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Abstract We investigate the performance of a jet identifi-
cation algorithm based on interaction networks (JEDI-net) to
identify all-hadronic decays of high-momentum heavy parti-
cles produced at the LHC and distinguish them from ordinary
jets originating from the hadronization of quarks and gluons.
The jet dynamics are described as a set of one-to-one interac-
tions between the jet constituents. Based on a representation
learned from these interactions, the jet is associated to one
of the considered categories. Unlike other architectures, the
JEDI-net models achieve their performance without special
handling of the sparse input jet representation, extensive pre-
processing, particle ordering, or specific assumptions regard-
ing the underlying detector geometry. The presented models
give better results with less model parameters, offering inter-
esting prospects for LHC applications.

1 Introduction

Jets are collimated cascades of particles produced at parti-
cle accelerators. Quarks and gluons originating from hadron
collisions, such as the proton-proton collisions at the CERN
Large Hadron Collider (LHC), generate a cascade of other
particles (mainly other quarks or gluons) that then arrange
themselves into hadrons. The stable and unstable hadrons’
decay products are observed by large particle detectors,
reconstructed by algorithms that combine the information
from different detector components, and then clustered into
jets, using physics-motivated sequential recombination algo-
rithms such as those described in Refs. [1–3]. Jet identifi-
cation, or tagging, algorithms are designed to identify the
nature of the particle that initiated a given cascade, inferring
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it from the collective features of the particles generated in
the cascade.

Traditionally, jet tagging was meant to distinguish three
classes of jets: light flavor quarks q = u, d, s, c, gluons g,
or bottom quarks (b). At the LHC, due to the large collision
energy, new jet topologies emerge. When heavy particles, e.g.
W, Z, or Higgs (H) bosons or the top quark, are produced
with large momentum and decay to all-quark final states, the
resulting jets are contained in a small solid angle. A single
jet emerges from the overlap of two (for bosons) or three
(for the top quark) jets, as illustrated in Fig. 1. These jets
are characterized by a large invariant mass (computed from
the sum of the four-momenta of their constituents) and they
differ from ordinary quark and gluon jets, due to their peculiar
momentum flow around the jet axis.

Several techniques have been proposed to identify these
jets by using physics-motivated quantities, collectively
referred to as “jet substructure” variables. A review of the
different techniques can be found in Ref. [4]. As discussed
in the review, approaches based on deep learning (DL) have
been extensively investigated (see also Sect. 2), processing
sets of physics-motivated quantities with dense layers or raw
data representations (e.g. jet images or particle feature lists)
with more complex architectures (e.g. convolutional or recur-
rent networks).

In this work, we compare the typical performance of
some of these approaches to what is achievable with a novel
jet identification algorithm based on an interaction network
(JEDI-net). Interaction networks [5] (INs) were designed to
decompose complex systems into distinct objects and rela-
tions, and reason about their interactions and dynamics. One
of the first uses of INs was to predict the evolution of physical
systems under the influence of internal and external forces,
for example, to emulate the effect of gravitational interactions
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Fig. 1 Pictorial representations of the different jet categories consid-
ered in this paper. Left: jets originating from quarks or gluons produce
one cluster of particles, approximately cone-shaped, developing along
the flight direction of the quark or gluon that started the cascade. Cen-

ter: when produced with large momentum, a heavy boson decaying to
quarks would result in a single jet, made of 2 particle clusters (usually
referred to as prongs). Right: a high-momentum t → Wb → qq′b
decay chain results in a jet composed of three prongs

in n-body systems. The n-body system is represented as a set
of objects subject to one-on-one interactions. The n bodies
are embedded in a graph and these one-on-one interaction
functions, expressed as trainable neural networks, are used
to predict the post-interaction status of then-body system. We
study whether this type of network generalizes to a novel con-
text in high energy physics. In particular, we represent a jet as
a set of particles, each of which is represented by its momen-
tum and embedded as a vertex in a fully-connected graph.
We use neural networks to learn a representation of each
one-on-one particle interaction1 in the jet, which we then
use to define jet-related high-level features (HLFs). Based
on these features, a classifier associates each jet to one of the
five categories shown in Fig. 1.

For comparison, we consider other classifiers based on
different architectures: a dense neural network (DNN) [6]
receiving a set of jet-substructure quantities, a convolutional
neural network (CNN) [7–9] receiving an image represen-
tation of the transverse momentum (pT) flow in the jet,2

and a recurrent neural network (RNN) with gated recur-
rent units [10] (GRUs), which process a list of particle fea-
tures. These models can achieve state-of-the-art performance
although they require additional ingredients: the DNN model
requires processing the constituent particles to pre-compute
HLFs, the GRU model assumes an ordering criterion for the
input particle feature list, and the CNN model requires rep-
resenting the jet as a rectangular, regular, pixelated image.

