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Abstract J/ψ- or ϒ-pair production at the LHC are
promising processes to study the gluon transverse momen-
tum distributions (TMDs) which remain very poorly known.
In this article, we improve on previous results by including
the TMD evolution in the computation of the observables
such as the pair-transverse-momentum spectrum and asym-
metries arising from the linear polarization of gluons inside
unpolarized protons. We show that the azimuthal asymme-
tries generated by the gluon polarization are reduced com-
pared to the tree level case but are still of measurable size (in
the 5–10% range). Such asymmetries should be measurable
in the available data sets of J/ψ pairs and in the future data
sets of the high-luminosity LHC for ϒ pairs.

1 Introduction

The three-dimensional structure of the composite hadrons
has widely been analyzed through the study of transverse-
momentum dependent parton distribution functions (TMDs)
in the framework of TMD factorization. The various TMDs
can be accessed in hadronic processes with a small trans-
verse momentum (TM), denoted by qT , of the detected final
state [1–3]. TMDs need to be extracted from experimental
data for such processes as they are intrinsically nonperturba-
tive objects and therefore cannot be computed using perturba-
tive QCD. So far, the majority of data allowing for the extrac-
tion of TMDs have been acquired from SIDIS and Drell–
Yan measurements, two experimentally accessible processes
and for which TMD factorization was proved to hold [4–
6]. However, since such processes are primarily induced by
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quarks/antiquarks, they mostly provide information about the
quarkTMDs. Currently our knowledge ofgluonTMDs is still
very limited, due to the lack of data on processes that could
potentially be used for extractions. More specifically, glu-
ons inside unpolarized protons can be described at leading
twist using two TMDs [7]. The first one describes unpolar-
ized gluons, while the second one describes linearly polarized
gluons. The latter correlates the spin of the gluons with their
TM, and thus requires non-zero gluon TM. The presence of
polarized gluons inside the unpolarized proton has effects on
the cross-sections, such as modifications of the TM-spectrum
and azimuthal asymmetries.

Several processes have been proposed to extract gluon
TMDs, see e.g. [8–36]. Associated quarkonium production
(see [37] for a recent review) has in particular a great potential
to probe the gluon TMDs at the LHC, e.g. quarkonium plus
photon (Q+γ ) or quarkonium-pair production. They mainly
originate from gluon fusion, and can be produced via a color-
singlet transition, avoiding then possible TMD-factorization-
breaking effects [38–40]. This is indeed our working hypoth-
esis, which is based on the fact that the produced systems are
very small color dipoles, produced directly at the hard scat-
tering and thus dominated by the color-singlet configuration.
Moreover, isolation cuts may be used to reduce the risk of
factorization breaking problems. In any case, comparing di-
J/ψ and di-ϒ with γ ∗γ ∗ results would provide in the longer
run a good way to identify possible factorization breaking
effects.

Some quarkonium states, like the J/ψ meson, are eas-
ily detected and a large number of events can be recorded.
Processes with two particles in the final state offer some inter-
esting advantages compared to those with a single detected
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particle. Since the TM of the final state needs to be small
for the cross-section to be sensitive to TMD effects, one-
particle final states are bound to stay close to the beam axis
and therefore difficult to detect, as the background level is
high and triggering is complicated. However, two particles
that are nearly back-to-back can each have large individual
transverse momenta that add up to a small one. Indeed, in
general a pair of particles can have a large invariant mass
and a small TM. Whereas the hard scale in a one-particle
final state is only its mass, and is thus constant, the invariant
mass of a two-particle final state can be tuned with their indi-
vidual momenta. This allows one to study the scale evolution
of the TMDs. Finally, a two-particle final state allows one to
define the azimuthal angle between these two particles, hence
to look for various azimuthal asymmetries. These are in fact
associated to specific convolutions of gluon TMDs.

It was thus recently proposed [30] to probe the gluon
TMDs using quarkonium-pair production at the LHC, and
more specifically J/ψ + J/ψ production. Such a process
has already been measured by LHCb, CMS and ATLAS at
the LHC, as well as by D0 at the Tevatron [41–45]. Also
it has recently been considered within the parton Reggeiza-
tion approach [46]. The size of some azimuthal asymmetries
associated with the linearly polarized gluon distribution are
nearly maximum in this process. In [30], the unpolarized-
gluon distribution was modelled by a simple Gaussian as a
function of the gluon TM. In order to see the maximal effect
of the linearly-polarized gluons on the yields, their distribu-
tion was taken to saturate its positivity bound [7]. The size
of the resulting maximum asymmetries was found to be very
large, especially at large pair invariant mass, MQQ. Yet, more
realistic estimates of the asymmetries require the inclusion
of higher-order corrections in αs through TMD QCD evolu-
tion [21,47–49].

Very recently, a TMD-factorization proof has been estab-
lished for pseudoscalar ηc,b hadro-production at low TM [50]
(see also [51]). To date, this is the only one for quarkonium
hadroproduction. It was pointed out that new hadronic matrix
elements are involved for quarkonium production at low TM,
in addition to the TMDs. These encode the soft physics of
the process. It is not known how much these new hadronic
matrix elements impact the phenomenology. In this context,
we build on the previous work [30] by adding TMD evolu-
tion effects to the gluon TMDs. Such evolution effects are
expected to play a significant role (see e.g. [21]) and should
in any case be specifically analyzed. We will proceed like in
previous studies for H0 production [9,18,21].

In this article, we first discuss the characteristics of
quarkonium-pair production at the LHC within the TMD
framework, as well as the associated cross-section and
observables sensitive to the gluon TMDs. We then detail
the evolution formalism used in our computations and the
resulting expressions for the TMD convolutions. Finally, we

present our results for the PQQT -spectrum and the azimuthal
asymmetries for J/ψ-pair production at the LHC as well as
azimuthal asymmetries for ϒ-pair production.

