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Abstract In this paper we analyze azimuthal asymmetries
in the processes of unpolarized and polarized J/ψ (ϒ) pro-
duction at an Electron-Ion Collider. Apart from giving access
to various unknown gluon transverse momentum distribu-
tions, we suggest to use them as a new method to extract
specific color-octet NRQCD long-distance matrix elements,
i.e. 〈0|OJ/ψ

8 (1S0)|0〉 and 〈0|OJ/ψ
8 (3P0)|0〉, whose values are

still quite uncertain and for which lattice calculations are
unavailable. The new method is based on combining mea-
surements of analogous asymmetries in open heavy-quark
pair production which can be performed at the same energy.
We also study for the first time the effects of transverse-
momentum smearing in the quarkonium formation process.
To enhance the gluon contribution one can consider smaller
values of x and, in order to assess the impact of small-x evo-
lution, we perform a numerical study using the MV model as
a starting input and evolve it with the JIMWLK equations.

1 Introduction

Transverse momentum dependent parton distributions
(TMDs) are fundamental objects which encode information
on the motion of partons inside hadrons and on the corre-
lations between spin and partonic transverse momenta. As
such, they can be considered as an extension of the standard,
one-dimensional, parton distribution functions (PDFs) to
the three-dimensional momentum space. Contrary to PDFs,
TMDs are in general not universal. This is due to their sen-
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sitivity to the soft gluon exchanges and the color flow in the
specific process in which they are probed. A typical example
is provided by the Sivers function for quarks [1], namely
the azimuthal distribution of unpolarized quarks inside a
transversely polarized proton, which is expected to enter
with opposite sign in the single spin asymmetries for semi-
inclusive deep inelastic scattering (SIDIS) and for the Drell–
Yan processes [2,3]. More recently, a similar sign change test
has been proposed for the gluon Sivers function as well [4,5].
Experimental verification of these properties would strongly
corroborate our present understanding of the structure of the
proton and nonperturbative QCD effects.

Among gluon TMDs, the distribution of linearly polar-
ized gluons inside an unpolarized proton [6–8] has attracted
a lot of attention in the last few years. It corresponds to an
interference between +1 and −1 gluon helicity states which,
if sizable, can affect the transverse momentum distributions
of final state particles like, for instance, the Higgs boson [9–
11]. Linearly polarized gluons have been investigated the-
oretically in the dilute-dense regime in proton-nucleus and
lepton-nucleus collisions as well [12–19]. Very interestingly,
it turns out that at small-x fractions of the gluons inside
a nucleus, the linearly polarized distribution may reach its
maximally allowed size, bounded by the unpolarized gluon
density [6], although it depends on the process whether the
observable effects are maximal [20].

From the experimental point of view, almost nothing is
known about gluon TMDs, because they typically require
higher-energy scattering processes and are harder to isolate
as compared to quark TMDs. Many proposals have been put
forward to access them by looking at transverse momentum
distributions and azimuthal asymmetries for bound or open
heavy-quark pair production, both in lepton–proton and in
proton–proton collisions. The reason is that heavy quarks
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are very sensitive to the gluon content of hadrons, as is well
known from studies of gluon PDFs. A first Gaussian shape
extraction of the unpolarized TMD gluon distribution has
been recently performed from LHCb data on the transverse
spectra of J/ψ pairs [21].

In a series of papers [4,23,24], the process e p →
e′ Q Q X , with Q being either a charm or a bottom quark,
has been considered as a tool to extract gluon TMDs at a
future Electron-Ion Collider (EIC) [25–27]. The observables,
needed to disentangle the five different gluon TMDs con-
tributing to the unpolarized and transversely polarized cross
sections, have been properly defined, each one of them cor-
responding to a specific azimuthal modulation. Moreover,
especially in Ref. [4], attention has been paid to the small-x
behavior of all the distributions and to their process depen-
dence, by relating them to other reactions which could be
measured, for example, at the proposed fixed target experi-
ment AFTER@LHC [28,29]. It is natural at this point to per-
form a similar analysis for the case in which the two heavy
quarks form a bound state. We therefore consider here inclu-
sive J/ψ and ϒ production in deep-inelastic lepton–proton
scattering, namely e p → e′ J/ψ (ϒ) X , where the electron
is unpolarized and the proton can be either unpolarized, or
polarized transversely to the electron–proton plane. In addi-
tion to unpolarized quarkonium production, we examine the
cases in which the quarkonium state is polarized either lon-
gitudinally or transversely with respect to its direction of
motion in the γ ∗ p center-of-mass frame, with γ ∗ being the
virtual photon exchanged in the reaction. Analogous studies,
although limited to the Sivers and linearly polarized gluon
densities and to unpolarized quarkonium production, have
been published recently [30,31].

In the present analysis we adopt the TMD framework in
combination with nonrelativistic QCD (NRQCD) [32–34],
which is the effective field theory that allows for a factor-
ized treatment of the heavy-quark pair production, calcula-
ble in perturbative QCD, and the nonperturbative hadroniza-
tion process leading to the binding of the pair, encoded in
long-distance matrix elements (LDMEs) [35,36]. Since these
LDMEs, which are assumed to be universal, obey specific
scaling rules in the average velocity v of the heavy quark in
the quarkonium rest frame [37], the corresponding cross sec-
tion can be evaluated through a double expansion in the strong
coupling constant αs and in the velocity v, with v2 � 0.3 for
charmonium and v2 � 0.1 for bottomonium. In general, a
heavy quark-antiquark pair can be produced in a color-singlet
(CS) configuration, with the same quantum numbers as the
observed quarkonium, but also as a color-octet state (CO)
with different quantum numbers. In the latter case, the pair
becomes colorless after the emission of soft gluons. The CS
LDMEs are commonly obtained from potential models [38],
lattice calculations [39] or from leptonic decays [40], while
the CO ones are usually determined by fits to data on J/ψ

and ϒ yields [41–45], but not from lattice calculations. As a
result, at present our knowledge of the CO matrix elements
is not very accurate (cf. Tables 1 and 2 below). Moreover,
although NRQCD successfully explains many experimental
observations, it has problems to reproduce all cross sections
and polarization measurements for charmonia in a consistent
way [46,47]. As a consequence, alternative approaches to
NRQCD are used as well, also in TMD studies. For instance,
J/ψ photoproduction as a way to access the gluon Sivers
function [48–50] has been studied in the so-called Color
Evaporation Model [51], which is based on quark-hadron
duality and assumes that the probability to form a physical
(colorless) quarkonium state does not depend on the color
and the other quantum numbers of the hadronizing QQ pair.

The TMD framework is based on TMD factorization,
which, while not proven specifically for the process e p →
e′ Q X with Q = J/ψ (ϒ), has been rigorously proven for
the analogous SIDIS process e p → e′ h X , with h a light
hadron [52]. At leading order, they differ by the underly-
ing hard process, which is γ ∗q scattering in the latter versus
γ ∗g scattering in the former. However, this does not make
a difference from the perspective of TMD factorization, and
neither does the mass of the final state hadron. Therefore,
we expect TMD factorization to hold in e p → e′ Q X , in
the kinematical configuration PQT � MQ and Q ∼ MQ.
Moreover, in this process and in these kinematics, the CO
production mechanism is expected to be the dominant one
[53,54]. In addition, some of our proposed observables,
namely the single spin asymmetries, are expected to vanish
in semi-inclusive deep-inelastic scattering in the CS mecha-
nism, due to the absence of any initial or final state interac-
tions [34]. Most of the previous studies on gluon TMDs in
proton–proton collisions focussed on scattering processes in
which the CS production mechanism is the dominant one,
such as p p → ηc,b X , p p → χ0c,b (χ2c,b) X [55,56],
p p → J/ψ (ϒ) γ X [57], p p → J/ψ (ϒ) � �̄ X [58] and
p p → J/ψ J/ψ X [21,22]. The reason to concentrate on
these CS dominated processes is to avoid the presence of final
state interactions which, together with the initial state inter-
actions present in proton-proton collisions, would lead to the
breaking of TMD factorization [59]. Furthermore, as already
discussed in Ref. [4], the gluon distributions extracted in
e p → e′ J/ψ (ϒ) X or in e p → e′ Q Q X , which corre-
spond to the so-called Weizsäcker–Williams (WW) distribu-
tions in the small-x limit, are all related to the TMDs entering
in the above mentioned proton-proton reactions and differ
from them by, at most, an overall minus sign.

Investigating the process e p → e′ J/ψ (ϒ) X can be
very helpful to improve our understanding of the mecha-
nisms underlying quarkonium production. To this end, here
we propose a new method to extract, apart from various
TMDs that are at present still unknown from the exper-
imental point of view, also the dominant CO LDMEs,
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namely 〈0|OJ/ψ
8 (1S0)|0〉 and 〈0|OJ/ψ

8 (3P0)|0〉, by com-
bining measurements of azimuthal asymmetries in e p →
e′ J/ψ (ϒ) X , with analogous ones in e p → e′ Q Q X . In
this way, heavy-quark final states at an EIC can contribute to
the determination of the CO LDMEs. Here a complicating
factor is the transition from the CO QQ state into the true CS
hadronic final state by means of soft gluon radiation (which
resembles fragmentation into a light hadron) about which
nothing quantitative is known, as far as we know. As a first
step we consider this transition as infinitely narrow, i.e. as a
delta function in transverse momentum (like often done for
jets), but we also study the effect of smearing numerically1.
In addition, in order to avoid having to deal with evolution
in the comparison of the two processes, one should consider
the same value of the photon virtuality Q2 in both processes.
In the first one, e p → e′ J/ψ (ϒ) X , we consider the trans-
verse momentum PQT of the produced quarkonium small
with respect to the quarkonium mass MQ ≈ 2MQ . In order
to avoid the presence of two very different hard scales, we
take Q = 2MQ . Although one can take the same Q value in
the second process, e p → e′ Q Q X , there will be another
hard scale given by the transverse momentum K⊥ of each
heavy quark, which we assume to be K⊥ = Q = 2MQ for
simplicity.