1 Here, we refer to the abstract message-passing interaction represented
by the edges of the graph and not the physical interactions due to quan-
tum chromodynamics, which occur before the jet constituents emerge
from the hadronization process.
2 We use a Cartesian coordinate system with the z axis oriented along
the beam axis, the x axis on the horizontal plane, and the y axis oriented
upward. The x and y axes define the transverse plane, while the z axis
identifies the longitudinal direction. The azimuthal angle φ is computed
from the x axis. The polar angle θ is used to compute the pseudorapidity
η = − log(tan(θ/2)). We use natural units such that c = h̄ = 1 and we
express energy in units of electronVolt (eV) and its prefix multipliers.

Any of these aspects can be handled in a reasonable way
(e.g. one can use a jet clustering metric to order the particles),
sometimes sacrificing some detector performance (e.g., with
coarser image pixels than realistic tracking angular resolu-
tion, in the case of many models based on CNN). It is then
worth exploring alternative solutions that could reach state-
of-the-art performance without making these assumptions.
In particular, it is interesting to consider architectures that
directly takes as input jet constituents and are invariant for
their permutation. This motivated the study of jet taggers
based on recursive [11], graph networks [12,13], and energy
flow networks [14]. In this context, we aim to investigate the
potential of INs.

This paper is structured as follows: we provide a list of
related works in Sect. 2. In Sect. 3, we describe the utilized
data set. The structure of the JEDI-net model is discussed in
Sect. 4 together with the alternative architectures considered
for comparison. Results are shown in Sect. 5. Sections 6 and 7
discuss what the JEDI-net learns when processing the graph
and quantify the amount of resources needed by the tagger,
respectively. We conclude with a discussion and outlook for
this work in Sect. 8. “Appendix A” describes the design and
optimization of the alternative models.

2 Related work

Jet tagging is one of the most popular LHC-related tasks
to which DL solutions have been applied. Several classi-
fication algorithms have been studied in the context of jet
tagging at the LHC [15–22] using DNNs, CNNs, or physics-
inspired architectures. Recurrent and recursive layers have
been used to construct jet classifiers starting from a list of
reconstructed particle momenta [11–13]. Recently, these dif-
ferent approaches, applied to the specific case of top quark jet
identification, have been compared in Ref. [23]. While many
of these studies focus on data analysis, work is underway
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to apply these algorithms in the early stages of LHC real-
time event processing, i.e. the trigger system. For example,
Ref. [24] focuses on converting these models into firmware
for field programmable gate arrays (FPGAs) optimized for
low latency (less than 1 µs). If successful, such a program
could allow for a more resource-efficient and effective event
selection for future LHC runs.

Graph neural networks have also been considered as jet
tagging algorithms [25,26] as a way to circumvent the spar-
sity of image-based representations of jets. These approaches
demonstrate remarkable categorization performance. Moti-
vated by the early results of Ref. [25], graph networks have
been also applied to other high energy physics tasks, such
as event topology classification [27,28], particle tracking in
a collider detector [29], pileup subtraction at the LHC [30],
and particle reconstruction in irregular calorimeters [31].

3 Data set description

This study is based on a data set consisting of simulated jets
with an energy of pT ≈ 1 TeV, originating from light quarks
q, gluons g, W and Z bosons, and top quarks produced in√
s = 13 TeV proton-proton collisions. The data set was

created using the configuration and parametric description of
an LHC detector described in Refs. [24,32], and is available
on the Zenodo platform [33–36].

Jets are clustered from individual reconstructed particles,
using the anti-kT algorithm [3,37] with jet-size parameter
R = 0.8. Three different jet representations are considered:

– A list of 16 HLFs, described in Ref. [24], given as input
to a DNN. The 16 distributions are shown in Fig. 2 for
the five jet classes.

– An image representation of the jet, derived by consid-
ering a square with pseudorapidity and azimut distances
Δη = Δφ = 2R, centered along the jet axis. The image
is binned into 100 × 100 pixels. Such a pixel size is
comparable to the cell of a typical LHC electromagnetic
calorimeter, but much coarser than the typical angular
resolution of a tracking device for the pT values relevant
to this task. Each pixel is filled with the scalar sum of
the pT of the particles in that region. These images are
obtained by considering the 150 highest-pT constituents
for each jet. This jet representation is used to train a CNN
classifier. The average jet images for the five jet classes
are shown in Fig. 3. For comparison, a randomly chosen
set of images is shown in Fig. 4.