2 Q-pair production within TMD factorization

2.1 TMD factorization description of the process

TMD factorization extends collinear factorization by taking
into account the intrinsic TM of the partons, usually denoted
by kT . As in collinear factorization, the hard-scattering
amplitude, which can be perturbatively computed, is multi-
plied by parton correlators that can be parametrized in terms
of parton distribution functions, but in this case kT dependent.
The parametrization of parton correlators is an extension
from that used in collinear factorization, not only because
of the kT dependence of the distribution functions, but also
because there are more distributions. The gluon correlator
inside an unpolarized proton with momentum P and mass
Mp, denoted by �

μν
g (x, kT ) [7,52,53], can be parametrized

in terms of two independent TMDs. The first one is the dis-
tribution of unpolarized gluons f g

1 (x, k2
T ), the second one is

the distribution of linearly polarized gluons h⊥ g
1 (x, k2

T ). Here
the gluon 4-momentum is written using a Sudakov decom-
position: k = x P + kT + k−n (where n is any light-like
vector (n2 = 0) such that n · P �= 0), where k2

T = −k2
T and

the transverse metric is gμν
T = gμν − (Pμnν + Pνnμ)/P·n.

For TMD factorization to hold, the hard scale of the process
should be much larger than the pair TM, qT .

The process we are interested in is the fusion of two glu-
ons coming from two colliding unpolarized protons, lead-
ing to the production of a pair of vector S-wave quarkonia:
g(k1)+g(k2) → Q(PQ,1)+Q(PQ,2) . The cross-section for
this reaction involves the contraction of two gluon correla-
tors [30], �

μν
g (x1, k1T ) and �

ρσ
g (x2, k2T ), with the squared

amplitudeMμρ(Mνσ )∗ of the partonic scattering, integrated
over the gluon momenta. The expression of the tree-level
partonic amplitude M is available in Ref. [54], although
the earliest computations date back to 1983 [55,56]. The
hadronization process, i.e. the transition from a heavy-quark
pair to a quarkonium bound state, is described in our study
using the color singlet model (CSM) [57–59] or in this case
equivalently non-relativistic QCD (NRQCD) [60] at LO in
the velocity v of the heavy quarks in the bound-state rest
frame. Figure 1 represents the complete reaction with a typ-
ical Feynman diagram depicting the partonic subprocess.

2.2 Other contributions to quarkonium-pair production

The leading contribution to the hadronization of a QQ pair
into a bound state in NRQCD is the color-singlet (CS) tran-
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Fig. 1 Representative Feynman graph for p(P1)+p(P2) →
Q(PQ,1)+Q(PQ,2)+X via gluon fusion at LO in TMD factorisation

sition, for which the perturbatively-produced heavy-quark
pair has the same quantum numbers as the quarkonium and
directly binds without any extra soft interaction. Corrections
to this leading contribution involving higher color-octet (CO)
fock states are suppressed by powers of v, which is meant to
be much smaller than unity for heavy quarkonia.

The CS over CO dominance normally follows from this
power suppression in v encoded in the so-called NRQCD
long distance matrix elements (LDMEs). More precisely one
expects a relative suppression on the order of v4 [60–62]
(see [37,63–65] for reviews) per quarkonium. For di-J/ψ
production with v2

c � 0.25 and for which both the CO and
the CS yields are produced at α4

s , the CO/CS yield ratio,
which thus scales as v8

c , likely lies below the percent level.
Explicit computations [66–70] indeed show corrections from
the CO states below the percent level except in some corners
of the phase space (e.g. large rapidity separation Δy) where
some CO contributions can be kinematically enhanced, but
these can safely be avoided with appropriate kinematical cuts.
More details can be found in [70].

It is important for the applicability of TMD factorization
that the CS contributions dominate. Soft gluon interactions
between the hadrons and a colored initial or final state of the
hard scattering can be encapsulated within the definition of
the TMD through the use of Wilson lines. However, if both
initial and final states are subject to soft gluon interactions,
the resulting color entanglement may break TMD factoriza-
tion [38–40]. The dominance of the CS contributions should
therefore be ensured.

It is also important to take into account αs corrections. In
the TMD region, PQQT � MQQ, these introduce a renor-
malization scale (μ) dependence in the TMD correlators and
a rapidity scale ζ dependence [4–6]. At larger PQQT one
has to match onto the collinear factorization expression (see

e.g. [71]), which is calculated by taking real-gluon emissions
into account [68,72–74]. At finite PQQT , such single real-
gluon emissions occur at α5

s and the quarkonium pair effec-
tively recoils against this hard gluon, increasing the pair TM.
In this paper we will restrict to PQQT < MQQ/2 in order
to stay away from the matching region.

Thus far, we have focused our discussion on the single par-
ton scattering (SPS) case. However, since we look at a two-
particle final state, we should also consider the case where
the quarkonia are created in two separate hard scatterings,
i.e. double parton scattering (DPS). At LHC energies, the
gluon densities are typically high and the likelihood for two
hard gluon fusions to take place during the same proton-
proton scattering cannot be neglected.

In the case of di-J/ψ , it has been already anticipated
in 2011 [75] that DPS contributions may be dominant at
large rapidity difference Δy (thus large invariant masses
with same individual TM). This was corroborated [68] by
the CMS data [42] with an excess above the SPS predic-
tions at large Δy. ATLAS further [45] confirmed the DPS
relevance in di-J/ψ production with a dedicated DPS study.
One expects1 [45,68] that DPS contributions lie below 10%
for Δy ∼ 0 in the CMS and ATLAS samples (characterized
by a PQT cut away from the threshold Mψψ � 2Mψ ) and
that they only matter at large Δy. However, in the LHCb
acceptance (where Mψψ � 2Mψ ), DPS contributions can-
not a priori be neglected, but can be subtracted [44] if one
assumes that, for the DPS sample, the kinematics of both
J/ψ’s is uncorrelated. This yield a precise (yet, unnormal-
ized) prediction of the kinematical distributions.

