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Abstract We study low energy implications of F-theory
GUT models based on SU (5) extended by a U (1)′ sym-
metry which couples non-universally to the three families
of quarks and leptons. This gauge group arises naturally
from the maximal exceptional gauge symmetry of an ellip-
tically fibred internal space, at a single point of enhance-
ment, E8 ⊃ SU (5) × SU (5)′ ⊃ SU (5) ×U (1)4. Rank-one
fermion mass textures and a tree-level top quark coupling
are guaranteed by imposing a Z2 monodromy group which
identifies two abelian factors of the above breaking sequence.
The U (1)′ factor of the gauge symmetry is an anomaly free
linear combination of the three remaining abelian symme-
tries left over by Z2. Several classes of models are obtained,
distinguished with respect to the U (1)′ charges of the repre-
sentations, and possible extra zero modes coming in vector-
like representations. The predictions of these models are
investigated and are compared with the LHC results and
other related experiments. Particular cases interpreting the
B-meson anomalies observed in LHCb and BaBar experi-
ments are also discussed.
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1 Introduction

Despite its tremendous success, the Standard Model (SM)
of the strong and electroweak interactions leaves many theo-
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retical questions unanswered. Accumulating evidence of the
last few decades indicates that new ingredients are required
in order to describe various New Physics (NP) phenomena
in particle physics and cosmology. Amongst other shortcom-
ings, the minimal SM spectrum does not accommodate a dark
matter candidate particle and the tiny neutrino masses can-
not be naturally incorporated. Regarding this latter issue, in
particular, an elegant way to interpret the tiny masses of the
three neutrinos and their associated oscillations, is the see-
saw mechanism [1] which brings into the scene right-handed
neutrinos and a new (high) scale. Interestingly, this scenario
fits nicely inside the framework of (supersymmetric) grand
unified theories (GUTs) which unify the three fundamen-
tal forces at a high (GUT) scale. Besides, several ongoing
neutrino experiments suggest the existence of a ‘sterile’ neu-
trino which could also be a suitable dark matter candidate
[2,3]. Many other lingering questions regarding the exis-
tence of possible remnants of a covering theory, such as
leptoquarks, vectorlike families, supersymmetry signatures
and neutral gauge bosons, are expected to find an answer
in the experiments carried out at the Large Hadron Collider
(LHC). Remarkably, many field theory GUTs incorporate
most of the above novel fields into larger representations,
while, after spontaneous symmetry breaking of the initial
gauge symmetry takes place, cases where additional U (1)

factors survive down to low energies implying masses for
the associated neutral gauge bosons accessible to ongoing
experiments. However, while GUTs with the aforementioned
new features are quite appealing, they come at a price. Var-
ious extra fields, including heavy gauge bosons and other
colored states, contribute to fast proton decay and other rare
processes.

In contrast to plain field theory GUTs, string theory alter-
natives are subject to selection rules and other restrictions,
while new mechanisms are operative which, under certain
conditions, could eliminate many of the problematic states
and undesired features. F-theory models [4–6], in particular,
appear to naturally include such attractive features which are
attributed to the intrinsic geometry of the compactification
manifold and the fluxes piercing matter curves where the
various supermultiplets reside. In other words, the geometric
properties and the fluxes can be chosen so that, among other
things, determine the desired symmetry breaking, reproduce
the known multiplicity of the chiral fermion families, and
eliminate the colored triplets in Higgs representations. More-
over, in F-theory constructions, the gauge symmetry of the
resulting effective field theory model is determined in terms
of the geometric structure of the elliptically fibred internal
compactification space. In particular, the non-abelian part of
the gauge symmetry is associated with the codimension-one
singular fibers, while possible abelian and discrete symme-
tries are determined in terms of the Mordell–Weil (MW) and