The processes considered in this paper are gluon induced,
and are therefore expected to be enhanced when consider-
ing smaller x values. At an EIC, the smaller the x value, the
smaller the Q values covered, so one has to keep a balance
between the x and Q ranges. For the J/ψ case one can go to
lower x values. Since we consider only a limited Q range, we
will not include TMD evolution, although this can be done
along the lines considered in Ref. [30]. To assess the less
studied influence of evolution in x , we perform a numerical
study of the implications nonlinear small-x evolution would
have in the range from x ∼ 10−2 to x ∼ 10−4 covered by the
EIC at low Q values of a few GeV. It turns out to have only
a moderate suppression effect. This study is limited to the
unpolarized proton case, for which nonperturbative models
are available for the corresponding small-x gluon distribu-
tions [60–62], which we use as the initial condition for the
evolution. The Color Glass Condensate effective theory [63]
makes it then possible to calculate the nonlinear evolution in
rapidity of these distributions, in the presence of saturation.
This was done with the help of a numerical implementa-
tion of JIMWLK on the lattice in Refs. [17,18,64]. We use
the results therein obtained for the unpolarized and linearly
polarized WW TMDs inside an unpolarized hadron, to show
predictions for our azimuthal modulations at different values
of rapidity in the low-x limit.

1 This can be viewed as a model study of the additional TMD shape
function of Ref. [56], which is considered as the TMD extension of the
LDMEs.

The paper is organized as follows. In Sect. 2 we provide the
operator definition of gluon TMDs and discuss their process
dependence. The derivation of the cross section for unpolar-
ized quarkonium production in DIS, within the TMD frame-
work, can be found in Sect. 3. Further details of the calcula-
tions are relegated to Appendix A. The azimuthal moments
providing direct access to gluon TMDs are defined in Sect. 4.
Similar observables for polarized quarkonium production are
discussed in Sect. 5. Our strategy for the extraction of the CO
LDMEs, based on the combination of azimuthal asymmetries
for bound and open heavy-quark pair production, is described
in Sect. 6, followed by a numerical study of smearing effects
on this extraction in Sect. 7. Upper limits of the azimuthal
moments, as well as an analysis of the small-x evolution of
gluon TMDs and the cos 2φ asymmetries, are presented in
Sect. 8. Summary and conclusions are given in Sect. 9.

2 Operator definition of gluon TMDs

The transverse momentum distribution of a gluon with four-
momentum p inside a proton with four-momentum P and
spin vector S can be defined as follows. We first perform
a Sudakov decomposition of p and S in terms of P and a
light-like vector n, conjugate to P . Namely,

pμ = x Pμ + pμ
T + p−nμ, (1)

Sμ = SL
Mp

(
Pμ − M2

p

P · n nμ

)
+ Sμ

T , (2)

where Mp is mass of the proton and S2
T = −S2

T , with 0 ≤
S2
L , S2

T ≤ 1, such that S2
L + S2

T = 1. We then introduce the
following matrix element of a correlator of the gluon field
strengths Fμν(0) and Fνσ (ξ), evaluated at fixed light-front
(LF) time ξ+ = ξ ·n = 0,

μν
g (x, pT ) = nρ nσ

(P·n)2

∫
d(ξ ·P) d2ξT

(2π)3

×eip·ξ 〈P, S| Tr
[
Fμρ(0)U[0,ξ ]

×Fνσ (ξ)U ′[ξ,0]
]

|P, S〉 ∣∣
LF , (3)

with U[0,ξ ] and U ′[0,ξ ] being two process dependent gauge
links (or Wilson lines) that are needed to ensure gauge invari-
ance. By means of the symmetric and antisymmetric trans-
verse projectors, respectively given by

gμν
T = gμν − Pμnν/P·n − nμPν/P·n, (4)

ε
μν
T = εαβμν Pαnβ/P · n, with ε12

T = +1, (5)

the correlator in Eq. (3) can be parametrized in terms of gluon
TMDs [6–8]. For an unpolarized proton, one has
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μν
U (x, pT ) = x

2

{
−gμν

T f g1 (x, p2
T ) +

(
pμ
T pν

T

M2
p

+gμν
T

p2
T

2M2
p

)
h⊥ g

1 (x, p2
T )

}
, (6)

where f g1 (x, p2
T ) is the TMD unpolarized distribution and

h⊥ g
1 (x, p2

T ) is the distribution of linearly polarized gluons.

Both f g1 and h⊥ g
1 are even under naive time reversal (T -

even). The correlator for a transversely polarized proton can
be parametrized in terms of five independent gluon TMDs as
follows:


μν
T (x, pT ) = x

2

{
gμν
T

ε
ρσ
T pTρ STσ

Mp
f ⊥ g
1T (x, p2

T )

+iεμν
T

pT · ST
Mh

gg1T (x, p2
T )

+ pTρ ε
ρ{μ
T pν}

T

2M2
p

pT · ST
Mp

h⊥ g
1T (x, p2

T )

− pTρε
ρ{μ
T Sν}

T + STρε
ρ{μ
T pν}

T

4Mp
hg1T (x, p2

T )

}
,

(7)

where the symmetrization operator is defined as p{μqν} =
pμqν + pνqμ. The three gluon TMDs that appear in its sym-
metric part, (μν

T +
νμ
T )/2, are all T -odd, and therefore they

can only be nonzero in processes with initial- or final state
interactions. Among them, f ⊥ g

1T (x, p2
T ) is the gluon Sivers

function, while the h functions are chiral-even distributions
of linearly polarized gluons inside a transversely polarized
proton. In analogy to the transversity function for quarks, we
define the combination

hg1 ≡ hg1T + p2
T

2M2
p
h⊥ g

1T , (8)

which however, in contrast to quark transversity, vanishes
upon integration over transverse momentum [4].

Because of the definition in Eq. (3), the TMDs introduced
in Eqs. (6) and (7) will depend on the gauge links, the specific
structure of which is determined by the process under consid-
eration. In this case, as in e p → e′ Q Q X [4], the partonic
reaction γ ∗g → Q Q probes gluon TMDs with two future
pointing Wilson lines, denoted as + links. In the small-x limit
they correspond to the WW distributions. As already pointed
out in Ref. [4], these TMDs can be related to the ones having
two past-pointing, or − gauge links, which could be accessed
in processes like p p → γ γ X in the back-to-back correla-
tion limit [65]. More specifically, the T -even unpolarized and
linearly polarized gluon TMDs are expected to be the same in
the two kind of processes, while the T -odd densities, like the
gluon Sivers functions, should be related by a minus sign. On

the other hand, gluon TMDs with both a + and − link (future
and past pointing), corresponding to the dipole distributions
at small x , cannot be related to the TMDs discussed here.
They could be accessed in processes like p p → γ ∗ jet X
[19], in the kinematic region where gluons in the polarized
proton dominate, such that the partonic channel q g → γ ∗ q
is effectively selected [20]. However, TMD factorization for
p p → γ ∗ jet X has not been established so far.

3 Outline of the calculation

We study the process

e(�) + p(P, S) → e(�′) + Q (PQ) + X , (9)

where Q is either a J/ψ or a ϒ meson, the incoming proton
is polarized with polarization vector S, and the other par-
ticles are unpolarized. We choose the reference frame such
that both the virtual photon exchanged in the reaction and
the incoming proton move along the ẑ-axis, and azimuthal
angles are measured w.r.t. to the lepton scattering plane, such
that φ� = φ′

� = 0. Moreover, in order to apply a framework
based on TMD factorization, we consider only the kinematic
region in which the component of the quarkonium momen-
tum transverse w.r.t. the lepton plane, denoted by qT ≡ PQT ,
is small compared to the virtuality of the photon Q and to the
mass of the quarkonium MQ. The differential cross section
can be written as

dσ = 1

2s

d3�′

(2π)3 2E ′
e

d3PQ
(2π)3 2EQ

x
∫

d × d2 pT (2π)4δ4(q+p−PQ)

× 1

x2 Q4 Lμρ(�, q) g νσ (x, pT )

×Hμν

γ ∗ g→Q H � ρσ

γ ∗ g→Q, (10)

where s = (� + P)2 ≈ 2 � · P is the total invariant mass
squared and Q2 = −q2 ≡ −(� − �′)2. Moreover, the gluon
correlator g is defined in Eq. (3) and the leptonic tensor
L(�, q) is given by

Lμν(�, q) = e2
[
−gμν Q2 + 2 (�μ�′ν + �ν�′μ)

]
, (11)

with e the electric charge of the electron.
The calculation proceeds along the same lines of Ref. [24],

which we summarize for completeness in the following. We
start with introducing the light-like vectors n+ and n−, which
obey the relations n2+ = n2− = 0 and n+ · n− = 1. Then we
note that the four-momenta P and q can be written as
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P = n+ + M2
p