Another source of quarkonium pairs is the feed-down from
excited states. For J/ψ-pair production, the main feed-down
sources are the χc and ψ ′. The feed-down from χc is expected
to be small, as gg → J/ψ + χc and gg → ψ ′ + χc are
suppressed [68] at LO byC-parity and the vanishing of the χc

wave function at the origin, and gg → χc +χc is suppressed
by the squared χc → J/ψ branching ratio. The production of
a ψ ′ with a J/ψ likely contributes [37] 50% of the J/ψ-pair
samples, owing to the large branching ratio for ψ ′ → J/ψ
(O(60)%) and symmetry factors. Yet, ψ ′ + J/ψ pairs are

1 Theory DPS studies advance [76–79], but not yet as to provide quan-
titative inputs to predict DPS cross sections as done for SPS. As such,
one usually assumes the DPS contributions to be independent. This
justifies factorizing the DPS cross section into individual ones with an
(inverse) proportionality factor, referred to as an effective cross-section
σeff . Under this assumption, σeff should be process independent, encod-
ing the magnitude of the parton interaction. σeff needs to be experimen-
tally extracted as it is a nonperturbative quantity. This is the standard
procedure at LHC energies [80–86]. Ideally, a single precise extraction
of σeff should suffice to provide predictions for any DPS cross section
under this factorized Ansatz. Yet, the current extraction seems to dif-
fer [87] with values ranging from 25 mb down to a few mb, which forces
us to restrict to qualitative considerations.
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produced exactly like J/ψ + J/ψ pairs and thus generate
the same TMD observables.2

In the case of ϒ-pair production, the main feed-down is
from ϒ(2,3S). According to Ref. [88], less than 30% of
the produced pairs would originate from feed-down at

√
s

= 8 TeV. As in the J/ψ case, C-parity suppresses the ϒ +χb

reaction at leading order, and χb + χb is suppressed by the
squared branching ratio. Regarding the CO contributions, the
relative velocity of the quarks inside the ϒ is smaller than for
the J/ψ , meaning the NRQCD expansion used to describe
the hadronization has a better convergence. Therefore it is
highly unlikely that the CO channels overcome the CS ones
in the reachable phase space. The fraction of DPS events is
also expected to be less than 5% at low PQQT and central
rapidity [37], making it an overall cleaner process.

2.3 The TMD differential cross-section

The general structure of the TMD-based differential cross-
section describing quarkonium-pair production from gluon
fusion reads [30]:

dσ

dMQQdYQQd2PQQT dΩ
=

√
M2

QQ − 4M2
Q

(2π)28s M2
QQ{

F1(MQQ, θCS) C
[
f g1 f g1

]
(x1,2, PQQT )

+ F2(MQQ, θCS) C
[
w2h

⊥g
1 h⊥g

1

]
(x1,2, PQQT )

+
(
F3(MQQ, θCS) C

[
w3 f

g
1 h

⊥g
1

]
(x1,2, PQQT )

+ F ′
3(MQQ, θCS) C

[
w′

3h
⊥g
1 f g1

]
(x1,2, PQQT )

)
cos 2φCS

+ F4(MQQ, θCS) C
[
w4h

⊥g
1 h⊥g

1

]
(x1,2, PQQT ) cos 4φCS

}
,

(1)

with dΩ = dcos θCSdφCS, {θCS, φCS} being the Collins-
Soper (CS) angles [89], and YQQ is the rapidity of the
pair. x1,2 = MQQ e±YQQ/

√
s, with s = (P1 + P2)

2.
Here PQQT (≡ qT ) and YQQ are defined in the hadron
c.m.s. The quarkonia move along (in the opposite direction)
e = (sin θCS cos φCS, sin θCS sin φCS, cos θCS) in the CS
frame. The kinematical pre-factor is specific to the mass of
the quarkonia and the considered differential cross-sections,
while the hard-scattering coefficients Fi only depend on
θCS and the invariant mass of the system, here MQQ. Their
expression for quarkonium-pair production can be found at
tree level in Ref. [30]. When PQT � MQ, small values of
cos θCS correspond to small values of Δy in the hadron c.m.s.

2 Up to the small kinematical shift due to the decay which we neglect
in what follows.

The TMD convolutions appearing in Eq. (1) are defined
as follows:

C[w f g](x1,2, PQQT )

≡
∫

d2k1T

∫
d2k2T δ2(k1T + k2T − PQQT )

× w(k1T , k2T ) f (x1, k2
1T ) g(x2, k2

2T ) , (2)

where w(k1T , k2T ) denotes a TMD weight. The weights in
Eq. (1) are common to all gluon-fusion processes originat-
ing from unpolarized proton collisions. They can be found in
Ref. [25]. Our aim in the present study is to study the impact
of QCD evolution effects in the above TMD convolutions.
Having at our disposal the computation of the hard-scattering
coefficients, the measurements of differential yields in prin-
ciple allow one to extract these TMD convolutions evolved
up to the natural scale of the process, on the order of MQQ
here.

In practice, one looks at specific observables sensitive to
these convolutions. First we note that when the cross-section
is integrated over the azimuthal angle φCS, the terms with a
cos(2,4φCS)-dependence drop out from Eq. (1) such that

1

2π

∫
dφCS

dσ

dMQQdYQQd2PQQT dΩ

= F1 C
[
f g
1 f g

1

]
+ F2 C

[
w2h

⊥ g
1 h⊥ g

1

]
, (3)

giving direct access to C
[
f g
1 f g

1

]
and C

[
w2h

⊥ g
1 h⊥ g

1

]
.

Furthermore, one can define, at fixed {Y, PQQT , θCS,

MQQ}, cos(nφCS)-weighted differential cross-sections, inte-
grated over φCS and normalized by their azimuthally-
independent component:

〈cos(nφCS)〉

=

∫
dφCS cos(nφCS)

dσ

dMQQdYQQd2PQQT dΩ∫
dφCS

dσ

dMQQdYQQd2PQQT dΩ

. (4)

Such a variable, computed for n = 2 or 4 in our case, cor-
responds to (half of) the relative size of the cos(2,4φCS)-
modulations present in the TMD cross-section in comparison
to its φCS-independent component:

〈cos 2φCS〉 = 1

2

F3C
[
w3 f

g
1 h⊥ g

1

]
+ F ′

3C
[
w′

3h
⊥ g
1 f g

1

]

F1 C
[
f g
1 f g

1

]
+ F2 C

[
w2h

⊥ g
1 h⊥ g

1

] ,

〈cos 4φCS〉 = 1

2

F4C
[
w4h

⊥ g
1 h⊥ g

1

]

F1 C
[
f g
1 f g

1

]
+ F2 C

[
w2h

⊥ g
1 h⊥ g

1

] . (5)

123



Eur. Phys. J. C (2020) 80 :87 Page 5 of 14 87

When 〈cos nφCS〉 is computed within a range of MQQ,
YQQ, PQQT or cos(θCS), we define it as the ratio of cor-
responding integrals. Of course, the range in PQQT should
be such that one remains in the TMD region, i.e. PQQT �
MQQ.