– A constituent list for up to 150 particles, in which each
particle is represented by 16 features, computed from the
particle four-momenta: the three Cartesian coordinates
of the momentum (px , py , and pz), the absolute energy
E , pT, the pseudorapidity η, the azimuthal angle φ, the

distance ΔR = √
Δη2 + Δφ2 from the jet center, the rel-

ative energy E rel = Eparticle/E jet and relative transverse
momentum prel

T = pparticle
T /pjet

T defined as the ratio of the
particle quantity and the jet quantity, the relative coordi-
nates ηrel = ηparticle − ηjet and φrel = φparticle − φjet

defined with respect to the jet axis, cos θ and cos θ rel

where θ rel = θparticle − θ jet is defined with respect to the
jet axis, and the relative η and φ coordinates of the parti-
cle after applying a proper Lorentz transformation (rota-
tion) as described in Ref. [38]. Whenever less than 150
particles are reconstructed, the list is filled with zeros.
The distributions of these features considering the 150
highest-pT particles in the jet are shown in Fig. 5 for the
five jet categories. This jet representation is used for a
RNN with a GRU layer and for JEDI-net.

4 JEDI-net

In this work, we apply an IN [5] architecture to learn a repre-
sentation of a given input graph (the set of constituents in a
jet) and use it to accomplish a classification task (tagging the
jet). One can see the IN architecture as a processing algorithm
to learn a new representation of the initial input. This is done
replacing a set of input features, describing each individual
vertex of the graph, with a set of engineered features, specific
of each vertex but whose values depend on the connection
between the vertices in the graph.

The starting point consists of building a graph for each
input jet. The NO particles in the jet are represented by the
vertices of the graph, fully interconnected through directional
edges, for a total of NE = NO × (NO − 1) edges. An exam-
ple is shown in Fig. 6 for the case of a three-vertex graph.
The vertices and edges are labeled for practical reasons, but
the network architecture ensures that the labeling convention
plays no role in creating the new representation.

Once the graph is built, a receiving matrix (RR) and a
sending matrix (RS) are defined. Both matrices have dimen-
sions NO × NE . The element (RR)i j is set to 1 when the i th

vertex receives the j th edge and is 0 otherwise. Similarly, the
element (RS)i j is set to 1 when the i th vertex sends the j th

edge and is 0 otherwise. In the case of the graph of Fig. 6,
the two matrices take the form:

RS =

⎛

⎜⎜
⎝

E1 E2 E3 E4 E5 E6

O1 0 0 0 1 1 0
O2 1 0 0 0 0 1
O3 0 1 1 0 0 0

⎞

⎟⎟
⎠ (1)

RR =

⎛

⎜⎜
⎝

E1 E2 E3 E4 E5 E6

O1 1 1 0 0 0 0
O2 0 0 1 1 0 0
O3 0 0 0 0 1 1

⎞

⎟⎟
⎠ . (2)
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Fig. 2 Distributions of the 16 high-level features used in this study, described in Ref. [24]
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Fig. 3 Average 100 × 100 images for the five jet classes considered in
this study: q (top left), g (top center), W (top right), Z (bottom left), and
top jets (bottom right). The temperature map represents the amount of

pT collected in each cell of the image, measured in GeV and computed
from the scalar sum of the pT of the particles pointing to each cell

The input particle features are represented by an input
matrix I . Each column of the matrix corresponds to one of the
graph vertices, while the rows correspond to the P features
used to represent each vertex. In our case, the vertices are
the particles inside the jet, each represented by its array of
features (i.e., the 16 features shown in Fig. 5). Therefore, the
I matrix has dimensions P × NO .

The I matrix is processed by the IN in a series of steps,
represented in Fig. 7. The I matrix is multiplied by the RR

and RS matrices and the two resulting matrices are then con-
catenated to form the B matrix, having dimension 2P × NE :

B =
(
I × RR

I × RS

)
. (3)

Each column of the B matrix represents an edge, i.e. a
particle-to-particle interaction. The 2P elements of each col-
umn are the features of the sending and receiving vertices for
that edge. Using this information, a DE -dimensional hidden
representation of the interaction edge is created through a
trainable function fR : R2P �→ R

DE . This gives a matrix
E with dimensions DE × NE . The cumulative effects of
the interactions received by a given vertex are gathered by
summing the DE hidden features over the edges arriving to
it. This is done by computing E = ER�

R with dimensions

DE × NO , which is then appended to the initial input matrix
I :

C =
(
I
E

)
. (4)

At this stage, each column of the C matrix represents a
constituent in the jet, expressed as a (P + DE )-dimensional
feature vector, containing the P input features and the DE

hidden features representing the combined effect of the inter-
actions with all the connected particles. A trainable function
fO : RP+DE �→ R

DO is used to build a post-interaction rep-
resentation of each jet constituent. The function fO is applied
to each column of C to build the post-interaction matrix O
with dimensions DO × NO .