2
n− ≈ n+ and

q = −xB n+ + Q2

2 xB

n− ≈ −xB P + (P · q) n−,

(12)

where xB is the Bjorken-x variable, with xB = Q2/2P ·q up
to target mass corrections. We will thus perform a Sudakov
decomposition of all the momenta in the reaction in terms of
n+ = P and n− = n = (q + xB P)/P · q. Therefore, the
leptonic momenta can be written as

� = 1 − y

y
xB P + 1

y

Q2

2xB

n +
√

1 − y

y
Q �̂⊥, (13)

�′ = 1

y
xB P + 1 − y

y

Q2

2xB

n +
√

1 − y

y
Q �̂⊥, (14)

where we have introduced the inelasticity variable y =
P · q/P · �, such that the following relations hold: s =
2 P · q/y = Q2/xB y. The invariant mass squared of the
virtual photon-target system is defined as W 2 = (q + P)2,
and can be expressed in terms of the other invariants: W 2 =
Q2(1 − xB)/xB = (1 − xB)ys. Similarly, the gluon momen-
tum can be expanded as

p = x P + pT + (p · P − x M2
p) n ≈ x P + pT , (15)

where x = p ·n, while for the momentum of the quarkonium
state Q we have

PQ = z (P · q) n + M2
Q + P2

QT

2z P · q P + PQT , (16)

with z = PQ · P/q · P and P2
QT

= −P2
QT

.
In a reference frame in which azimuthal angles are mea-

sured w.r.t. the lepton plane (φ� = φ�′ = 0), denoting by φS ,
φT the azimuthal angles of the three-vectors ST and PQT ,
respectively, the phase-space elements in Eq. (10) can be
written as

d3�′

(2π)3 2E ′
e

= 1

16π2 sy dxB dy , and

d3PQ
(2π)3 2EQ

= 1

2(2π)3

dz

z
d2PQT . (17)

Furthermore, using the Sudakov decomposition of the gluon
momentum in Eq. (15), the δ-function in Eq. (10) can be
re-expressed as

δ4(p + q − PQ) = 2

y s
δ

(
x − xB − M2

Q
y z s

)
×δ(1 − z) δ2 (

pT − PQT

)
. (18)

Therefore, upon integration over the variables x , z and pT ,
the cross section takes the final form

Fig. 1 Leading order diagram for the process γ ∗(q) + g(p) →
Q(PQ), with Q = J/ψ or ϒ . The crossed diagram, in which the
directions of the arrows are reversed, is not shown. Only the color-octet
configurations 1S(8)

0 , 3P(8)
J with J = 0, 1, 2, contribute, as it turns out

from the calculation described in Appendix A

dσ

dy dxB d2qT

≡ dσ(φS, φT ) = dσU (φT ) + dσ T (φS, φT ),

(19)

with z fixed to the value z = 1, the transverse momentum of
the incoming gluon equal to that of the quarkonium ( pT =
PQT ≡ qT ), and its longitudinal momentum fraction x given
by

x = xB + M2
Q

y s
= M2

Q + Q2

y s
= xB

M2
Q + Q2

Q2 . (20)

Within the framework of NRQCD, at leading order in the
strong coupling constant αs , the partonic subprocess that con-
tributes to J/ψ production is γ ∗g → QQ[2S+1L(8)

J ], as
depicted in Fig. 1, where we have used a spectroscopic nota-
tion to indicate that the QQ pair forms a bound state with spin
S, orbital angular momentum L and total angular momen-
tum J . The additional superscript (8) denotes the color con-
figuration. The relevant CO LDMEs are 〈0|OJ/ψ

8 (1S0)|0〉
and 〈0|OJ/ψ

8 (3PJ )|0〉, with J = 0, 1, 2. The CS produc-
tion mechanism is possible only at O(α2

s ), where the QQ

is formed at short distances in a 3S(1)
1 configuration in asso-

ciation with a gluon. As pointed out in Ref. [53], the CS
contribution is suppressed relatively to the CO by a per-
turbative coefficient of the order αs/π . On the other hand,
〈0|OJ/ψ

8 (1S0)|0〉 and 〈0|OJ/ψ
8 (3PJ )|0〉 are suppressed as

compared to 〈0|OJ/ψ
1 (3S1)|0〉 by v3 and v4, respectively.

Hence, according to the NRQCD scaling rules, the CO con-
tribution should be enhanced by about a factor v3π/αs ≈ 2
with respect to the CS one. This factor becomes ≈ 4 in the
actual numerical analysis presented in Ref. [53] for values
of Q2 > 4 GeV2. A further suppression of the CS contri-
bution can be achieved by applying a cut on the variable z,
for instance by taking z ≥ 0.9, because at high z the CS
term is known to become negligible [53] and will be there-
fore neglected in our analysis. Of course, since the true final
state quarkonium must really be a color singlet, the transition
from the QQ pair into the quarkonium state is an idealiza-
tion in the sense that we take it as a delta function in trans-
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verse momentum space. Within these approximations, the
final unpolarized and transversely polarized cross sections
read

dσU = N
[
AU f g1 (x, q2

T ) + q2
T

M2
p
BU h⊥ g

1 (x, q2
T ) cos 2φT

]
,

(21)

and

dσ T = N |ST | |qT |
Mp

{
AT f ⊥ g

1T (x, q2
T ) sin(φS − φT )

+ BT

[
hg1(x, q2

T ) sin(φS + φT )

− q2
T

2M2
p
h⊥ g

1T (x, q2
T ) sin(φS − 3φT )

]}
, (22)

with the normalization factor N given by

N = (2π)2
α2αse2

Q

y Q2 MQ(M2
Q + Q2)

, (23)

where eQ is the fractional electric charge of the quark Q.
Details of the derivation can be found in Appendix A. Expres-
sions for AU , BU and AT have also been given in Ref. [30],
where some power suppressed terms were included, as well
as an additional power suppressed cos φT amplitude. The
explicit expressions of the terms AU/T in Eqs. (21) and (22)
read

AU = AT = [1 + (1 − y)2]Aγ ∗g→Q
U+L − y2 Aγ ∗g→Q

L ,

(24)

BU = BT = (1 − y)Bγ ∗g→Q
T , (25)

where the subscripts U + L , L , T refer to the specific polar-
ization of the photon [24,66]. If we denote by Aλγ ,λ′

γ
, with

λγ , λ′
γ = 0,±1, the helicity amplitudes squared for the pro-

cess γ ∗g → QQ
[

2S+1L(8)
J

]
, the following relations hold

(omitting numerical prefactors)

AU+L ∝ A++ + A−− + A00,

AL ∝ A00,

AI ∝ A0+ + A+0 − A0− − A−0,

AT ∝ A+− + A−+. (26)

Furthermore, in terms of the CO LDMEs we obtain

Aγ ∗g→Q
U+L = 〈0|OJ/ψ

8 (1S0)|0〉
+ 4

Nc

1

M2
Q(M2

Q + Q2)2

×
[
(3M2

Q + Q2)2 〈0|OJ/ψ
8 (3P0)|0〉

+ 2 Q2(2M2
Q + Q2) 〈0|OJ/ψ

8 (3P1)|0〉
+ 2

5
(6M4

Q+6M2
Q Q2+Q4) 〈0|OJ/ψ

8 (3P2)|0〉
]

,

(27)

Aγ ∗g→Q
L = 16

Nc

Q2

(M2
Q + Q2)2

×
[

〈0|OJ/ψ
8 (3P1)|0〉 + 3

5
〈0|OJ/ψ

8 (3P2)|0〉
]

,

(28)

and

Bγ ∗g→Q
T = −〈0|OJ/ψ

8 (1S0)|0〉 + 4

Nc

1

M2
Q(M2

Q + Q2)2

×
[
(3M2

Q + Q2)2 〈0|OJ/ψ
8 (3P0)|0〉

− 2 Q4 〈0|OJ/ψ
8 (3P1)|0〉

+2

5
Q4 〈0|OJ/ψ

8 (3P2)|0〉
]

. (29)

We conclude this section by noticing that each of the four
independent azimuthal modulations in the cross section for
e p → e′ J/ψ X , that is cos 2φT , sin(φS −φT ), sin(φS +φT )

and sin(φS−3φT ), probe a different gluon TMD. These mod-
ulations are the same as for the process e p → e′ Q Q X [4],
after integration over the azimuthal angle φ⊥. As already
pointed out in Ref. [4], such angular structures and the cor-
responding TMDs are very similar to the quark asymmetries
in the SIDIS process e p → e′ h X , where the role of φT is
played by φh [67].