Tate–Shafarevich (TS) groups.1 For elliptically fibred man-
ifolds, the non-abelian gauge symmetry is a simply laced
algebra (i.e. of type A, D or E in Lie classification), the
highest one corresponding to the exceptional group of E8.
At fibral singularities, certain divisors wrapped with 7-branes
are associated with subgroups of E8, and are interpreted as
the GUT group of the effective theory. In addition,U (1) sym-
metries may accompany the non-abelian group. The origin
of the latter could emerge either from the E8-part commu-
tant to the GUT group or from MW and TS groups mentioned
above. Among the various possibilities, there is a particularly
interesting case where a neutral gauge boson Z ′ associated
with some abelian factor with non-universal couplings to the
quarks and leptons, obtains mass at the TeV region. Since the
SM gauge bosons couple universally to quarks (and leptons)
of the three families, the existence of non-universal couplings
would lead to deviations from SM predictions that could be
interpreted as an indication for NP beyond the SM.

Within the above context, in [17] a first systematic study of
a generic class of F-theory semi-local models based on the E8

subgroup SU (5)×U (1)′ has been presented.2 The anomaly-
freeU (1)′ symmetry has non-universal couplings to the three
chiral families and the corresponding gauge boson receives
a low energy (a few TeV) mass. In that work, some partic-
ular properties of representative examples were examined
in connection with new flavour phenomena and in particu-
lar, the B-meson physics explored in LHCb [20–22]. In the
present work we extend the previous analysis by perform-
ing a systematic investigation into the various predictions
and the constraints imposed on all possible classes of viable
models emerging from this framework. Firstly we distinguish
classes of models with respect to their low energy spectrum
and properties under the U (1)′ symmetry. We find a class of
models with a minimal MSSM spectrum at low energies. The
members of this class are differentiated by the charges under
the additional U (1)′. A second class of anomaly free viable
effective low energy models, contains additional MSSM mul-
tiplets coming in vector-like pairs. In the present work, we
analyse the constraints imposed by various processes on the
list of models of the first class. The phenomenological anal-
ysis of a characteristic example containing extra vector-like
states is also presented, while the complete analysis of these
models is postponed for a future publication. In the first cate-
gory (i.e. the minimal models), anomaly cancellation condi-
tions impose non-universal Z ′ couplings to the three fermion
field families. As a result, in most cases, the stringent bounds
coming from kaon decays imply a relatively large Z ′ gauge
boson mass that lies beyond the accessibility of the present

1 For a recent survey see for example [7]. For earlier F-theory reviews
see [8–10]. For models with Mordell–Weil U (1)’s and other issues see
[11–16].
2 For similar works on anomaly free U (1)′s see also [18,19].
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day experiments. On the contrary, models with extra vector-
like pairs offer a variety of possibilities. There are viable
cases where the fermions of the first two generations are
characterised by the same Z ′ couplings. In such cases, the
stringent bounds of the Kaon oscillation (K 0 − K 0) system
can be evaded and a Z ′ mass can be as low as a few TeV.

The work is organised and presented in five sections. In
Sect. 2 we start by developing the general formalism of a
Z ′ boson coupled non-universally to MSSM. Then, we dis-
cuss flavour violating processes in the quark and lepton sec-
tors, putting emphasis on contributions to B-meson anoma-
lies and other deviations from the SM explored in LHC and
other related experiments. (To make the paper self contained,
all relevant recent experimental bounds are also given). In
Sect. 3 we start with a brief review of local F-theory GUTs.
Then, using generic properties of the compactification man-
ifold and the flux mechanism, we apply well defined rules
and spectral cover techniques to construct viable effective
models. We concentrate on a SU (5) ×U (1)′ model embed-
ded in E8 and impose anomaly cancellation conditions to
obtain a variety of consistent F-theory effective models. We
distinguish between two categories; a class of models with a
MSSM (charged) spectrum (possibly with some extra neutral
singlet fields) and a second one where the MSSM spectrum
is extended with vector-like quark and charged lepton rep-
resentations. In Sect. 4 we analyse the phenomenological
implications of the first class, paying particular attention to
B-meson physics and lepton flavour violating decays. Some
consequences of the models with extra vector-like fields are
discussed in Sect. 5, while a detailed investigation into the
whole class of models will be presented in a future publica-
tion. In Sect. 6 we present our conclusions. Computational
details are given in the Appendix.