A final classifier φC takes as input the elements of the
O matrix and returns the probability for that jet to belong
to each of the five categories. This is done in two ways: (i)
in one case, we define the quantities Oi = ∑

j Oi j , where
j is the index of the vertex in the graph (the particle, in
our case), and the i ∈ [0, DE ] index runs across the DE

outputs of the fO function. The O quantities are used as
input to φC : RDO �→ R

N . This choice allows to preserve
the independence of the architecture on the labeling con-
vention adopted to build the I , RR , and RS matrices, at the
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Fig. 4 Example of 100×100 images for the five jet classes considered
in this study: q (top-left), g (top-right), W (center-left), Z (center-right),
and top jets (bottom). The temperature map represents the amount of

pT collected in each cell of the image, measured in GeV and computed
from the scalar sum of the pT of the particles pointing to each cell

cost of losing some discriminating information in the sum-
mation. (ii) Alternatively, the φC matrix is defined directly
from the DO × NO elements of the O matrix, flattened into
a one-dimensional array. The full information from O is pre-
served, but φC assumes an ordering of the NO input objects.
In our case, we rank the input particles in descending order
by pT.

The trainable functions fO , fR , and φC consist of three
DNNs. Each of them has two hidden layers, the first (sec-
ond) having N 1

n (N 2
n = 	N 1

n /2
) neurons. The model is
implemented in PyTorch [39] and trained using an NVIDIA
GTX1080 GPU. The training (validation) data set consists of
630,000 (240,000) examples, while 10,000 events are used
for testing purposes.

The architecture of the three trainable functions is deter-
mined by minimizing the loss function through a Bayesian
optimization, using the GpyOpt library [40], based on
Gpy [41]. We consider the following hyperparameters:

– The number of output neurons of the fR network, DE

(between 4 and 14).
– The number of output neurons of the fO network, DO

(between 4 and 14).
– The number of neurons N 1

n in the first hidden layer of the
fO , fR , and φC network (between 5 and 50).

– The activation function for the hidden and output layers
of the fR network: ReLU [42], ELU [43], or SELU [44]
functions.

– The activation function for the hidden and output layers
of the fO network: ReLU, ELU, or SELU.

– The activation function for the hidden layers of the φC

network: ReLU, ELU, or SELU.
– The optimizer algorithm: Adam [45] or AdaDelta [46].

In addition, the output neurons of the φC network are acti-
vated by a softmax function. A learning rate of 10−4 is used.
For a given network architecture, the network parameters are
optimized by minimizing the categorical cross entropy. The
Bayesian optimization is repeated four times. In each case,
the input particles are ordered by descending pT value and
the first 30, 50, 100, or 150 particles are considered. The
parameter optimization is performed on the training data set,
while the loss for the Bayesian optimization is estimated on
the validation data set.

Tables 1 and 2 summarize the result of the Bayesian opti-
mization for the JEDI-net architecture with and without the
sum over the columns of the O matrix, respectively. The best
result of each case, highlighted in bold, is used as a reference
for the rest of the paper.

123



Eur. Phys. J. C (2020) 80 :58 Page 7 of 15 58

−1000 −500 0 500 1000

px [Gev]

10−7

10−6

10−5

10−4

10−3

10−2

P
ro

b.
D

en
si

ty
(a

.u
.) quark

gluon
W
Z
top

−1000 −750 −500 −250 0 250 500 750 1000

py [Gev]

10−7

10−6

10−5

10−4

10−3

10−2

P
ro

b.
D

en
si

ty
(a

.u
.)

−3000 −2000 −1000 0 1000 2000 3000

pz [Gev]

10−8

10−7

10−6

10−5

10−4

10−3

10−2

P
ro

b.
D

en
si

ty
(a

.u
.)

0 500 1000 1500 2000 2500 3000 3500

E [Gev]

10−7

10−6

10−5

10−4

10−3

10−2

P
ro

b.
D

en
si

ty
(a

.u
.)

0 200 400 600 800 1000 1200

pT [GeV]

10−7

10−6

10−5

10−4

10−3

10−2

P
ro

b.
D

en
si

ty
(a

.u
.)

−3 −2 −1 0 1 2 3

η

10−5

10−4

10−3

10−2

10−1

P
ro

b.
D

en
si

ty
(a

.u
.)

−3 −2 −1 0 1 2 3

φ

1.4× 10−1

1.5× 10−1

1.6× 10−1

1.7× 10−1

1.8× 10−1

P
ro

b.
D

en
si

ty
(a

.u
.)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

ΔR

10−4

10−3

10−2

10−1

100

101

P
ro

b.
D

en
si

ty
(a

.u
.)

0.0 0.2 0.4 0.6 0.8

Relative E [Gev]

10−4

10−3

10−2

10−1

100

101

P
ro

b.
D

en
si

ty
(a

.u
.)

0.0 0.2 0.4 0.6 0.8

Relative pT [GeV]

10−4

10−3

10−2

10−1

100

101

P
ro

b.
D

en
si

ty
(a

.u
.)

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

Relative φ

10−4

10−3

10−2

10−1

100

101

P
ro

b.
D

en
si

ty
(a

.u
.)

−1.5 −1.0 −0.5 0.0 0.5 1.0

Relative η

10−4

10−3

10−2

10−1

100

101
P

ro
b.

D
en

si
ty

(a
.u

.)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

Rotated η

10−4

10−3

10−2

10−1

100

101

P
ro

b.
D

en
si

ty
(a

.u
.)