4 Azimuthal asymmetries

In order to single out the different azimuthal modulations of
the cross section dσ , given in Eq. (19) and Eqs. (21)–(22),
we define the following azimuthal moments

AW (φS ,φT ) ≡ 2

∫
dφS dφT W (φS, φT ) dσ(φS, φT )∫

dφS dφT dσ(φS, φT )
, (30)

where the denominator reads

∫
dφS dφT dσ(φS, φT ) ≡

∫
dφS dφT

dσU

dy dxB d2qT

= (2π)2 N AU f g1 (x, q2
T ) (31)

with N and AU given by Eqs. (23) and (24), respectively. By
taking W = cos 2φT we obtain
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〈cos 2φT 〉 ≡ 1

2
Acos 2φT

= (1 − y)Bγ ∗g→Q
T

[1 + (1 − y)2]Aγ ∗g→Q
U+L − y2Aγ ∗g→Q

L

× q2
T

2M2
p

h⊥ g
1 (x, q2

T )

f g1 (x, q2
T )

. (32)

Moreover, assuming |ST | = 1, the other moments can be
written as

Asin(φS−φT ) = |qT |
Mp

f ⊥ g
1T (x, q2

T )

f g1 (x, q2
T )

, (33)

Asin(φS+φT ) = (1 − y)Bγ ∗g→Q
T

[1 + (1 − y)2]Aγ ∗g→Q
U+L − y2Aγ ∗g→Q

L

|qT |
Mp

hg1(x, q2
T )

f g1 (x, q2
T )

, (34)

Asin(φS−3φT ) = − (1 − y)Bγ ∗g→Q
T

[1 + (1 − y)2]Aγ ∗g→Q
U+L − y2Aγ ∗g→Q

L

|qT |3
2M3

p

h⊥ g
1T (x, q2

T )

f g1 (x, q2
T )

. (35)

We note that only the unpolarized TMD f g1 appears in the
denominators, because the contributions related to the other
TMDs are angular dependent and therefore vanish upon
integration over φS and φT . The explicit expressions for

Aγ ∗g→Q
U+L , Aγ ∗g→Q

L , Bγ ∗g→Q
T in Eqs. (27)–(29) can be fur-

ther simplified, if one employs the heavy-quark spin symme-
try relations [35,36]

〈0|OJ/ψ
8 (3PJ )|0〉 = (2J + 1)〈0|OJ/ψ

8 (3P0)|0〉 + O(v2).

(36)

Hence, at leading order in v, we obtain:

Aγ ∗g→Q
U+L = 〈0|OJ/ψ

8 (1S0)|0〉

+ 12

Nc

7M2
Q + 3Q2

M2
Q(M2

Q + Q2)
〈0|OJ/ψ

8 (3P0)|0〉, (37)

Aγ ∗g→Q
L = 96

Nc

Q2

(M2
Q + Q2)2

〈0|OJ/ψ
8 (3P0)|0〉, (38)

and

Bγ ∗g→Q
T = −〈0|OJ/ψ

8 (1S0)|0〉

+ 12

Nc

3M2
Q − Q2

M2
Q(M2

Q + Q2)
〈0|OJ/ψ

8 (3P0)|0〉. (39)

The asymmetries in Eqs. (32), (34) and (35) vanish in
the limit y → 1 when the virtual photon is longitudinally

polarized. Moreover, very importantly, we point out that a
measurement of the ratios

Acos 2φT

Asin(φS+φT )
= q2

T

M2
p

h⊥ g
1 (x, q2

T )

hg1(x, q2
T )

, (40)

Asin(φS−3φT )

Acos 2φT
= − |qT |

2Mp

h⊥ g
1T (x, q2

T )

h⊥ g
1 (x, q2

T )
, (41)

Asin(φS−3φT )

Asin(φS+φT )
= − q2

T

2M2
p

h⊥ g
1T (x, q2

T )

hg1(x, q2
T )

(42)

would directly probe the relative magnitude of the differ-
ent gluon TMDs, without any dependence on the color octet
LDMEs. Notice that Eqs. (40)–(42) are not based on the
heavy-quark spin symmetry relations in Eq. (36).

It would be interesting to check experimentally the behav-
ior of these ratios of asymmetries because currently there are
no reliable theoretical predictions. However, for the dipole
gluon TMDs we expect, from model independent consid-
erations [8], that the observable in Eq. (42) will reach the
value one in the small-x limit. It remains to be seen if this
holds also for the WW gluon distributions discussed in this
paper.

5 Quarkonium polarization

The study of J/ψ polarization is often considered as a test
of NRQCD. Hence, in this section we present the cross sec-
tions for the processes e p → e′ QL/T X , where the quarko-
nium in the final state is polarized either longitudinally (L)
or transversely (T ) with respect to the direction of its three-
momentum in the photon-proton center-of-mass frame. The
cross sections have the same angular structure as in Eq. (19)
and Eqs. (21)–(22). Namely, in terms of the kinematic vari-
ables defined in the previous section,

dσ P

dy dxB d2qT

≡ dσ P (φS, φT ) = dσU P (φT ) + dσ T P (φS, φT ),

(43)

where the superscript P = L or T denotes the polarization
of the quarkonium and the superscripts U and T refer to
the possible polarization states of the initial proton. Clearly,
dσ = dσ L +dσ T , where dσ is the cross section for unpolar-
ized quarkonium production given in Eq. (19). Furthermore,

dσU P =N
[
AUP f g1 (x, q2

T )+
q2
T

M2
p
BU P h⊥ g

1 (x, q2
T ) cos 2φT

]
,

(44)
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and

dσ T P = N |ST | |qT |
Mp

{
AT P f ⊥ g

1T (x, q2
T ) sin(φS − φT )

+ BT P

[
hg1(x, q2

T ) sin(φS + φT )

− q2
T

2M2
p
h⊥ g

1T (x, q2
T ) sin(φS − 3φT )

]}
, (45)

with N defined in Eq. (23) and

AUP = AT P = [1 + (1 − y)2]Aγ ∗g→QP
U+L − y2 Aγ ∗g→QP

L ,

(46)

BUP = BT P = (1 − y)Bγ ∗g→QP
T . (47)

The explicit expressions for longitudinally polarized quarko-
nium production read

Aγ ∗g→QL
U+L = 1

3
〈0|OJ/ψ

8 (1S0)|0〉

+ 12

Nc

M4
Q+10 M2

Q Q2+Q4

M2
Q(M2

Q+Q2)2
〈0|OJ/ψ

8 (3P0)|0〉,
(48)

Aγ ∗g→QL
L = Aγ ∗g→Q

L

= 96

Nc

Q2

(M2
Q + Q2)2

〈0|OJ/ψ
8 (3P0)|0〉, (49)

in agreement with the results in Ref. [53], while

Bγ ∗g→QL
T = −1

3
〈0|OJ/ψ

8 (1S0)|0〉

+ 12

Nc

1

M2
Q

〈0|OJ/ψ
8 (3P0)|0〉 (50)

is new. For completeness, the results corresponding to trans-
verse polarization of the quarkonium read

Aγ ∗g→QT
U+L = 2

3
〈0|OJ/ψ

8 (1S0)|0〉

+ 24

Nc

3 M4
Q + Q4

M2
Q(M2

Q + Q2)2
〈0|OJ/ψ

8 (3P0)|0〉,
(51)

Aγ ∗g→QT
L = 0, (52)

and

Bγ ∗g→QT
T = −2

3
〈0|OJ/ψ

8 (1S0)|0〉

+ 24

Nc

1

M2
Q

M2
Q − Q2

M2
Q + Q2

〈0|OJ/ψ
8 (3P0)|0〉. (53)

More details on the derivation of the above cross sections,
performed along the lines of Refs. [68–70], can be found at
the end of Appendix A.

We note that, also for polarized quarkonium production,
it is possible to define azimuthal moments exactly as in
Eq. (30), as well as their ratios in Eqs. (40)–(42). In par-
ticular, it turns out that such ratios of asymmetries depend
neither on the LDMEs, nor on the polarization state of the
detected quarkonium.

6 A strategy for the determination of the dominant CO
LDMEs

In this section we define novel observables, which within
our approximations are only sensitive to the CO LDMEs
〈0|OJ/ψ

8 (1S0)|0〉 and 〈0|OJ/ψ
8 (3P0)|0〉, and to the corre-

sponding ones for ϒ production, but not to TMDs. This
is possible by combining azimuthal asymmetries in e p →
e′ J/ψ (ϒ) X with analogous quantities for open heavy-
quark pair production in e p → e′ Q Q X [4,23,24] in the
following way:

Rcos 2φT =
∫

dφT cos 2φT dσQ(φS, φT )∫
dφT dφ⊥ cos 2φT dσ QQ(φS, φT , φ⊥)

, (54)

R =
∫

dφT dσQ(φS, φT )∫
dφT dφ⊥ dσ QQ(φS, φT , φ⊥)

, (55)

where dσQ now denotes the differential cross section for the
process e p → e′ Q X defined in Eq. (19), and

dσ QQ ≡ dσ QQ

dz dy dxB d2K⊥ d2qT

(56)

is the differential cross section for the process

e(�) + p(P, S) → e′(�′) + Q(KQ) + Q(KQ) + X,

(57)

in which the quark-antiquark pair is almost back-to-back
in the plane orthogonal to the direction of the proton and
the exchanged virtual photon. Hence, in the γ ∗ p center-of-
mass frame, the difference of the transverse momenta of the
outgoing quark and antiquark, conventionally specified by
K⊥ = (K Q⊥ − K Q⊥)/2, should be large compared to their
sum qT = K Q⊥+K Q⊥. In Eqs. (54)–(55), φT , φ⊥ and φS are
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the azimuthal angles of qT , K⊥, and of the proton polariza-
tion vector S, respectively. Furthermore, y is the inelasticity
and xB is the Bjorken variable, while z = KQ · P/q · P ,
with q = � − �′ as for e p → e′ Q X . We note that in the
definitions of Rcos 2φT and R the proton does not need to be
polarized.