2 Non-universal Z′ interactions

In the Standard Model, the neutral gauge boson couplings to
fermions with the same electric charge are equal, therefore,
the corresponding tree-level interactions are flavour diagonal.
However, this is not always true in models with additional Z ′
bosons associated with extra U (1)′ factors emanating from
higher symmetries. If the U (1)′ charges of all or some of
the three fermion families are different, significant flavour
mixing effects might occur even at tree-level. In this section
we review some basic facts about non-universal U (1)’s and
develop the necessary formalism to be used subsequently.

2.1 Generalities and formalism

To set the stage, we first consider the neutral part of the
Lagrangian including the Z ′ interactions with fermions in
the gauge eigenstates basis [23,24]:

− LNC ⊃ eJμ
EM Aμ + g

cW
J (0) μZ0

μ + g′ J ′ μZ ′
μ, (2.1)

where Aμ is the massless photon field, Z0 is the neutral
gauge boson of the SM and Z ′ is the new boson associ-
ated with the extra U (1)′ gauge symmetry. Also g and g′
are the gauge couplings of the weak SU (2) gauge symmetry
and the newU (1)′ symmetry respectively. For shorthand, we
have denoted cos θW (sin θW ) as cW (sW ) where θW is the
weak mixing angle with g = e/ tan θW . The neutral current
associated with the Z ′ boson can be written as:

J ′ μ = f̄ 0
Lγ μq ′

fL f
0
L + f̄ 0

Rγ μq ′
fR f 0

R, (2.2)

where f 0
L ( f 0

R) is a column vector of left (right) chiral
fermions of a given type (u, d, e or ν) in the gauge basis
and q ′

fL ,R
are diagonal 3 × 3 matrices of U (1)′ charges. fL

denotes chiral fermions in the mass eigenstates basis, related
to gauge eigenstates via unitary transformations of the form

f 0
L = V †

fL
fL , f 0

R = V †
fR

fR . (2.3)

V fL ,R are unitary matrices responsible for the diagonalization
of the Yukawa matrices Y f ,

Ydiag
f = V fRY f V

†
fL

, (2.4)

with the CKM matrix defined by the combination:

VCKM = VuL V
†
dL

.

In the mass eigenbasis, the neutral current (2.2) takes the
form:

Jμ = f̄Lγ μQ′
fL fL + f̄ Rγ μQ′

fR fR (2.5)

where

Q′
fL ≡ V fL q

′
fL V

†
fL

, Q′
fR ≡ V fRq

′
fR V

†
fR

. (2.6)

If the U (1)′ charges in the q ′
fL

matrix are equal, then q ′
fL

is the unit matrix up to a common charge factor and due to the
unitarity of V f ’s the current in (2.5) becomes flavour diag-
onal. For models with family non-universal U (1)′ charges,
the mixing matrix Q′

fL
is non-diagonal and flavour violating

terms appear in the effective theory.

2.2 Quark sector flavour violation

2.2.1 b → sl+l− and RK anomalies

The possible existence of non-universal Z ′ couplings to
fermion families, may lead to departures from the SM pre-
dictions and leave clear signatures in present day or near
future experiments. Such contributions strongly depend on
the mass MZ ′ of the Z ′ gauge boson, the U (1)′ gauge cou-
pling, g′, the U (1)′ fermion charges and the mixing matrices
V f . A particularly interesting case reported by LHCb [22]
and BaBar [25] collaborations, indicate that there may be
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Fig. 1 Left panel: Example of a Feynman diagram contributing to B0 → K ∗l+l− in the SM context. Right panel: Tree level contribution in models
with non-universal Z ′’s

anomalies observed in B-meson decays, associated with the
transition b → sl+l−, where l = e, μ, τ . Current LHCb
measurements of b decays to different lepton pairs hint to
deviations from lepton universality. In particular, the anal-
ysis performed in the q2 invariant mass of the lepton pairs
in the range 1.1 GeV2 < q2 < 6 GeV2 for the ratio of the
branching ratios Br(B → K (∗)�+�−), � = μ, e gives [22]