For positive Gaussian h⊥ g
1 the 〈cos(2φCS)〉 asymmetry

will be positive (note that in Ref. [30] the 〈cos(2φCS)〉 plots
miss an overall minus sign).

3 TMD evolution formalism

TMD evolution has been considered in an increasing number
of TMD observables. It is usually implemented by Fourier
transforming to bT -space, with bT being the conjugate vari-
able to PQQT . When evolution effects are considered, the
TMDs acquire a dependence on two scales: a renormalization
scale μ and a rapidity scale ζ (whose evolution is governed
by the Collins-Soper equation). Below we present in a simple
way the results needed to perform the TMD evolution. For
more details, we refer to e.g. [21,47–49].

When TMD evolution is incorporated to the gluon TMDs
in the tree-level result in Eq. (1), the convolutions take the
form

C[w f g](x1,2, PQQT ;μ)

≡
∫

d2k1T

∫
d2k2T δ2(k1T + k2T − PQQT )

× w(k1T , k2T ) f (x1, k2
1T ; ζ1, μ) g(x2, k2

2T ; ζ2, μ) , (6)

where the two rapidity scales should fulfill the constraint
ζ1ζ2 = M4

QQ. While the renormalization scale μ in the hard-
scattering coefficients Fi should be set here to μ ∼ MQQ in
order to avoid large logarithms, the TMDs should be eval-
uated at their natural scale μ ∼ √

ζ ∼ μb = b0/bT (with
b0 = 2e−γE ), in order to minimize both logarithms of μbT
and ζb2

T , and then evolved up to μ ∼ √
ζ ∼ MQQ. The solu-

tion of the evolution equations results in the introduction of
the following Sudakov factor SA:

f̃ g
1 (x1, b

2
T ; ζ, μ) = e− 1

2 SA(bT ;ζ,μ) f̃ g
1 (x, b2

T ;μ2
b, μb) ,

h̃⊥ g
1 (x1, b

2
T ; ζ, μ) = e− 1

2 SA(bT ;ζ,μ)h̃⊥ g
1 (x, b2

T ;μ2
b, μb) (7)

where the Fourier-transformed TMDs are

f̃ g
1 (x, b2

T ; ζ, μ) =
∫
d2kT e−ibT · kT f g

1 (x, k2
T ; ζ, μ) ,

h̃⊥ g
1 (x, b2

T ; ζ, μ) =
∫

d2kT
(bT · kT )2 − 1

2 b
2
T k

2
T

b2
T M

2
p

× e−ibT · kT h⊥ g
1 (x, k2

T ; ζ, μ), (8)

and the perturbative Sudakov factor (applicable for suffi-
ciently small bT ) is given by

SA(bT ; ζ, μ) = 2D(μ2
b) ln

ζ

μ2
b

+ 2
∫ μ

μb

dμ̄

μ̄

[
�(αs(μ̄

2)) ln
ζ

μ̄2 + γ (αs(μ̄
2))

]
. (9)

We consider here the resummation at next-to-leading-
logarithmic accuracy, for which the Collins-Soper kernel D
and the non-cusp anomalous dimension γ need to be taken
at leading-order, while the cusp anomalous dimension � at
next-to-leading-order (see [90] for a recent detailed analysis
of the two-dimensional evolution of TMDs). The perturba-
tive Sudakov factor then takes the form

SA(bT ; ζ, μ) = 2
CA

π

∫ μ

μb

dμ̄

μ̄
ln

(
ζ

μ̄2

)
(10)

×
[
αs(μ̄

2) +
((67

9
− π2

3

) − 20T f n f

9

)
α2
s (μ̄

2)

4π

]

+ 2
CA

π

∫ μ

μb

dμ̄

μ̄
αs(μ̄

2)

[
−11 − 2n f /CA

6

]
, (11)

with CA = 3, T f = 1/2 and n f the number of flavors (we
will use n f = 4 for di-J/ψ and n f = 5 for di-ϒ production).
The running of αs is implemented at one loop. We note that
the Sudakov factor SA is spin independent, and thus the same
for all (un)polarized TMDs [21,49].

The perturbative component of the TMDs for small bT
can be computed at a given order in αs . At leading order, f̃ g

1
is given by the integrated PDF:

f̃ g
1 (x, b2

T ; ζ, μ) = fg/P (x;μ) + O(αs) + O(bTΛQCD) .

(12)

As said above, h⊥ g
1 describes the correlation between the

gluon polarization and its TM (kT ) inside the unpolarized
proton. It requires a helicity flip and therefore an additional
gluon exchange. Consequently, its perturbative expansion
starts at O(αs) [9] (the NLO result was recently obtained
in Ref. [91]):

h̃ ⊥g
1 (x, b2

T ; ζ, μ)

= −
(

αs(μ)CA

π

∫ 1

x

d x̂

x̂

(
x̂

x
− 1

)
fg/P (x̂;μ)

+ αs(μ)CF

π

∑
i=q,q̄

∫ 1

x

d x̂

x̂

(
x̂

x
− 1

)
fi/P (x̂;μ)

)

+ O(α2
s ) + O(bTΛQCD) , (13)

The above equations in principle allow one to derive a pertur-
bative expression of these TMDs. However, they are strictly
applicable only in a restricted bT range, whereas we need
an expression for them from small to large bT in order to
perform the corresponding Fourier transform.
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For large bT , one indeed leaves the domain of perturbation
theory. On the contrary, when bT gets too small, μb becomes
larger than MQQ and the evolution should stop. The above
perturbative expression for the Sudakov factor should thus
not be used as it is.