The hard scale of the process e p → e′ Q X is identified
with the quarkonium mass MQ ≈ 2MQ . Moreover, to avoid
the presence of two very different hard scales in the calcula-
tion of the numerators of Rcos 2φT and R, we simply take the
photon virtuality Q to be Q = MQ ≈ 2MQ . Therefore, from
the results for the cross section presented above, we obtain

∫
dφT cos 2φT dσQ(φS, φT )

≡
∫

dφT cos 2φT

dσU

dy dxB d2qT

= π N BU q2
T

M2
p
h⊥ g

1 (x, q2
T )

= π3
α2αse2

Q

16 M5
Q

(
1 − y

y

) [
−OS

8 + 1

M2
Q

OP
8

]

× q2
T

M2
p
h⊥ g

1 (x, q2
T ), (58)

∫
dφT dσQ(φS, φT )

≡
∫

dφT

dσU

dy dxB d2qT

= 2π N AU f g1 (x, q2
T )

= π3
α2αse2

Q

8 M5
Q

[
1 + (1 − y)2

y
OS

8

+10 − 10y + 3y2

y

1

M2
Q

OP
8

]
f g1 (x, q2

T ), (59)

where we have introduced the shorthand notation OS
8 ≡

〈0|OQ
8 (1S0)|0〉 and OP

8 ≡ 〈0|OQ
8 (3P0)|0〉.

Since we would like to have an exact cancellation of the
gluons TMDs in the ratio, we need to consider the same value
of the photon virtuality Q in both processes. Furthermore, the
other hard scale K⊥ ≡ |K⊥| in e p → e′ Q Q X is taken to
be K⊥ = Q to avoid any possible TMD evolution effect.
From the results in Ref. [4] calculated at K⊥ = Q = 2MQ

and z = 1/2, we get

∫
dφT dφ⊥ cos 2φT dσ QQ(φS, φT φ⊥)

≡
∫

dφT dφ⊥ cos 2φT

dσ QQ

dz dy dxB d2K⊥d2qT

= −π
α2αse2

Q

108 M4
Q

(
1 − y

y

)
q2
T

M2
p
h⊥ g

1 (x, q2
T ) , (60)

∫
dφT dφ⊥ dσ QQ(φS, φT , φ⊥)

≡
∫

dφT dφ⊥
dσ QQ

dz dy dxB d2K⊥ d2qT

= π
α2αse2

Q

54 M4
Q

(
26 − 26y + 9y2

y

)
f g1 (x, q2

T ). (61)

By taking the ratio of the two cos 2φT -weighted cross sections
in Eqs. (58) and (60), and the ratio of the two cross sections
in Eqs. (59) and (61), it turns out that the two independent
observables

Rcos 2φT = 27 π2

4

1

MQ

[
OS

8 − 1

M2
Q

OP
8

]
, (62)

R = 27 π2

4

1

MQ

[1+(1−y)2]OS
8 +(10−10y+3y2)OP

8 /M2
Q

26 − 26y + 9y2 ,

(63)

give access to two different combinations of the CO LDMEs
OS

8 and OP
8 . Therefore the knowledge of both of them will

allow to single out these two LDMEs, at least at leading order.
TMDs will re-enter in higher orders in an a priori calculable
way, thus introducing a qT dependence of Rcos 2φT and R
which at leading order and without final state smearing effects
are constant.

A similar comparison could be done to jet pair production
instead, but in that case quark contributions may spoil the
cancellation of the gluon TMDs to some extent, depending
on the kinematic region under study. This may be an option
worth considering, should open heavy-quark pair production
turn out not to be feasible at an EIC. In a recent Monte Carlo
analysis for a future EIC it is shown that at least single spin
asymmetries will be hard to study in open heavy-quark pair
production (assuming a luminosity of 10 fb−1) [27]. Here
however, we propose a comparison to open heavy-quark pair
production in the unpolarized proton case.

We point out that the measurement of quarkonium polar-
ization will probe other combinations of the CO LDMEs, and
can not only be used for consistency checks, but also to assess
the importance of higher order contributions, which will be
different for the unpolarized and polarized cases. By extend-
ing the definitions in Eqs. (54) and (55) to longitudinally
polarized quarkonium production, using the cross sections
presented Section 5, we find

Rcos 2φT
L = 27 π2

4

1

MQ

[
1

3
OS

8 − 1

M2
Q

OP
8

]
, (64)

RL = 9 π2

4

1

MQ

[1+(1−y)2]OS
8 +3(6−6y+y2)OP

8 /M2
Q

26 − 26y + 9y2 ,

(65)
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while, for transversely polarized quarkonium production,

Rcos 2φT
T = 9 π2

2

1

MQ
OS

8 , (66)

RT = 9 π2

2

1

MQ

[1+(1−y)2]OS
8 +3(2−2y+y2)OP

8 /M2
Q

26 − 26y + 9y2 ,

(67)

with

Rcos 2φT
L + Rcos 2φT

T = Rcos 2φT , (68)

RL + RT = R. (69)

In particular, we notice that the measurement of Rcos 2φT
T ,

for values of the photon virtuality such that Q = MQ, will
directly probe the matrix element OS

8 = 〈0|OQ
8 (1S0)|0〉.

Before moving on to the numerical studies, we like to com-
ment on the robustness of the above results. As emphasized
several times, the presented expressions are leading order
(LO) in both TMD factorization and in NRQCD. Next-to-
leading order (NLO) corrections will reintroduce sensitivity
to the TMDs, but as mentioned the LO CO contribution is
expected to be dominant over the NLO CS (and CO) contribu-
tions, parametrically by a factor v3π/αs ≈ 2 and in practice
by a larger factor for high Q2 [53]. As also mentioned, a
further strong suppression of the NLO CS contribution can
be achieved by applying a high lower-cut on the variable
z, e.g. z ≥ 0.9, as shown in [53]. Furthermore, in a recent
study [54] it was shown that the NLO CS contribution under-
shoots the DIS data particularly at low transverse momenta.
Both high Q2 and low transverse momenta are considered in
the present case in order to ensure TMD factorization of the
process e p → e′ Q X . Despite the low transverse momenta
(PQT � MQ ∼ Q), experimentally the quarkonium state
should be clearly distinguishable from the proton remnants.
This is unlike the case of proton–proton collisions, where the
transverse momentum functions as a large scale.

Moreover, we would like to emphasize that our process
is very much similar to e p → e′ π X , where γ ∗q → q ′
is the dominant channel, Q is again the hard scale and the
transverse momentum of the pion can be arbitrarily small.
For such a process, in this kinematic configuration, a rigor-
ous proof of TMD factorization exists [52]. The final state
interactions of the fragmenting quark with the proton rem-
nants can be summed up to yield a gauge link in the quark
TMD correlator. The only difference with the reaction under
study, γ ∗g → Q, is that the incoming parton is now a gluon
and the final state interactions will be resummed in the gauge
link of the gluon correlator, which will be in the adjoint rep-
resentation instead of the fundamental one. The mass of the
bound state Q does not affect the gauge link structure and

hence no TMD factorization breaking problems due to color
entanglement are present.

In short, the QCD corrections for this process in the kine-
matic region considered will not lead to a breaking of TMD
factorization and are not expected to upset the NRQCD
expansion and the CO dominance. Next we will study the
effects of final state smearing due to the transition from the
CO QQ state into the true CS hadronic final state.

7 Smearing effects

In order to assess the impact of final state smearing we focus
on the ratio R defined above, and introduce the functions
�L(k2

T ), where kT is the transverse momentum of the pro-
duced heavy quark-antiquark pair w.r.t. the CS hadronic final
state. We assume that the smearing is different for the two
color-octet states, identified by L = 0 and L = 1. Then
Eq. (63) needs to be modified as follows

R = 27 π2

4

1

MQ

× [1+(1−y)2]OS
8 S0(x, q2

T )+(10−10y+3y2)OP
8 /M2

Q S1(x, q2
T )

26 − 26y + 9y2 ,

(70)

where

SL(x, q2
T ) = C[ f g1 �L ](x, q2

T )

f g1 (x, q2
T )

, with L = 0, 1, (71)

and where we have introduced the convolutions of the TMD
gluon distribution f g1 with �L , which are defined by

C[ f g1 �L ](x, q2
T ) ≡

∫
d2 pT

∫
d2kT

× δ2(qT − pT − kT ) f g1 (x, p2
T )�L(k2

T ). (72)

The result in Eq. (63) is recovered when

�0(k2
T ) = �1(k2

T ) = δ2(kT ), (73)

and, therefore, S0 = S1 = 1.
We will adopt a model parameterization for the transverse

momentum dependent gluon distribution f g1 , as it has not yet
been extracted from experiments. For simplicity, the x and
pT dependences are factorized:

f g1 (x, p2
T ) = C2

T

2π
f g1 (x)

1

1 + p2
T C

2
T

, (74)

where f g1 (x) is the gluon distribution function integrated over
qT , and CT is a constant whose value depends on the hard
scale of the process. We assume C2

T = 4 GeV−2 for J/ψ
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production and C2
T = 1 GeV−2 for ϒ production [55]. This

choice is motivated by TMD evolution, which is expected
to make parton distributions flatter as the scale increases.
This q-Gaussian or Tsallis distribution (also sometimes less
accurately referred to as Gaussian + tail model) is considered
more realistic than a pure Gaussian distribution, which falls
off too fast. Consequently, for Gaussians, SL will diverge for
large q2

T and require the inclusion of TMD evolution leading
to a power-law fall off, as considered here. Note that for the
adopted model the smearing functions SL do not depend on
x , but only on q2

T . In principle, there may also be smearing
in the denominator of SL due to the fragmentation of a heavy
quark into a D- or B-meson, but since these are produced
at large transverse momentum, this effect is expected to be
much less relevant.