RK ≡ Br(B → Kμ+μ−)

Br(B → K e+e−)
� 0.846+0.016 (stat)

−0.014 (syst), (2.7)

where statistical and systematic uncertainties are indicated.
Similarly, the results for B → K ∗(892)�+�− (where K ∗ →
Kπ ), for the same ratio (2.7) are found to be RK ∗ � 0.69.
Since the SM strictly predicts RSM

K (∗) = 1, these results
strongly suggest that NP scenarios where lepton universality
is violated should be explored. In the case l = μ in particular,
additional experimental and theoretical arguments suggest
that NP may be related with the muon channel [26–28].

In the SM, B → K (∗)l+l− can only be realised at the one-
loop level involving W± flavour changing interactions (see
left panel of Fig. 1). However, the existence of a Z ′ (neutral)
gauge boson bearing non-universal couplings to fermions,
can lead to tree-level contributions (right panel of Fig. 1)
which might explain (depending on the model) the observed
anomalies.

The effective Hamiltonian describing the interaction is
given by [28]

Hb→sll
e f f = −4GF√

2

e2

16π2 (VtbV
∗
ts)

∑

k=9,10

(
Cll
k O

ll
k + C ′ll

k O ′ll
k

)

(2.8)

where the symbols Oxx
n stand for the following dimension-6

operators,

O ll
9 = (s̄γ μPLb)(l̄γμl), O ll

10 = (s̄γ μPLb)(l̄γμl)

O ′ll
9 = (s̄γ μPRb)(l̄γμγ5l), O ′ll

9 = (s̄γ μPRb)(l̄γμγ5l),

and Ck are Wilson coefficients displaying the strength of the
interaction. Also, in (2.8), GF is the Fermi coupling constant
and Vtb, V ∗

ts are elements of the CKM matrix.
The latest data for RK (∗) ratios can be interpreted by

assuming a negative contribution to the Wilson coefficient
Cμμ

9 , while all the other Wilson coefficients3 should be neg-
ligible, or vanishing [29–33]. The current best fit value is
Cμμ

9 ≈ −0.95 ± 0.15.
In the presence of a non-universal Z ′ gauge boson, the

Cμμ
9 Wilson coefficient is given by :

Cμμ
9 = −

√
2

4GF

16π2

e2

(
g′

MZ ′

)2 (Q′
dL

)23(Q′
eL )22

VtbV ∗
ts

. (2.9)

The desired value for the C9 coefficient could be achieved by
appropriately tuning the ratio g′/MZ ′ . However, large sup-
pressions may occur from the matrices Q′

f . In any case, the
predictions must not create conflict with well known bounds
coming from rare processes such as the mixing effects in
neutral meson systems.

2.2.2 Meson mixing

Flavor changing Z ′ interactions in the quark sector can also
induce significant contributions to the mass splitting in a
neutral meson system. A representative example is given in
Fig. 2. The diagrams show contributions to B0

s [sb̄] mixing
in the SM (left) and tree-level contributions in non-universal
Z ′ models (right).

For a meson P0 with quark structure [qi q̄ j ], the contri-
bution from Z ′ interactions to the mass splitting is given
by [24]:

�MP � 4
√

2GFMP F
2
P

(
MW

g · cw

)2 (
g′

MZ ′

)2 1

3
Re[(Q′

qL )2
i j ]

(2.10)

3 Alternative scenarios suggest: Cμμ
10 ≈ 0.73 ± 0.14 or C ′μμ

9 =
−C ′μμ

10 ≈ −0.53 ± 0.09.
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Fig. 2 Left figure: Representative box diagram contribute to (B0
s − B̄0

s ) mixing in the SM. Right figure: Tree level contribution in models with
non-universal Z ′ gauge bosons

where MW is the mass of theW± gauge bosons and MP , FP is
the mass and the decay constant of the meson P0 respectively.