One of the common solutions to continue to use the above
expressions consists in replacing bT by a function of bT
which freezes in both these limits such that one is not sen-
sitive to the physics there. For our numerical studies we use
the following bT prescription [92]:

b∗
T

(
bc(bT )

) = bc(bT )√
1 +

(
bc(bT )
bTmax

)2
(14)

where

bc(bT ) =
√
b2
T +

( b0

MQQ

)2
, (15)

such that μb = b0
b∗
T (bc)

always lies between b0/bTmax (reached

when bT → ∞) and MQQ (reached when bT → 0). This
prescription is of course not unique, as it entails e.g. some
particular assumptions on the transition from the hard to the
soft regime. The ambiguity in the choice of this prescription
can however be absorbed in the nonperturbative modelling
of the TMDs, anyhow needed in the large bT region, which
we discuss next.

Schematically each TMD convolution can be written in
bT -space as

C[w f g] =
∫ ∞

0

dbT
2π

bnT Jm(bT qT ) W̃ (bT , Q) , (16)

for some integers n and m. Here W̃ is a simple prod-
uct of Fourier-transformed TMDs. The nonperturbative
Sudakov factor SNP is now defined through W̃ (bT , Q) =
W̃ (b∗

T , Q) e−SNP(bT ,Q), where by construction W̃ (b∗
T , Q) is

perturbatively calculable for all bT values. The value of
bT max in Eq. (14) (roughly) sets the separation between
the perturbative and nonperturbative domains. Its optimal
value depends on many factors, such as the functional form
chosen for b∗

T and the parametrization of the nonperturba-
tive Sudakov factor SNP. For our numerical studies we take
bT max = 1.5 GeV−1, inspired by previous fits from Drell–
Yan and W, Z production [93–97].

The functional form of SNP has been subject of debate,
but is usually chosen to be proportional to b2

T for all bT . By
definition e−SNP(bT ,Q) has to be equal to 1 for bT = 0 and
for large bT it has to vanish, at the very least to ensure con-
vergence of the results. It is usually assumed to be a mono-
tonically decreasing function of bT and its change from 1
to 0 is assumed to happen within the confinement distance.

Table 1 Values of the parameter A used in Eq. (17) for e−SNP , along
with the corresponding bT lim and r at MQQ = 12 GeV

A (GeV2) bT lim (GeV−1) r (fm ∼ 1/(0.2 GeV)

0.64 2 0.2

0.16 4 0.4

0.04 8 0.8

Lacking experimental constraints, here we will assume a sim-
ple Gaussian form (of varying widths). In order to assess the
importance of the nonperturbative Sudakov factor for the size
of the asymmetries and to perform a first error estimate, we
consider several functions. For this purpose, we take a simple
formula for the nonperturbative Sudakov factor that encap-
sulates the expected MQQ-dependence [98] and the assumed
bT -Gaussian behavior:

SNP
(
bc(bT )

) = A ln
(MQQ
QNP

)
b2
c (bT ) , QNP = 1 GeV .

(17)

From this nonperturbative Sudakov factors a value bT lim

is defined at which e−SNP becomes negligible, to be spe-
cific, where it becomes ∼ 10−3. From this we furthermore
define a corresponding characteristic radius r = 1

2bT lim

(considering bT lim the diameter, since it is conjugate to
PQQT = k1T + k2T ), which delimits the range over which
the interactions occur from the center of the proton. To esti-
mate the uncertainty associated with the largely unknown
nonperturbative Sudakov factor, we will consider three cases:
bT lim = 2, 4 and 8 GeV−1. This spans roughly from
bT max = 1.5 GeV−1 to the charge radius of the proton, thus
giving a generous but sensible estimation of the nonperturba-
tive uncertainty. The corresponding values of the parameter
A and r for MQQ = 12 GeV are given in Table 1.

The value MQQ = 12 GeV is considered because the ratio
F3/F1 peaks there (for J/ψ pair production), but we will
also consider larger values later on. When MQQ increases,
the interaction radius r decreases. Figure 2 depicts e−SNP as a
function of bT for the three values of A previously mentioned
and for MQQ ranging from 12 to 30 GeV.

We point out that the nonperturbative Sudakov factor as
fitted by Aybat and Rogers [95] to low-energy SIDIS as well
as high-energy Drell–Yan and Z0 production data, rescaled
by a color factor CA/CF to account for the different color
representation between quarks and gluons, is very close to
the case bT lim = 2 GeV−1. It is also very close to the Fourier
transform of the Gaussian model for f g1 (x, k2

T ) with 〈k 2
T 〉 =

3.3 ± 0.8 GeV2 as extracted in Ref. [30] from a LO fit to
J/ψ-pair-production data from LHCb [44] from which the
DPS contributions was however approximately subtracted.
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Fig. 2 e−SNP from Eq. (17) vs bT for A = 0.04 (purple), 0.16 (orange)
and 0.64 (magenta) GeV2, for values of MQQ ranging from 12 to 30
GeV. The boundaries around the bands depict the exponential at MQQ
= 12 GeV (solid line) and at MQQ = 30 GeV (dotted line)

We end this section by providing the expressions for the
TMD convolutions in bT -space, which we actually use in the
numerical predictions in the next section:

C
[
f g
1 f g

1

]

=
∫ ∞

0

dbT
2π

bT J0(bT qT ) e−SA(b∗
T ;M2

QQ,MQQ)

× e−SNP(bc) f̃ g
1 (x1, b

∗ 2
T ; μ2

b, μb) f̃ g
1 (x2, b

∗ 2
T ; μ2

b, μb) ,

C
[
w2 h

⊥ g
1 h⊥ g

1

]

=
∫ ∞

0

dbT
2π

bT J0(bT qT ) e−SA(b∗
T ;M2

QQ,MQQ)

× e−SNP(bc)h̃⊥ g
1 (x1, b

∗ 2
T ; μ2

b, μb) h̃
⊥ g
1 (x2, b

∗ 2
T ; μ2

b, μb) ,

C
[
w3 f g

1 h⊥ g
1

]

=
∫ ∞

0

dbT
2π

bT J2(bT qT ) e−SA(b∗
T ;M2

QQ,MQQ)

× e−SNP(bc) f̃ g
1 (x1, b

∗ 2
T ; μ2

b, μb) h̃
⊥ g
1 (x2, b

∗ 2
T ; μ2

b, μb) ,

C
[
w4 h

⊥ g
1 h⊥ g

1

]

=
∫ ∞

0

dbT
2π

bT J4(bT qT ) e−SA(b∗
T ;M2

QQ,MQQ)

× e−SNP(bc)h̃⊥ g
1 (x1, b

∗ 2
T ; μ2

b, μb) h̃
⊥ g
1 (x2, b

∗ 2
T ; μ2

b, μb) .