To the best of our knowledge, no parametrization is so
far available for the smearing functions �L . Therefore we
propose a model based on the properties of the radial wave
function of the hydrogen atom in momentum space, namely:

• For large pT , �L vary as ( p2
T )

−(L+4), with L = 0, 1,
independently of the heavy quark mass.

• For small pT , �L vary as ( p2
T )

L , hence �1 vanishes at
pT = 0, while �0 does not.

Furthermore, the normalization is fixed by imposing

∫
d2kT �L(k2

T ) = 1. (75)

Explicitly we have

�0(k2
T ) = 3C2

T

π

1

(1 + k2
T C

2
T )

4
,

�1(k2
T ) = 12C4

T

π

k2
T

(1 + k2
T C

2
T )

5
, (76)

where CT is taken to be independent of L and equal to the
width of the TMD distribution in Eq. (74). This guaran-
tees that the transverse momentum distribution for a heavier
quarkonium state falls off less fast, reflecting its smaller spa-
tial extent.

The transverse momentum dependence of the smearing
functions SL(q2

T ), whose deviation from the value one is a
signal of the presence of smearing effects, is shown in Fig. 2
for both J/ψ and ϒ production, and for two different mod-
els of the gluon TMDs. We note that, because of the rapid
decrease of the Gaussian distribution as a function of qT in
the denominator of Eq. (71), the Gaussian model can be con-
sidered valid up to qT ≈ 0.5 GeV for C2

T = 4 GeV2 (left
panel), and qT ≈ 1 GeV for C2

T = 1 GeV2 (right panel). In
this region, the smearing effect is similar to the one obtained
with the more realistic Gaussian+tail model, which has a

wider range of validity in qT . The latter model leads to a
smearing which is not sizable, except when qT is very close
to zero.

We conclude that the observation of a qT -dependence in
the ratios R (and Rcos 2φT ) indicates final state smearing
and/or higher order effects. If indeed found to be moder-
ate, this dependence can be included in the error on the
extracted CO LDME values. The cross-check with the polar-
ized quarkonium case can help further, because the smearing
is expected to be the same in that case, as opposed to the
higher order effects which moreover are calculable. In this
way there should be sufficient experimental handles to test
the validity of the approximations and estimate the uncer-
tainties involved.

Regarding the effect of final state smearing on the pre-
sented azimuthal asymmetries, there is the problem that the
gluon TMDs involved are entirely unknown. In the next sec-
tion we therefore present upper bounds on the spin asymme-
tries for which we have explicitly checked that the smearing
effects are small and comparable to those on R, hence not
considered important. Therefore, we will proceed with the
delta function approximation in what follows.

8 Numerical results

8.1 Upper bounds of the asymmetries

The polarized gluon TMDs have to satisfy the following,
model independent, positivity bounds [6]

| pT |
Mp

| f ⊥ g
1T (x, p2

T )| ≤ f g1 (x, p2
T ),

p2
T

2M2
p

|h⊥ g
1 (x, p2

T )| ≤ f g1 (x, p2
T ),

| pT |
Mp

|hg1(x, p2
T )| ≤ f g1 (x, p2

T ) ,

| pT |3
2M3

p
|h⊥ g

1T (x, p2
T )| ≤ f g1 (x, p2

T ), (77)

which can be used to calculate the upper limits of the
azimuthal moments defined in the previous section. It can
be easily seen that the Sivers asymmetry in Eq. (33) is bound
to 1, while the asymmetries in Eqs. (34) and (35) have the
same upper bound, which we denote by AW

N . This is also the
same upper bound of the weighted cross section 〈cos 2φT 〉
defined in Eq. (32).

For the numerical estimate of our asymmetries, we use
different sets of extractions of the CO LDMEs for the J/ψ
[41–44] (see Table 1), and one set for the ϒ(1S) (Table 2), all
of them obtained from fits to TEVATRON, RHIC and LHC
data. Note that most of these results are obtained from NLO
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Fig. 2 Transverse momentum dependence of the smearing functions SL , with L = 0, 1, for e p → e′ J/ψ X (left panel) and e p → e′ ϒ X (right
panel), for the adopted model parameterizations for the gluon TMD and �L with the choices C2

T = 4 GeV−2 (J/ψ production) and C2
T = 1 GeV−2

(ϒ production)

Table 1 Numerical values of
the LDMEs for J/ψ production J/ψ 〈0|OJ/ψ

8

(1
S0

)|0〉 〈0|OJ/ψ
8

(3
P0

)|0〉/M2
c

CMSWZ [42] 8.9 ± 0.98 0.56 ± 0.21 ×10−2 GeV3

SV [43] 1.8 ± 0.87 1.8 ± 0.87 ×10−2 GeV3

BK [41] 4.50 ± 0.72 −1.21 ± 0.35 ×10−2 GeV3

BCKL [44] 9.9 ± 2.2 1.1 ± 1.0 ×10−2 GeV3

Table 2 Numerical values of
the LDMEs for ϒ(1S)

production

ϒ
(
1S

) 〈0|Oϒ(1S)
8 (1S0)|0〉 〈0|Oϒ(1S)

8

(3
P0

)|0〉/(5M2
b )

SV [43] 1.21 ± 4.0 1.21 ± 4.0 ×10−2 GeV3

analyses, except for the SV set in Ref. [43], which is based on
a LO calculation like our asymmetries. The negative value
of 〈0|OJ/ψ

8 (3P0)|0〉 from the BK set leads to negative LO
unpolarized cross sections for certain values of Q2. For this
reason, the results obtained using the BK parametrization are
not shown explicitly. The mass of the J/ψ is taken to be 3.1
GeV, while the one for ϒ is 9.5 GeV. We define the charm
and bottom quark masses to be equal to half of the mass of
the J/ψ and the ϒ , respectively.

First, in Fig. 3 we plot the maximum values of the
azimuthal asymmetries AW

N computed for the processes
e p → e′ J/ψ X (left panel) and e p → e′ ϒ X (right panel),
in which the J/ψ and ϒ are unpolarized, as a function of
y and for different values of Q2. The maximum values for
AW
N in the case of longitudinally and transversely polarized

quarkonium production are presented in Figs. 4 and 5, respec-
tively. In general, it turns out that the asymmetries depend
very strongly on the specific set of LDMEs adopted. As men-
tioned above, they always vanish in the limit y → 1, and
reach their maximum when y → 0. Alternatively, in Fig. 6
we show the Q-dependence of these maxima for the choice

y = 0.1 and only for unpolarized quarkonium production.
The results for polarized quarkonia do not present significa-
tive differences and, for this reason, are not shown explicitly.

In the J/ψ production plots one can see that depending
on the set of LDMEs used and the quarkonium polarization
state, the obtained behavior of the asymmetry as a function
of Q2 can be quite different, in some cases it increases or
decreases, or even first decreases and then increases again.
The Q2 behavior of the asymmetries can thus be a further
tool to determine the CO LDMEs, or at least their relative
magnitude.

Finally, we point out that more stringent bounds on gluon
TMDs than the ones presented in Eq. (77) can be obtained by
comparison with experiments. The COMPASS Collaboration
has reported preliminary results on the Sivers asymmetry for
e p → e′ J/ψ X [71]. The obtained value Asin(φS−φT ) =
−0.28 ± 0.18 in the kinematical region of validity of our
results, z ≥ 0.95, points towards a negative gluon Sivers
function at low x and Q2, with a size about 1/3 of its pos-
itivity bounds. An even smaller gluon Sivers function has
been found from the analyses of available data on inclusive
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Fig. 3 Upper bounds for the 〈cos 2φT 〉 and AW
N asymmetries, with

W = sin(φS+φT ), sin(φS−3φT ), for e p → e′ J/ψ X (left panel) and
e p → e′ ϒ X (right panel), as a function of y and for different values
of the scale Q2. The labels SV and CMSWZ denote the adopted LDME

sets, given in Tables 1 and 2. The bounds obtained with the BCKL set,
not shown explicitly, lie always between the SV and CMSWZ results
presented in the left panel

Fig. 4 Upper bounds for the 〈cos 2φT 〉 and AW
N asymmetries, with

W = sin(φS + φT ), sin(φS − 3φT ), for e p → e′ J/ψ X (left panel)
and e p → e′ ϒ X (right panel), with the J/ψ and ϒ mesons longitudi-
nally polarized along their direction of motion in theγ ∗ p center-of-mass
frame, as a function of y and for different values of the scale Q2. The

labels SV and CMSWZ denote the adopted LDME sets, given in Tables
1 and 2. The bounds obtained with the BCKL set, not shown explicitly,
lie always between the SV and CMSWZ results presented in the left
panel

pion and heavy-quark production in proton–proton collisions
at RHIC [72,73]. However, in those analyses, TMD factor-
ization has been assumed for single-scale processes, even
if not supported by a formal proof. This phenomenologi-
cal approach is known as generalized parton model (GPM)
and is able to successfully describe many features of several
available data. It still remains to be seen whether the effec-
tive TMDs determined within the GPM differ from the ones
extracted from TMD-factorizing processes.