There are large uncertainties in the SM computations
of �MP , descending especially from QCD factors and
the CKM matrix elements. Nevertheless, the experimental
results suggest that there is still some room for NP contribu-
tions.

Next, we review theoretical and experimental constraints
for P0 − P̄0 meson systems to be taken into account in what
follows.

• B0
s − B0

s mixing:
Bs mixing can be described by the effective Lagrangian

L N P = −4GF√
2

(VtbV
∗
ts)

2[CLL
bs (s̄LγμbL)2 + h.c.], (2.11)

where CLL
bs is a Wilson coefficient which modifies the SM

prediction as follows [34]:

�Mpred
s = |1 + CLL

bs /Rloop
SM |�MSM

s , (2.12)

with Rloop
SM = 1.3397 × 10−3.

A model with non-universal Z ′ couplings to fermions
induces the following Wilson coefficient:

CLL
bs = ηLL

4
√

2GF

(
g′

MZ ′

)2 (Q′
dL

)2
23

(VtbV ∗
ts)

2 (2.13)

where ηLL ≡ ηLL(MZ ′) is a constant which encodes renor-
malisation group effects. This constant has a weak depen-
dence4 on the MZ ′ scale. In our analysis we consider that
ηLL = 0.79 which corresponds to MZ ′ = 1 TeV.

For the SM contribution �MSM
s we consider the result

obtained in Ref. [36],

�MSM
s = (18.5+1.2

−1.5) ps−1,

which when compared with the experimental bound [37],
�Mexp

s = (17.757+0.021
−0.021) ps−1, shows through Eq. (2.12),

that a small positive CLL
bs is allowed.

4 For MZ ′ ∈ [1, 10] TeV it turns out that ηLL ∈ [0.79, 0.75], see
[34,35].

• K 0 − K 0 mixing:
SM computations for the mass split in the neutral Kaon sys-
tem are a combination of short-distance and long-distance
effects, given as [38]

�MSM
K = (0.8 ± 0.1)�MExp

K , (2.14)

where the experimental data are given by [37]:

�Mexp
K � 3.482 × 10−15 GeV.

This small discrepancy between SM computations and exper-
iment can be explained by including NP effects into the anal-
ysis. Thus, according to (2.14), the contribution of a non-
universal Z ′ boson to �MK must satisfy the following con-
straint [39];

�MNP
K � 0.2 × �Mexp

K , (2.15)

where �MNP
K can be computed directly from the formula

(2.10).
• D0 − D0 mixing:

Neutral D mesons consist of up-type quarks, D0 :→ [cū].
The experimental measurements for D0 − D0 oscillations
are sensitive to the ratio:

xD ≡ �MD


D
, (2.16)

where 
D is the total decay width of D0 and the observed
value for the ratio is xD � 0.32 [40]. Since the process is
subject to large theoretical and experimental uncertainties,
we will simply consider NP contributions to xD less or equal
to the experimental value.

2.2.3 Leptonic meson decays: P0 → li l̄i

In the SM the decay of a neutral meson P0 into a lepton
(li ) and its anti-lepton (l̄i ) is realised at the one-loop level.
While in the SM these processes are suppressed due to GIM
[41] cancellation mechanism, in non-universal Z ′ models
substantially larger tree-level contributions may be allowed.
The decay width induced by Z ′ interactions can be written
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in terms of the SM decay P− → li ν̄i as [24]:


(P0 → li l̄i ) � 8

(P− → li ν̄i )

|VCKM
kj |2

M3
P

√
M2

P − 4m2
li

(M2
P − m2

li
)2

×
(

g′

MZ ′

)4 (
MZ0

g

)4

|(Q′
qL )mn(Q

′
eL )i i |2, (2.17)

where the indices j, k refer to the quark structure [q j q̄k] of
the meson P− appearing in the SM interaction. Similarly, the
indices m, n are used here to denote the quark structure of
the neutral meson P0. All the relevant experimental bounds
for this type of interactions can be found in [37].