−1.0 −0.5 0.0 0.5 1.0

Rotated φ

10−4

10−3

10−2

10−1

100

101

P
ro

b.
D

en
si

ty
(a

.u
.)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

cos θ

10−1

P
ro

b.
D

en
si

ty
(a

.u
.)

−0.75 −0.50 −0.25 0.00 0.25 0.50 0.75

Relative cos θ

10−4

10−3

10−2

10−1

100

101

P
ro

b.
D

en
si

ty
(a

.u
.)

Fig. 5 Distributions of kinematic features described in the text for the 150 highest-pT particles in each jet
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O3

O1 O2
E1

E2 E3

E4

E5 E6

Fig. 6 An example graph with three fully connected vertices and the
corresponding six edges

For comparison, three alternative models are trained on the
three different representations of the same data set described
in Sect. 3: a DNN model taking as input a list of HLFs, a
CNN model processing jet images, and a recurrent model

applying GRUs on the same input list used for JEDI-net. The
three benchmark models are optimized through a Bayesian
optimization procedure, as done for the INs. Details of these
optimizations and the resulting best models are discussed in
“Appendix A”.

5 Results

Figure 8 shows the receiver operating characteristic (ROC)
curves obtained for the optimized JEDI-net tagger in each of
the five jet categories, compared to the corresponding curves
for the DNN, CNN, and GRU alternative models. The curves
are derived by fixing the network architectures to the optimal
values based on Table 2 and “Appendix A” and performing a
k-fold cross-validation training, with k = 10. The solid lines
represent the average ROC curve, while the shaded bands
quantify the ±1 RMS dispersion. The area under the curve

Fig. 7 A flowchart illustrating the interaction network scheme
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Table 1 Optimal JEDI-net hyperparameter setting for different input
data sets, when the summed Oi quantities are given as input to the φC
network. The best result, obtained when considering up to 150 particles
per jet, is highlighted in bold

Hyperparameter Number of jet constituents

30 50 100 150

N 1
n 6 50 30 50

DE 8 12 4 14

DO 6 14 4 10

fR activation ReLU ReLU SELU SELU

fO activation ELU ReLU ReLU SELU

φC activation ELU SELU SELU SELU

Optimizer Adam Adam Adam Adam

Optimized loss 0.84 0.58 0.62 0.55

Table 2 Optimal JEDI-net hyperparameter setting for different input
data sets, when all the Oi j elements are given as input to the φC network.
The best result, obtained when considering up to 100 particles per jet,
is highlighted in bold

Hyperparameter Number of jet constituents

30 50 100 150

N 1
n 50 50 30 10

DE 12 12 10 4

DO 6 14 10 14

fR activation ReLU ELU ELU SELU

fO activation SELU SELU ELU SELU

φC activation SELU ELU ELU SELU

Optimizer Adam Adam Adam Adam

Optimized loss 0.63 0.57 0.56 0.62

(AUC) values, reported in the figure, allow for a comparison
of the performance of the different taggers.

The algorithm’s tagging performance is quantified com-
puting the true positive rate (TPR) values for two given ref-
erence false positive rate (FPR) values (10% and 1%). The
comparison of the TPR values gives an assessment of the
tagging performance in a realistic use case, typical of an
LHC analysis. Table 3 shows the corresponding FPR values
for the optimized JEDI-net taggers, compared to the corre-
sponding values for the benchmark models. The largest TPR
value for each class is highlighted in bold. As shown in Fig. 8
and Table 3, the two JEDI-net models outperform the other
architectures in almost all cases. The only notable exception
is the tight working point of the top-jet tagger, for which the
DNN model gives a TPR higher by about 2%, while the CNN
and GRU models give much worse performance.

The TPR values for the two JEDI-net models are within
1%. The only exception is observed for the tight working
points of the W and Z taggers, for which the model using
the O sums shows a drop in TPR of ∼ 4%. In this respect,

the model using summed O features is preferable (despite
this small TPR loss), given the reduced model complexity
(see Sect. 7) and its independence on the labeling convention
for the particles embedded in the graph and for the edges
connecting them.

6 What did JEDI-net learn?

In order to characterize the information learned by JEDI-
net, we consider the O sums across the NO vertices of the
graph (see Sect. 4) and we study their correlations to physics
motivated quantities, typically used when exploiting jet sub-
structure in a search. We consider the HLF quantities used for
the DNN model and the N -subjettiness variables τ

(β)
N [47],

computed with angular exponent β = 1, 2.
Not all the O sums exhibit an obvious correlation with the

considered quantities, i.e., the network engineers high-level
features that encode other information than what is used, for
instance, in the DNN model.