8.2 cos 2φ asymmetries in the MV model

In the small-x limit, the nonperturbative McLerran-
Venugopalan (MV) model [60–62] allows to calculate the
gluon distributions inside an unpolarized large nucleus or
energetic proton. The analytical expressions for the unpo-
larized and linearly polarized Weizsäcker–Williams (WW)
gluon distributions in this model are given by [13,14]:
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Fig. 5 Same as in Fig. 4, but for transversely polarized J/ψ (left panel) and ϒ (right panel) mesons

Fig. 6 Upper bounds for the 〈cos 2φT 〉 and AW
N asymmetries, with W = sin(φS + φT ), sin(φS − 3φT ), for e p → e′ J/ψ X (left panel) and

e p → e′ ϒ X (right panel), as a function of Q for y = 0.1. The labels CMSWZ, SV and BCKL denote the adopted LDME sets, given in Tables 1
and 2

f g1 (x, p2
T ) = S⊥CF

αsπ3

∫
dr

J0(pTr)

r

(
1 − e− r2

4 Q2
sg(r)

)
,

(78)

h⊥g
1 (x, p2

T )=
S⊥CF

αsπ3

2M2
p

p2
T

∫
dr

J2(pTr)

r ln 1
r2�2

(
1−e− r2

4 Q2
sg(r)

)
,

(79)

where S⊥ is the transverse size of the nucleus or proton, � is
an infrared cutoff such as �QCD, and where Qsg(r) is the sat-
uration scale for gluons, which in the MV model depends log-
arithmically on the dipole size r , and in general is a function
of x . Factorizing the dependence on r as follows: Q2

sg(r) =
Q2

sg0 ln(1/r2�2), we can take Q2
sg0 = (Nc/CF )Q2

s0 with

Q2
s0 = 0.35 GeV2 at x = x0 = 10−2 from the fits to HERA

data [74].
Adding e as a regulator for numerical convergence, in

accordance with Ref. [4], we obtain for the ratio of both
gluon TMDs:

p2
T

2M2
p

h⊥g
1 (x, p2

T )

f g1 (x, p2
T )

=
∫

dr J2(pT r)
r ln( 1

r2�2 +e)

(
1 − e

− r2
4 Q2

sg0 ln
(

1
r2�2 +e

))
∫

dr J0(pT r)
r

(
1 − e

− r2
4 Q2

sg0 ln
(

1
r2�2 +e

)) , (80)

which is shown as a solid black line in the left panel of Fig. 7.
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Fig. 7 Left: ratio of the linearly polarized vs unpolarized Weizsäcker–Williams gluon TMDs in the analytical MV model (solid line), as well as
in the numerical simulation of Ref. [18]. Right: the dependence of this ratio on the choice of IR regulator

The nonlinear evolution in rapidity of the gluon density
in the presence of saturation is governed by the JIMWLK
equation [63], which can be solved numerically [75–77]. In
Refs. [18,64], an implementation of JIMWLK on a two-
dimensional lattice with spacing a was used to evolve the
gluon TMDs f g1 and h⊥g

1 towards larger rapidities (or lower
values of x), starting from an initial condition which corre-
sponds to the MV model, using the prescription of Ref. [76].
We assigned a physical value to the lattice spacing a accord-
ing to the relation aQs0 = 0.015, which was obtained in
Ref. [64] by studying the universal large-pT behavior of the
gluon TMDs. For our choice of the saturation scale, this rela-
tion yields a = 0.025 GeV−1. The numerical JIMWLK evo-
lution is performed in steps δs = (αs/π

2)δy = 10−4, with
y = ln (x0/x) the rapidity. We show in Fig. 7 the initial condi-
tion at y = 0 for the ratio p2

T/(2M
2
p) h

⊥g
1 (x, p2

T )/ f
g
1 (x, p2

T ),
as well as the result after 500 and 1000 steps in the evolu-
tion, which at a coupling αs(MJ/ψ) � 0.2 corresponds to
the values x � 10−3 and x � 10−4, respectively.

In the same Fig. 7, we also compare with the analytical
expression of the initial condition in Eq. (80). It can clearly be
seen that the latter differs somewhat from its implementation
on the lattice. Indeed, the uncertainty in the choice of the
saturation scale and lattice size aside, the major source of this
discrepancy is the way in which the infrared (IR) is regulated.
On the lattice, this is taken care of by the finite lattice spacing,
while in Eq. (80) we added a regulator by hand. To illustrate
the freedom in the way the IR can be regulated, and the
ensuing theoretical uncertainty for the ratio of the TMDs, we
plot this ratio in the right panel of Fig. 7 for some different
choices of the regulator.

With this ratio at hand, we show predictions for the cos 2φT

asymmetry, Eq. (32), as a function of qT in Fig. 8 and
as a function of y in Fig. 9, both for the J/ψ and for

the ϒ mesons. Note that in Fig. 9 we took the numerical
value for p2

T /(2M
2
p) h

⊥g
1 (x, p2

T )/ f
g
1 (x, p2

T ) corresponding to
pT = 1.5 GeV from the numerical results in Fig. 7, and then
plotted the analytical y-dependence with the help of Eq. (32).
We restrict the range in pT to the region of validity of TMD
factorization, which we estimate as pT = qT ∈ [0, MQ/2].
Note that in Fig. 8, the effects of the lattice discretization,
which become more important for small values of qT , are
clearly visible, even suggesting a rise of the ratio towards
qT → 0, which is clearly an artifact of the discretization.

9 Summary and conclusions

We have presented expressions for the azimuthal asymme-
tries for J/ψ and ϒ production in DIS processes at LO
in NRQCD, when the quarkonium in the final state is pro-
duced with a transverse momentum smaller than its invariant
mass. Such observables can be used to extract information
on the so far poorly known gluon TMDs, as well as to better
understand the mechanism underlying quarkonium produc-
tion by directly probing the two color-octet matrix elements
〈0|OJ/ψ

8 (1S0)|0〉 and 〈0|OJ/ψ
8 (3P0)|0〉. We proposed ratios

of asymmetries (Eqs. (40)–(42)) in which the LDMEs cancel
out, but also ratios (Eqs. (54)–(55) and their polarized quarko-
nium analogues) in which the TMDs cancel out. The latter
offer novel ways to extract the two mentioned CO LDMEs,
which are still poorly known. This method requires one to
consider comparisons of the processes e p → e′ Q X and
e p → e′ Q Q X at the same hard scale, in order to establish
a cancellation of the TMDs and to avoid having to include
TMD evolution, although that in principle can be done with
known methods as well. Since the proposed asymmetries are
always given by the ratio of two cross sections, they have
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Fig. 8 〈cos 2φT 〉 asymmetries as a function of qT for the processes e p → e′ J/ψ X (left panel) and e p → e′ ϒ X (right panel), calculated at
Q = MQ and y = 0.1, and using the CMSWZ set for the J/ψ LDMEs given in Table 1

Fig. 9 〈cos 2φT 〉 asymmetries as a function of y for the processes e p → e′ J/ψ X (left panel) and e p → e′ ϒ X (right panel), calculated at
Q = 1 GeV and qT = 1.5 GeV. The labels SV and CMSWZ denote the adopted LDME sets, given in Tables 1 and 2

the further advantage of being less sensitive to the normal-
izations of the cross sections, to the effects of higher order
corrections and to other sources of uncertainties, like the
exact value of the charm and bottom mass. Moreover, as dis-
cussed in Ref. [53] to which we refer for details, we mention
that for inclusive quarkonium production in DIS, nonper-
turbative effects like higher twist corrections and diffractive
background can be more effectively suppressed as compared
to quarkonium photoproduction, by looking at events with
sufficiently high values of the photon virtuality Q2. We have
argued that in the kinematic region of high Q2 and low trans-
verse momenta considered, TMD factorization is applicable2

2 For recent studies of the large pT -range probed in J/ψ + jet produc-
tion, see Refs. [78,79].

and the NLO CS contributions are suppressed. The latter can
be suppressed further to a negligible level by an additional
high lower-cut on z. This should ensure the robustness of the
presented results. Final state transverse momentum smearing
due to the transition from the CO QQ state into the true CS
hadronic final state is expected to affect the simplicity of the
presented leading order results. Therefore, we checked its
effect numerically using model parameterizations. From this
we conclude that the approximation of ignoring L- and MQ-
dependent final state smearing effects may not be very impor-
tant, especially if q2

T is not too small. In addition, we have
suggested ways to cross check the results between unpolar-
ized and polarized quarkonium production. As a by-product
it offers a way to learn about the transverse momentum dis-
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tribution of the hadronization into quarkonia, which is inter-
esting in itself.

In our phenomenological analysis, we have used the pos-
itivity bounds for the gluon TMDs in order to estimate the
maximal values of the asymmetries, and identify the kine-
matical regions in which they are sizable and where they
could possibly be measured in future experiments at an EIC.
For the gluon Sivers function this kind of studies provides
little guidance because the corresponding maximal asym-
metry is always 100%. A more stringent constraint comes
from preliminary COMPASS results which seem to suggest
a nonzero Sivers effect. An investigation by the COMPASS
Collaboration of the other asymmetries as well, in a kine-
matical region complementary to that of the EIC, would be
of course very beneficial. Finding nonzero single spin asym-
metries in quarkonium production would be a sign of the
CO mechanism, because in the CS mechanism they have to
vanish due to the absence of any initial or final state interac-
tions [34].