(18)

4 The TM spectrum and the azimuthal asymmetries

4.1 J/ψ-pair production

As said, after integration over the azimuthal angle φCS , one
gets to a good approximation dσ/dqT ∝ qT C[ f g

1 f g
1 ]. In

Fig. 3a we compare qT C[ f g
1 f g

1 ] evaluated using the non-
evolved Gaussian TMD model of [30] with the evolved TMD
computed along the lines described in the previous section

(a)

(b)

Fig. 3 (a) The normalised PQQT -spectrum for J/ψ-pair production
at Mψψ = 8 GeV using two gluon TMDs. The first is a Gaussian Ansatz
with 〈k 2

T 〉 = 3.3 ± 0.8 GeV2 obtained from the LHCb data [30] (the
red curve shows the central value and the gray band the associated
uncertainty). The second is the result of our present study with TMD
evolution. The green band results from the uncertainty on the bT -width
of the nonperturbative Sudakov factor SNP. The estimated DPS contri-
bution has been subtracted from the LHCb data (black crosses) which
were also normalized over the interval. (b) The PQQT -spectrum using
our evolved gluon TMDs at MQQ = 12, 20 and 30 GeV for the same
uncertainty on the bT -width

for MQQ = 8 GeV using the range of bT lim between 2 and 8
GeV−1. The main difference one can observe is the broaden-
ing of the PQQT -spectrum when including evolution effects.
The curves are given as functions of PQQT in the range from
0 up to MQQ/2, to be in the validity range of TMD factor-
ization.

The momentum fractions of the initial gluons, x1 and x2,
are both fixed to 10−3. Varying the momentum fractions does
not have any significant impact on the shape of the PQQT -
spectrum or the azimuthal asymmetries. The size of the asym-
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metries varies by a few percent with x . As such variations
do not change the conclusions of our analysis, we will keep
the values x1 = x2 = 10−3 throughout this paper. This is
also convenient for an experimental study, as a binning of
the data in YQQ is not necessary to be able to compare them
with predictions.

In Fig. 3b, we show evolved results for MQQ = 12, 20
and 30 GeV within the same bT lim range as Fig. 3b. The
broadening of the PQQT -spectrum for increasing MQQ is
then explicit.

The azimuthal asymmetries presented in Eq. (5) depend
on a rather complex ratio of TMD convolutions and hard-
scattering coefficients. In the case of J/ψ-pair produc-
tion, these expressions simplify for several reasons. The
first one, already mentioned previously, is that because
F2 is small, the denominator can be approximated to be

F1C
[
f g
1 f g

1

]
. Moreover, because of the symmetry of the

final state, one finds the coefficients F3 and F ′
3 to be

equal, simplifying the numerator of 〈cos(2φCS)〉 to be

F3

(
C
[
w3 f g

1 h⊥ g
1

]
+ C

[
w′

3 h
⊥ g
1 f g

1

])
. Finally, when one

takes the initial-parton-momentum fractions to be equal, i.e.
x1 = x2, these two convolutions become equal as well.
Since the PQQT -dependence of the cross-section is con-
tained inside the convolutions, the PQQT -dependence of
the asymmetries can be studied via the convolution ratios

C
[
w3 f g

1 h⊥ g
1

]
/C

[
f g
1 f g

1

]
and C

[
w4 h

⊥ g
1 h⊥ g

1

]
/C

[
f g
1 f g

1

]

for 〈cos(2φCS)〉 and 〈cos(4φCS)〉, respectively.
The difference between both convolutions depends on

the kind of TMDs they contain, but also the type of Bessel
function generated by the angular integral and the weights.
Because h̃⊥ g

1 is of order αs , it is naturally suppressed in com-
parison to f g

1 . Moreover, αs(μb) is growing with bT (up to its

bound αs(b0/bT max)) and h̃⊥ g
1 is also broader in bT than f g

1 .

The presence of h̃⊥ g
1 in a given convolution therefore con-

tributes to reduce the magnitude of the integrand, and to its
bT -broadening. These effects contribute to strongly suppress

C
[
w2 h

⊥ g
1 h⊥ g

1

]
with respect toC

[
f g
1 f g

1

]
.C

[
w2 h

⊥ g
1 h⊥ g

1

]
is

of order α2
s and its integrand is significantly broadened in bT ,

meaning it falls faster than C
[
f g
1 f g

1

]
with increasing PQQT .

Indeed, as a consequence of the bT -broadening, more oscil-
lations of the J0 Bessel function occur in the integrand of

C
[
w2 h

⊥ g
1 h⊥ g

1

]
than of C

[
f g
1 f g

1

]
, before being dampened

by the Sudakov factors at large bT . Each additional oscilla-
tion in the integrand brings the convolution value closer to
zero. More oscillations are packed in a given bT -range when
PQQT increases, widening the gap between the two con-
volutions, and effectively making the ratio fall with PQQT .

This additional effect renders the F2 C
[
w2 h

⊥ g
1 h⊥ g

1

]
term

truly negligible in the cross-section for J/ψ-pair produc-
tion. It also means that in other processes where the hard-

scattering coefficient F2 may be large, the convolution itself
would remain relatively small at scales larger than a few GeV.
Besides, its influence on the cross-section will be strongest
at the smallest TM.