Nevertheless, some interesting correlation pattern between
the physics motivated quantities and the Oi sums is observed.
The most relevant examples are given in Fig. 9, where the 2D
histograms and the corresponding linear correlation coeffi-
cient (ρ) are shown. The correlation between O1 and the par-
ticle multiplicity in the jet is not completely unexpected. As
long as the O quantities aggregated across the graph have the
same order of magnitude, the corresponding sum O would
be proportional to jet-constituent multiplicity.

The strong correlation between the O4 and τ
(β=2)
1 (with

ρ values between 0.69 and 0.97, depending on the jet class)
is much less expected. The τ

β
1 quantities assume small val-

ues when the jet constituents can be arranged into a single
sub-jet inside the jet. Aggregating information from the con-
stituent momenta across the jet, the JEDI-net model based
on the O quantities learns to build a quantity very close to
τ

(β=2)
1 . The last two rows of Fig. 9 show two intermediate

cases: the correlation between O2 and τ
(β=1)
3 and between

O9 and τ
(β=2)
3 . The two O sums considered are correlated to

the corresponding substructure quantities, but with smaller
(within 0.48 and 0.77) correlation coefficients.

7 Resource comparison

Table 4 shows a comparison of the computational resources
needed by the different models discussed in this paper. The
best-performing JEDI-net model has more than twice the
number of trainable parameters than the DNN and GRU
model, but approximately a factor of 6 less parameters than
the CNN model. The JEDI-net model based on the summed
O features achieves comparable performance with about a
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Fig. 8 ROC curves for
JEDI-net and the three
alternative models, computed
for gluons (top-left), light quarks
(top-right), W (center-left) and
Z (center-right) bosons, and top
quarks (bottom). The solid lines
represent the average ROC
curves derived from 10 k-fold
trainings of each model. The
shaded bands around the average
lines are represent one standard
deviation, computed with the
same 10 k-fold trainings

factor of 4 less parameters, less than the DNN and GRU mod-
els. While being far from expensive in terms of number of
parameters, the JEDI-net models are expensive in terms of
the number of floating point operations (FLOP). The simple
model based on O sums, using as input a sequence of 150
particles, uses 458 MFLOP. The increase is mainly due to
the scaling with the number of vertices in the graph. Many

of these operations are the 0× and 1× products involving
the elements of the RR and RS matrices. The cost of these
operations could be reduced with an IN implementation opti-
mized for inference, e.g., through an efficient sparse-matrix
representation.

In addition, we quote in Table 4 the average inference
time on a GPU. The inference time is measured applying
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Table 3 True positive rates (TPR) for the optimized JEDI-net taggers and the three alternative models (DNN, CNN, and GRU), corresponding to
a false positive rate (FPR) of 10% (top) and 1% (bottom). The largest TPR value for each case is highlighted in bold

Jet category DNN GRU CNN JEDI-net JEDI-net with
∑

O

TPR for FPR = 10%

Gluon 0.830 ± 0.002 0.740 ± 0.014 0.700 ± 0.008 0.878 ± 0.001 0.879 ± 0.001

Lght quarks 0.715 ± 0.002 0.746 ± 0.011 0.740 ± 0.003 0.822 ± 0.001 0.818 ± 0.001

W boson 0.855 ± 0.001 0.812 ± 0.035 0.760 ± 0.005 0.938 ± 0.001 0.927 ± 0.001

Z boson 0.833 ± 0.002 0.753 ± 0.036 0.721 ± 0.006 0.910 ± 0.001 0.903 ± 0.001

Top quark 0.917 ± 0.001 0.867 ± 0.006 0.889 ± 0.001 0.930 ± 0.001 0.931 ± 0.001

TPR for FPR = 1%

Gluon 0.420 ± 0.002 0.273 ± 0.018 0.257 ± 0.005 0.485 ± 0.001 0.482 ± 0.001

Light quarks 0.178 ± 0.002 0.220 ± 0.037 0.254 ± 0.007 0.302 ± 0.001 0.301 ± 0.001

W boson 0.656 ± 0.002 0.249 ± 0.057 0.232 ± 0.006 0.704 ± 0.001 0.658 ± 0.001

Z boson 0.715 ± 0.001 0.386 ± 0.060 0.291 ± 0.005 0.769 ± 0.001 0.729 ± 0.001

Top quark 0.651 ± 0.003 0.426 ± 0.020 0.504 ± 0.005 0.633 ± 0.001 0.632 ± 0.001
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Fig. 9 Two-dimensional distributions between (top to bottom) O1 and
constituents multiplicty, O4 and τ

(β=2)
1 , O2 and τ

(β=1)
3 , O9 and τ

(β=2)
3 ,

for jets originating from (right to left) gluons, light flavor quarks,W

bosons, Z bosons, and top quarks. For each distribution, the linear cor-
relation coefficient ρ is reported
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Table 4 Resource comparison across models. The quoted number of
parameters refers only to the trainable parameters for each model. The
inference time is measured by applying the model to batches of 1000
events 100 times: the 50% median quantile is quoted as central value and
the 10%-90% semi-distance is quoted as the uncertainty. The GPU used
is an NVIDIA GTX 1080 with 8 GB memory, mounted on a commercial
desktop with an Intel Xeon CPU, operating at a frequency of 2.60GHz.
The tests were executed in Python 3.7 with no other concurrent process
running on the machine