In addition to the upper bounds of the gluon TMDs, we
have studied also their behavior at small values of x , which
is expected to be probed at an EIC if Q2 is not high, but
of the order of Q2 � 10 GeV2 (also the higher

√
s the

better). The TMDs accessible in this process correspond to
the so-called WW distributions at small x . This means that
the T -odd distributions f ⊥ g

1T , hg1T and h⊥ g
1T are suppressed

by a factor of x with respect to the unpolarized gluon den-
sity and, as such, cannot be described by current saturation
models. On the other hand, the T -even distribution of lin-
early polarized gluons inside an unpolarized proton, h⊥ g

1 ,
is not suppressed. We have therefore used the MV satura-
tion model to show that it can give rise to sizable cos 2φT

modulations. Notably, we have explicitly checked that these
modulations are only slightly reduced by small-x evolution
effects and could be in principle measured even down to
x = 10−4.

Acknowledgements We would like to thank Jean-Philippe Lansberg,
Cyrille Marquet, and Claude Roiesnel for useful discussions. This
research is partially supported by the European Union’s Horizon 2020
research and innovation programme (Grant agreement No. 647981,
3DSPIN).

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: All the numbers
and plots generated in our study have been included in this paper. We
do not have additional data to show.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

Appendix A: transition amplitudes

The scattering amplitudes for the partonic processes γ ∗(q)+
g(p) → QQ[1S(8)

0 or 3S(8)
1 ](PQ) contributing to e p →

e′ J/ψ (ϒ) X can be written in the form [80,81]

Aμν[1S(8)
0 ](q, p) = 1

4

√
CS,0

2MQ
Tr

[
Oμν(0) (P/Q−MQ) γ 5

]
,

(A1)

Aμν[3S(8)
1 ](q, p) = 1

4

√
CS,1

2MQ
Tr

[
Oμν(0) (P/Q−MQ) ε/Sz

]
,

(A2)

where

CS,J = 1

2J + 1
〈0|OJ/ψ

8 (2S+1L J )|0〉, (A3)

MQ ≈ 2MQ is the mass of the quarkonium, and εSz is the
polarization vector for the spin-1 quarkonium wave func-
tion. The operator O(q, p; k, PQ) is calculated at leading
order in perturbative QCD from the Feynman diagrams in
Fig. 10, with k being half the relative momentum of the out-
going quark-antiquark pair, including the SU (3) color-octet
projector

〈3i, 3̄ j |8a〉 = √
2 tai j . (A4)

We obtain

Oμν(0) = −√
2 δab

eecgs
2(M2

Q + Q2)

× [
γ μ

(
p/−q/+MQ

)
γ ν − γ ν

(
p/ − q/ − MQ

)
γ μ

]
,

(A5)

where we have used the shorthand notation O(0) ≡
O(q, p; 0, PQ).

Similarly, the amplitudes for the subprocesses γ ∗(q) +
g(p) → QQ[1P(8)

1 or 3P(8)
J ](PQ), in which a P-wave

bound state is formed, read

Aμν [1P(8)
1 ](q, p)=−i

√
3 CP,0

8 Nc MQ

× Tr

[(
Oμν(0) ε/Lz

P/Q
MQ

+εα
Lz
Ôμν

α (0)
P/Q−MQ

2

)
γ 5

]
,

(A6)
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Fig. 10 Feynman diagrams for
the partonic subprocess
γ ∗(q) + g(p) → Q(PQ) at LO
in perturbative QCD

(a) (b)

Aμν [3P(8)
0 ](q, p) = 1

2
i

√
CP,0

2 Nc MQ

× Tr

[
−3 Oμν(0)+

(
γ α Ôμν

α (0)− P/QPα
Q

M2
Q

Ôμν
α (0)

)
P/Q−MQ

2

]
,

(A7)

Aμν [3P(8)
1 ](q, p) = 1

4

√
3 CP,1

Nc MQ
εαβρσ

Pρ

Q
MQ

εσ
Jz (PQ)

× Tr

[
γ α Ôβμν(0)

P/Q − MQ
2

+ Oμν(0)
P/Q
MQ

γ αγ β

]
, (A8)

Aμν [3P(8)
2 ](q, p) = i

√
3 CP,2

8 Nc MQ
ε
αβ
Jz

(PQ)

× Tr

[
γα Ôμν

β (0)
P/Q − MQ

2

]
, (A9)

where we have defined

Ôμν
α (0) ≡ ∂

∂kα
Oμν(q, p; k)

∣∣∣∣
k=0

, (A10)

which can be calculated from the diagrams in Fig. 10 as well.
Its explicit expression is given by

Ôαμν(0) = √
2 δab

eecgs
M2

Q + Q2

×
{

2pα

M2
Q + Q2

[
γ μ

(
q/ − p/ − MQ

)
γ ν

+γ ν
(
q/ − p/ + MQ

)
γ μ

]
−γ μγ αγ ν − γ νγ αγ μ

}
. (A11)

By computing the traces explicitly we obtain the following
final results for the amplitudes:

Aμν[1S(8)
0 ](q, p) = −2i

√
CS,0

MQ

× δab
eecgs

M2
Q + Q2

εμν
ρσ qρ Pσ

Q, (A12)

Aμν[3S(8)
1 ](q, p) = 0, (A13)

Aμν[1P(8)
1 ](q, p) = 0, (A14)

Aμν[3P(8)
0 ](q, p) = 2i

√
CP,0

Nc MQ
δab

eecgs
M2

Q + Q2

× 3M2
Q+Q2

MQ

[
gμν − 2

M2
Q+Q2

Pμ

Q qν

]
,

(A15)

Aμν[3P(8)
1 ](q, p) = −4

√
9 CP,1

2 Nc MQ
δab

eecgs
(M2

Q + Q2)2

× Pρ

Q εσ
Jz (PQ)

Q2

M2
Q

[
(M2

Q + Q2) ερσ
μν

+2 ερσαβ qα
(
Pμ

Q gβν − Pν
Q gβμ

)]
,

(A16)

Aμν[3P(8)
2 ](q, p) = 2i

√
3 MQ CP,2

Nc
δab

eecgs
M2

Q + Q2

× ε
ρσ
Jz

(PQ)
[
gμ
ρ g

ν
σ + gν

ρg
μ
σ

− 4

M2
Q + Q2

qσ

×
(
gμνqρ + gν

ρP
μ

Q − gμ
ρ Pν

Q
)]

.

(A17)

Furthermore, in the calculation of the squared amplitudes
we adopt some useful relations for the polarization vectors
[82,83], which are reported below for completeness. If we
denote by εν

Jz
the polarization vector for a bound state with

total angular momentum J = 1, four-momentum PQ and
mass MQ, then

εα
Jz (PQ) PQα = 0 ,

1∑
Jz=−1

εα
Jz (PQ) ε

∗β
Jz

(PQ) = −gαβ + Pα
QPβ

Q
M2

Q
≡ Pαβ;

(A18)

while, if ε
αβ
Jz

is the polarization tensor for a J = 2 system,
then

ε
αβ
Jz

(PQ) = ε
βα
Jz

(PQ), εα
Jzα

(PQ) = 0 ,

PQα ε
αβ
Jz

(PQ) = 0 ,

2∑
Jz=−2

ε
μν
Jz

(PQ) ε
∗αβ
Jz

(PQ) = 1

2

[PμαPνβ + PμβPνα
]

−1

3
PμνPαβ. (A19)
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Concerning the calculation of the cross section for the pro-
duction of longitudinally and transversely polarized spin-1
states, we notice that, if the QQ pair is produced in a 1S0

state, namely with L = S = 0, the final quarkonium will
be unpolarized. Therefore, for a 1S(8)

0 configuration, each
helicity state will contribute 1/3 of the unpolarized cross
section. This explains the relative multiplicative factor of
〈0|OJ/ψ

8 (1S0)|0〉 in Eq. (48), which corresponds to a quarko-
nium that is longitudinally polarized, i.e. with helicity λ = 0,
with respect to the one in Eq. (27), which corresponds to an
unpolarized quarkonium. For QQ pairs in P-wave interme-
diate states, with L = S = 1, the method described above for
the calculation of the unpolarized cross sections, consisting
in the projection of the hard scattering amplitudes onto states
of definite quantum numbers J and Jz , are not useful when
the final quarkonium is polarized. Instead, one can project
the amplitudes onto states of definite Lz and λ ≡ Sz , square
them and then sum over Lz . The final results for the longitu-
dinal and transversely polarized cross sections are obtained
by using, respectively, the following relations for the polar-
ization vectors ελ(PQ) of the quarkonium [84],

εα
0 (PQ) ε

∗β
0 (PQ)

= Pα
QPβ

Q
M2

Q
− Pα

Q nβ + Pβ

Q nα

PQ · n + M2
Q nα nβ

(PQ · n)2 , (A20)

∑
λ=±1

εα
λ (PQ) ε

∗β
λ (PQ)

= −gαβ + Pα
Q nβ + Pβ

Q nα

PQ · n − M2
Q nα nβ

(PQ · n)2 , (A21)

where n is any four-vector such that n2 = 0 and P · n �= 0.
Obviously, by summing Eqs. (A20) and (A21), we obtain the
second relation in Eq. (A18) with Jz = λ.
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