The situation is different for the azimuthal asymmetries,
which involve convolutions in the numerator that contain
either the J2 or J4 Bessel functions. Such functions are
0 at bT =0 and then grow in magnitude. The consequence
is that the bT -integrals containing such functions benefit
from unsuppressed intermediate bT values. At some point,
undampened large-bT oscillations will bring the integral

value down toward 0 in a similar way as for C
[
f g
1 f g

1

]

and C
[
w2 h

⊥ g
1 h⊥ g

1

]
. Therefore, the C

[
w3 f g

1 h⊥ g
1

]
and

C
[
w4 h

⊥ g
1 h⊥ g

1

]
convolutions first grow with PQQT up to

a peak maximum, and then decrease in value like C
[
f g
1 f g

1

]

does. Another crucial difference is that the envelopes of
J2 and J4 tend slower toward 0 than the J0 one with

increasing bT . The consequence is that C
[
w3 f g

1 h⊥ g
1

]
and

C
[
w4 h

⊥ g
1 h⊥ g

1

]
fall slower than C

[
f g
1 f g

1

]
with PQQT .

Hence the convolution ratios, and the azimuthal asymme-
tries, always grow with PQQT , as can be seen in Fig. 4.
In addition, as the large bT values are less suppressed than

in C
[
f g
1 f g

1

]
, the azimuthal asymmetries are also more

sensitive to the variations of the nonperturbative Sudakov

SNP. The effect is more pronounced for C
[
w4 h

⊥ g
1 h⊥ g

1

]

since it contains h̃⊥ g
1 twice and a broader Bessel func-

tion.
Figure 4b displays the cos(2φCS) asymmetry as a func-

tion of PQQT in the forward single J/ψ rapidity region
(larger cos(θCS)) while 4c displays the cos(4φCS) asym-
metry in the central rapidity region (small cos(θCS) with
x1 � x2). Such choices maximize the size of the asymme-
tries as the associated hard-scattering coefficients are larger
in these regions, without modifying the shapes of the asym-
metries in PQQT (see [30] for a comparison between the
two rapidity regions for each asymmetry). The uncertainty
band associated with the width of SNP narrows with increas-
ing MQQ as in Fig. 3; the uncertainty remains larger for

〈cos(4φCS)〉 as C
[
w4 h

⊥ g
1 h⊥ g

1

]
is more affected by SNP.

The curves for bT lim = 8 GeV−1 (large dashes) are quite
close to the ones using bT lim = 4 GeV−1 (solid line). Indeed,
when SNP is already significantly wider than SA, an addi-
tional increase in its width will not affect the asymmetries
anymore. Both convolutions in the ratios are larger with a
wide nonperturbative Sudakov factor, yet this benefits the

numerator
(
C
[
w3 f g

1 h⊥ g
1

]
or C

[
w4 h

⊥ g
1 h⊥ g

1

])
more than

the denominator
(
C
[
f g
1 f g

1

])
, and the asymmetries are of a

greater size for a wider SNP.
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Fig. 4 The azimuthal
asymmetries for di-J/ψ
production as functions of
PQQT . The different plots show
2〈cos(2φCS)〉 (a,b) and
2〈cos(4φCS)〉 (c,d), at
| cos(θCS)| < 0.25 (a,c) and at
0.25 < | cos(θCS)| < 0.5 (b,d).
Results are presented for Mψψ =
12, 21 and 30 GeV, and for
bT lim = 2, 4 and 8 GeV−1

(a) (b)

(c) (d)

We recall that the size of the asymmetries is also influ-
enced by the ratio of the hard-scattering coefficients which
are MQQ-dependent. F3/F1 peaks around MQQ = 12 GeV
which explains why the cos(2φCS) asymmetry is largest near
this value. As discussed in Ref. [30], the ratio F4/F1 keeps
growing with MQQ, approaching 1 at sufficiently large val-
ues. Yet the cos(4φCS) asymmetry gets smaller with larger
MQQ. This can be better seen in Fig. 5 which depicts the
same asymmetries as functions of MQQ = Mψψ .

One first observes that, at large MQQ, the growth of the
asymmetries with PQQT is slower. Indeed, in such a sit-
uation, the Sudakov factors broaden the PQQT -shapes of
the convolutions, hence the ratio varies slower. This slower
increase is compensated by the fact that larger values of
MQQ allow for an extended growth of the asymmetry over
a greater PQQT -range of validity for the TMD formalism.
Secondly, the convolution ratios at a fixed value of PQQT

also evolve with MQQ. The computable MQQ-dependence
is encoded in the perturbative Sudakov factor SA, while SNP

is also logarithmically varying with MQQ [98]. Both SA and
SNP get narrower in bT with increasing MQQ, leading to

a decrease of the value of the convolutions. C
[
w3 f g

1 h⊥ g
1

]

and C
[
w4 h

⊥ g
1 h⊥ g

1

]
are more sensitive to the large bT -

value dampening and therefore fall faster with MQQ than

C
[
f g
1 f g

1

]
. This results in decreasing convolution ratios, with

a steeper fall for C
[
w4 h

⊥ g
1 h⊥ g

1

]
. However the azimuthal

asymmetries also depend on the evolution with MQQ of the
hard-scattering coefficients ratios. Since F4/F1 keeps grow-
ing while F3/F1 falls after peaking at MQQ � 12 GeV,
〈cos(4φCS)〉 will actually decrease slower than 〈cos(2φCS)〉.

The large variations of the width of SNP generate mod-
erate uncertainties on the size of the asymmetries. The lat-
ter, although consequently smaller than when computed in
a bound-saturating model [30], still reach reasonable sizes,
up to 5%-10%. We used the same nonperturbative Sudakov
factor for all TMD convolutions in these computations, but
the MQQ-independent part is actually expected to be non-
universal. We checked that individually changing the width
of SNP within the bT lim-ranges used in this study inside the
different types of convolutions, does not bring any significant
modification on the observables.

So far, there are still no experimental data allowing for
an extraction of the gluon TMDs inside unpolarized protons.
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Fig. 5 The azimuthal
asymmetries for di-J/ψ
production as functions of
Mψψ . The different plots show
2〈cos(2φCS)〉 (a,b) and
2〈cos(4φCS)〉 (c,d), at
| cos(θCS)| < 0.25 (a,c) and at
0.25 < | cos(θCS)| < 0.5 (b,d).
Results are presented for PQQT

= 4, 7 and 10 GeV, and for bT lim
= 2, 4 and 8 GeV−1

(a) (b)

(c) (d)

We believe that the numerous J/ψ-pair-production events
recorded at the LHC can give us access to information about
the nonperturbative components of f g

1 and h⊥ g
1 , provided

the events are selected with kinematics within the validity
range of TMD factorization, PQQT < MQQ/2.