Model Number of
parameters

Number
of FLOP

Inference
time/batch (ms)

DNN 14725 27 k 1.0 ± 0.2

CNN 205525 400 k 57.1 ± 0.5

GRU 15575 46 k 23.2 ± 0.6

JEDI-net 33625 116 M 121.2 ± 0.4

JEDI-net 8767 458 M 402 ± 1

with
∑

O

the model to 1000 events, as part of a Python application
based on TensorFlow [48]. To this end, the JEDI-net mod-
els, implemented and trained in PyTorch, are exported to
ONNX [49] and then loaded as TensorFlow graph. The
quoted time includes loading the data, which occurs for the
first inference and is different for different event represen-
tations, that is smaller for the JEDI-net models than for the
CNN models. The GPU used is an NVIDIA GTX 1080 with
8 GB memory, mounted on a commercial desktop with an
Intel Xeon CPU, operating at a frequency of 2.60 GHz. The
tests were executed in Python 3.7, with no other concurrent
process running on the machine. Given the larger number of
operations, the GPU inference time for the two IN models is
much larger than for the other models.

The current IN algorithm is costly to deploy in the online
selection environment of a typical LHC experiment. A ded-
icated R&D effort is needed to reduce the resource con-
sumption in a realistic environment in order to benefit from
the improved accuracy that INs can achieve. For example,
one could trade model accuracy for reduced resource needs
by applying neural network pruning [50,51], reducing the
numerical precision [52,53], and limiting the maximum num-
ber of particles in each jet representation.

8 Conclusions

This paper presents JEDI-net, a jet tagging algorithm based
on interaction networks. Applied to a data set of jets from
light-flavor quarks, gluons, vector bosons, and top quarks,
this algorithm achieves better performance than models
based on dense, convolutional, and recurrent neural net-
works, trained and optimized with the same procedure on

the same data set. As other graph networks, JEDI-net offers
several practical advantages that make it particularly suitable
for deployment in the data-processing workflows of LHC
experiments: it can directly process the list of jet constituent
features (e.g. particle four-momenta), it does not assume spe-
cific properties of the underlying detector geometry, and it
is insensitive to any ordering principle applied to the input
jet constituents. For these reasons, the implementation of this
and other graph networks is an interesting prospect for future
runs of the LHC. On the other hand, the current implemen-
tation of this model demands large computational resources
and a large inference time, which make the use of these mod-
els problematic for real-time selection and calls for a dedi-
cated program to optimize the model deployment on typical
L1 and HLT environments.

The quantities engineered by one of the trained IN models
exhibit interesting correlation patterns with some of the jet
substructure quantities proposed in literature, showing that
the model is capable of learning some of the relevant physics
in the problem. On the other hand, some of the engineered
quantities do not exhibit striking correlation patterns, imply-
ing the possibility of a non trivial insight to be gained by
studying these quantities.
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Appendix

A Alternative models

The three benchmark models considered in this work are
derived through a Bayesian optimization of their hyperpa-
rameters, performed using the GpyOpt library [40], based
on Gpy [41]. For each iteration, the training is performed
using early stopping to prevent over-fitting and to allow a
fair comparison between different configurations. The data
set for training (validation) consists of 630,000 (240,000)
jets, with 10,000 jets used for testing purposes. The loss for
the Bayesian optimization is estimated on the validation data
set. The CNN and GRU networks are trained on four different
input data sets, obtained considering the first 30, 50, 100, or
150 highest-pT jet constituents. The DNN model is trained
on quantities computed from the full list of particles.

The DNN model consists on a multilayer perceptron, alter-
nating dense layers to dropout layers. The optimal architec-
ture is determined optimizing the following hyperparame-
ters:

– Number of dense layers (NDL ) between 1 and 3.
– Number of neurons per dense layer (nn): 10, 20, . . . , 100.
– Activation functions for the dense layers: ReLU, ELU,

or SELU.
– Dropout rate: Between 0.1 and 0.4.
– Batch size: 50, 100, 200, or 500.
– Optimization algorithm: Adam, Nadam [54], or AdaDelta.

The optimization process gives as output an optimal archi-
tecture with three hidden layers of 80 neurons each, activated
by ELU functions. The best dropout rate is found to be 0.11,
when a batch size of 50 and the Adam optimizer are used.
This optimized network gives a loss of 0.66 and an accuracy
of 0.76.

