −1.

• When n = 0.5, the variation of ω–ω′ plane specifies
freezing region for both k = 1 and k = −1. For k =
1, the existence of freezing region is assured whereas
incompatible results appeared for k = −1 in the presence
of matter dominated epoch. When n = 1.5, the ω–ω′
plane locates thawing region for both k = 1 and k = −1.

• When k = 1, the reconstructed GGPDE f (R) model is
compatible with Chaplygin gas model for all values of
n and η = 0.99 while this compatibility is preserved for
n = 0.5 and 0.66 with η = −0.99. For k = −1, the cor-
respondence between reconstructed and Chaplygin gas
models is established for n = 0.5 and 1.5 with η = 0.99
whereas in case of n = 0.5 and η = −0.99, the model
remains compatible with Chaplygin gas model.

• When n = 1.5, the ordinary matter fractional density
parameter turns out to be �m = 0.28 whereas for n =
0.5 and 0.66, the value exceeds from Planck’s suggested
constraints at 68%CL given as [33]

�m = 0.289+0.026
−0.033 (EE+lowE),

�m = 0.3153 ± 0.0073

(Planck TT,TE,EE+lowE+lensing),

�m = 0.3111 ± 0.0056

(Planck TT,TE,EE+lowE+lensing+BAO).

• For k = 1 and η = 0.99, the DE fractional density is
consistent with Planck constraints for n = 0.66, 1.5
as �c = 0.68 and 0.66, respectively while in case
of n = 0.5, �c = 0.28 implying inconsistent result.
When η = −0.99, the Planck’s suggested value of �c

is obtained for all considered values of n. In case of
k = −1 and η = 0.99, the compatibility is preserved in
the presence of radiation and DE dominated eras while
for η = −0.99, �c is consistent for all chosen values of
n. Recent observations of Planck 2018 proposed different
values of �c at 68%CL given by [33]

�c = 0.711+0.033
−0.026 (EE+lowE),

�c = 0.6847 ± 0.0073

(Planck TT, TE, EE+lowE+lensing),

�c = 0.6889 ± 0.0056

(Planck TT, TE, EE+lowE+lensing+BAO).

Unified GGPDE f (R) Model

• When k = 1 and k = −1 with η = 0.99, the function f
tends to increase positively while trajectories of f evolve
positive to negative for η = −0.99 and all values of h2.

• The squared speed of sound parameter identifies stable
behavior of reconstructed GGPDE f (R) model for both
choices of PDE parameter in the context of closed and
open universe models.

• For k = 1 and k = −1 with all considered values of
h2, the effective EoS parameter identifies decelerated
expanding phase for large values of z while crossing the
quintessence phase, it finally corresponds to the phantom
phase near z = 0 which is current state of the cosmos.

• When k = 1 and η = 0.99, thawing and freezing
regions exist for h2 = 0.75, 1.5 and 2.5, respectively. For
η = −0.99, there is a transition from thawing to freezing
region when h2 = 0.75 and 1.5 while for h2 = 2.5, ω–ω′
plane locates thawing region. For k = −1 and η = 0.99,
the thawing region is determined for all chosen values
of h2 whereas when η = −0.99, freezing and thawing
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regions appear for h2 = 0.75 and h2 = 1.5, 2.5, respec-
tively.

• The reconstructed model is consistent with chaplygin gas
model for k = 1, η = 0.99 and h2 = 0.75 and 1.5
while it corresponds to quintessence and phantom phases
for h2 = 2.5 with z ≥ −10. When η = −0.99, the
compatibility with Chaplygin gas model is preserved for
both k = 1 and k = −1. The same behavior appears
when k = −1 and η = 0.99 for h2 = 0.75 and 1.5 while
the GGPDE model lost its compatibility for h2 = 2.5.

• For h2 = 0.75, �m = 0.31 at z = 0 (current stage
of cosmos) implying consistency with Planck’s obser-
vations whereas the fractional density parameter attains
much smaller value for h2 = 1.5 and 2.5.

• In case of k = 1 and η = 0.99, the DE fractional density
parameter admits consistency with Planck’s constraints
for h2 = 0.75 at z = 1 while this consistency is disturbed
for h2 = 1.5 and 2.5. For η = −0.99, the DE fractional
density remains small in the background of closed and
open universe models. When k = −1 and η = 0.99,
�c is found to be compatible with Planck 2018 data for
h2 = 1.5 whereas for h2 = 0.75 and h2 = 2.5, the
compatibility is lost due to small values of �c.

The reconstructed GGPDE model is stable as well as con-
sistent with Chaplygin gas model for both power-law and
unified scale factors in most of the cases. In the background
of open and closed universe models, the analysis of frac-
tional density parameter of matter and DE reveals that the
power-law GGPDE f (R) model is consistent with Planck’s
2018 data for both choices of PDE parameter. In case of uni-
fied GGPDE f (R) model, this consistency is preserved only
for positive PDE parameter. We conclude that the power-law
GGPDE f (R) model significantly explains the cosmic jour-
ney from decelerated to accelerated epoch.
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