4.2 ϒ-pair production

It is also of interest to look at ϒ-pair production. The par-
tonic subprocess is identical to that of di-J/ψ production. In
the non-relativistic limit, where Mϒ = 2mb, the main dif-
ference comes from the mass of the heavy quark. We note
that the value of the non-relativistic wave function at the ori-
gin (or equivalently the NRQCD LDME for the CS transi-
tion) also differs but cancels in the ratios which we consider.
The feed-down pattern is also clearly different. However, as
announced, we will neglect the resulting (small) feed-down
effects.

Owing to this larger mass, such a process probes the evo-
lution at generally higher scales. The coupling constant αs

is also smaller which increases the precision of the pertur-
bative expansion. Higher scales also mean that the process

is less sensitive to the (large bT ) nonperturbative behav-
ior of the gluon TMDs. Hence, it is also less affected by
the uncertainties associated with this unconstrained compo-
nent.

On the experimental side, ϒ-pair production is admittedly
a rare process. Yet, it starts to be accessible at the LHC. The
first analysis by the CMS collaboration at

√
s = 8 TeV only

comprised a 40-event sample [99] but a second one is forth-
coming. During the future high luminosity LHC runs, it will
definitely be possible to record a sufficient number of events
for a TMD analysis of both the PQQT and azimuthal depen-
dences of the yield. Figure 6 depicts the azimuthal modu-
lations for ϒ-pair production as functions of PQQT up to
MQQ/2, for values of MQQ of 30, 40 and 50 GeV.

The uncertainty bands associated with the width of SNP

are clearly narrower than in the J/ψ case. The cos(2φCS)

asymmetry in Fig. 6b reaches 10% at MQQ = 40 GeV, which
is the value for which the corresponding hard-scattering coef-
ficient ratio F3/F1 peaks for ϒ-pair production. Moreover,
the decrease of the hard-scattering coefficient past the peak
is slower, allowing the asymmetry to remain of similar size
at MQQ = 40 and 50 GeV.
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Fig. 6 The azimuthal
asymmetries for di-ϒ
production as functions of
PQQT . The different plots show
2〈cos(2φCS)〉 (top) and
2〈cos(4φCS)〉 (bottom), at
| cos(θCS)| < 0.25 (left) and at
0.25 < | cos(θCS)| < 0.5
(right). Results are presented for
Mϒϒ = 30, 40 and 50 GeV, and
for bT lim = 2, 4 and 8 GeV−1.
Results for Mϒϒ = 30 GeV are
not included in (d) as they are
below percent level

(a) (b)

(c) (d)

5 Conclusions

In this paper we discussed the potential of double J/ψ and
ϒ production for the study of the gluon TMDs inside unpo-
larized protons at the LHC. We presented the advantages of
quarkonia as probes of these TMDs. We improved on pre-
vious results [30] by including TMD evolution effects, ren-
dering the results more realistic and effectively taking into
account QCD corrections that describe the evolution with
the invariant mass MQQ of the quarkonium pair. We used
a simple bT -Gaussian of variable width to parametrize the
nonperturbative Sudakov factor SNP in order to estimate how
important its impact is on the predicted yield and asymme-
tries, as it currently remains unconstrained in the gluon case.

We discussed the broadening of the PQQT -spectrum due
to the evolution in the case of double-J/ψ production, as well
as the uncertainty associated with a variation of the width of
SNP between 2 and 8 GeV−1. As expected, we found that its
influence decreases at large MQQ as the perturbative com-
ponent of the TMDs becomes dominant. We also computed
the 〈cos(2,4φCS)〉 asymmetries as functions of PQQT and
MQQ. We found a notable suppression of the asymmetries

in comparison to [30], caused by the fact that h⊥ g
1 appears at

order αs in the evolution formalism. We nevertheless found
that such asymmetries still reach reasonable sizes for larger
PQQT values and could be observed in the events already
collected and to be recorded in the future. We found that the
size of the asymmetries increases with PQQT . Such a behav-
ior is explained by the relative slower fall in PQQT of the
TMD convolutions containing h⊥ g

1 .
TMD factorization needs to be matched onto its collinear

counterpart when PQQT approaches MQQ. Since the latter
generates no asymmetries at leading twist, a Y -term becomes
necessary at some point in order to neutralize the growth
of the asymmetries and force them toward zero. We also
observed that, in spite of the hard-scattering coefficient ratio
F4/F1 approaching 1 at large energy, the cos(4φ) asymmetry
actually falls with MQQ.

Overall we conclude that J/ψ-pair production is a promis-
ing process to measure azimuthal asymmetries related to
gluon TMDs as well as the effect of the evolution on the
PQQT -spectrum. The energy threshold for this process is
relatively low, making it sensitive to the nonperturbative com-
ponent of the TMDs. The large event sample to be collected
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by the different collaborations at the LHC should give enough
statistics to constrain them. ϒ-pair production presents the
interesting opportunity to measure sizeable asymmetries at
scales where perturbative contributions dominate, with a
reduced necessity to include higher-order corrections. We
also presented predictions for the asymmetries as functions
of PQQT for ϒ-pair production. With sufficient data to come,
it would allow for a complementary extraction of the gluon
TMDs, while the expected size of asymmetries remain simi-
lar. Although ϒ pairs remain extremely rare at the LHC, the
future high-luminosity runs will make it possible to acquire
enough statistics.

Accessing information about the gluon TMDs can thus
already be done at the LHC using quarkonium production,
although more efforts in the direction of Ref. [50] are needed
in order to obtain rigorous factorization theorems and expres-
sions beyond tree level. It would give us a preview of what
we can expect to find at a future electron-ion collider [100] or
fixed-target experiments at the LHC [101–105], where these
distributions should be accessible through different reactions.
Because of the fundamental differences in these experimen-
tal setups, it is of great interest to measure the same TMDs
using both of them, in order to be able to check fundamental
predictions of the formalism such as the evolution and the
universality.
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