The CNN model consists of two-dimensional convolu-
tional layers with batch normalization, followed by a set of
dense layers. A 2 × 2 max pooling layer is applied after the
fist convolutional layer. The optimal architecture is derived
optimizing the following hyperparameters:

– Number of convolutional layers NCL between 1 and 3.
– Number of convolutional filters n f in each layer (10, 15,

20, 25, or 30).
– Convolutional filter size: 3 × 3, 5 × 5, 7 × 7, or 9 × 9.
– Max pooling filter size: 2 × 2, 3 × 3, or 5 × 5.
– Activation functions for the convolutional layers (ReLU,

ELU, or SELU).
– Number of dense layers NDL between 1 and 3.
– Number of neurons nn per dense layer: 10, 20, . . . , 60.
– Activation functions for the dense layers: ReLU, ELU,

or SELU.

Table 5 Optimal CNN hyperparameter setting for different input data
sets

Hyperparameter Number of jet constituents

30 50 100 150

NCL 3 1 1 3

n f 20 10 30 30

Filter size 3 × 3 3 × 3 3 × 3 3 × 3

Max pooling size 2 × 2 5 × 5 5 × 5 2 × 2

Conv. activation ReLU ELU ELU ReLU

NDL 2 3 3 3

nn 60 50 60 60

Dense activation SELU ELU ELU ELU

Dropout 0.11 0.1 0.4 0.1

Batch size 200 500 100 50

Optimizer Adam Adam Adam Adam

Optimized loss 0.88 0.73 0.74 0.74

Optimized accuracy 0.67 0.74 0.74 0.74

The best configuration, used as a benchmark for comparison, is high-
lighted in bold

– Dropout rate: Between 0.1 and 0.4.
– Batch size: 50, 100, 200, or 500.
– Optimization algorithm: Adam, Nadam, or AdaDelta.

The stride of the convolutional filters is fixed to 1 and “same”
padding is used. Table 5 shows the optimal sets of hyper-
parameter values, obtained for the four different data set
representations. While the optimal networks are equivalent
in performance, we select the network obtained for ≤ 50
constituents, because it has the smallest number of parame-
ters.

The recurrent model consists of a GRU layer feeding a set
of dense layers. The following hyperparameters are consid-
ered:

– Number of GRU units: 50, 100, 200, 300, 400, or 500.
– Activation functions for the GRU layers: ReLU, ELU, or

SELU.
– Number of dense layers: Between 1 and 4.
– Number of neurons per dense layer: 10, 20, . . ., 100.
– Activation functions for the dense layers: ReLU, ELU,

or SELU.
– Dropout rate: between 0.1 and 0.4.
– Batch size: 50, 100, 200, or 500.
– Optimization algorithm: Adam, Nadam, or AdaDelta.

The best hyperparameter values are listed in Table 6. As for
the CNN model, the best performance is obtained when the
list of input particles is truncated at 50 elements.
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Table 6 Optimal GRU hyperparameter settings for different input data
sets

Hyperparameter Number of jet constituents

30 50 100 150

nu 100 50 200 50

NDL 3 1 3 4

nn 70 40 40 100

Dense activation SELU SELU ReLU ELU

Dropout 0.40 0.10 0.22 0.10

Batch size 500 500 500 500

Optimizer Adam Adam Adam AdaDelta

Optimized loss 0.78 0.71 0.78 0.85

Optimized accuracy 0.72 0.75 0.73 0.68

The best configuration, used as a benchmark for comparison, is high-
lighted in bold

B Performance on public top tagging data set

In this appendix, we retrain and evaluate the performance
of JEDI-net on a public top tagging data set [19,23] used
to benchmark many neural networks architectures for the
task of differentiating top quark jets from light quark jets.
To select the hyperparameters of the model (with and with-
out the sum over particles), we performed a Bayesian opti-
mization. We scan N 1

n from 16 to 256, DE from 4 to 64,
DO from 4 to 64, ReLU, ELU, or SELU activation func-
tions for fR , fO , and φC , and either the Adam or Adadelta
optimizers with an initial learning rate of 10−3. We report
three metrics for the performance of the network on the top
tagging data set: model accuracy, area under the ROC curve

Table 7 The optimized hyperparameters, number of trainable parame-
ters, and performance metrics of the JEDI-net models on the top tagging
data set. Performance metrics are evaluated on the test sample. We quote
the area under the ROC curve (AUC), the accuracy, and the background
rejection at a signal efficiency of 30%

Model JEDI-net JEDI-net with
∑

O

Number of constituents 150 150

N 1
n 64 256

DE 64 64

DO 16 32

fR activation ReLU SELU

fO activation SELU ReLU

φC activation ReLU SELU

Optimizer Adam Adam

Number of parameters 169906 148962

Accuracy 0.9263 0.9300

AUC 0.9786 0.9807

1/εB(εS = 30%) 590.4 774.6

(AUC), and background rejection power at a fixed signal effi-
ciency of 30%, 1/εB(εS = 30%). In Table 7, the accuracy,
AUC, and 1/εB(εS = 30%) values are listed for each model
considered. The performance of JEDI-net compared to other
models developed for this data set is approaching state-of-
the-art [23].
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