2.3 Lepton flavour violation

2.3.1 P0 → li l̄ j

The lepton flavour violation process P0 → li l̄ j is similar
to the previous one where i = j . The decay width due to
tree-level Z ′ contributions is given by [24]:


(P0 → li l̄ j ) � 4

(P− → li ν̄i )

|VCKM
kr |2

(
g′

MZ ′

)4

×
(
MZ0

g

)4

|(Q′
uL )mn(Q

′
eL )i j |2. (2.18)

As previously, the indices k, r are used to denote the quark
structure [qr q̄k] of the meson participating in the SM interac-
tion, while generation indicesm, n refer to the quark structure
of P0. Bounds and predictions for these rare interactions will
be given in the subsequent analysis.

2.3.2 (g − 2)μ

The anomalous magnetic moment of the muon aμ ≡
(g − 2)/2, is measured with high accuracy. However there
exists a discrepancy between experimental measurements
and precise SM computations [37]:

�aμ ≡ aexpμ − aSMμ = 261(63)(48) × 10−11 (2.19)

where aSMμ = 116591830(1)(40)(26) × 10−11.
This difference may be explained by NP contributions. In

the case of a Z ′ neutral boson, loop diagrams like the one
shown on the left side of Fig. 3 contribute to �aμ. Collec-
tively, the 1-loop contribution from a non-universal Z ′ bosons
is [42]:

�aZ ′
μ = − m2

μ

8π2

(
g′

MZ ′

)2 3∑

j=1

|(Q′
eL )2 j |2F(x Z

′
l j ) (2.20)

where x Z
′

l j
:= (ml j /MZ ′)2 with the loop function defined as:

F(x) = 5x4 − 14x3 + 39x2 − 38x − 18x2 ln(x) + 8

12(1 − x)4 .

(2.21)

In our analysis we will consider that �aZ ′
μ must be less or

equal to �aμ.

2.3.3 li → l jγ

A flavour violating Z ′ boson contributes also to radiative
decays of the form li → l jγ . The 1-loop diagram of the
strongly constrained decay μ− → e−γ is displayed in Fig. 3
(right). Considering only Z ′ contributions, the branching
ratio for this type of interactions is given by [43]:

Br(li → l jγ ) = e2

16π
li

(
mli −

m2
l j

mli

)3

(g′)2

×
∑

f

[
y2(Q

′
eL ) f j (Q

′
eL ) f i

]
, (2.22)

where the index f = 1, 2, 3 refers to the lepton running
inside the loop, 
li is the total decay width of the lepton li
and y2 is a loop function that can be found in [43]. The most
recent experimental bounds are:

Br(μ → eγ ) < 4.2 × 10−13, Br(τ → eγ )

< 3.3 × 10−8 and Br(τ → μγ ) < 4.4 × 10−8.

Dominant constraints are expected to come from the muon
decay.

2.3.4 li → l j lk l̄ j

A lepton flavour violating Z ′ boson mediates (at tree-level)
three-body leptonic decays of the form li → l j l j l̄k . The
branching ratio is given by [44]:

Br(li → l j l j l̄k) = m5
li

768π3
li

(
g′

MZ ′

)4

|(Q′
eL )i j (Q

′
eL )k j |2,

(2.23)

where the masses of the produced leptons have been
neglected.

For decays of the form li → l j lk l̄ j with k �= j the branch-
ing ratio is

Br(li → l j l j l̄k) = m5
li

1536π3
li

×
(

g′

MZ ′

)4

|(Q′
eL )ik(Q

′
eL ) j j + (Q′

eL )i j (Q
′
eL ) jk |2.

(2.24)

123



Eur. Phys. J. C (2021) 81 :35 Page 7 of 28 35

Fig. 3 Left side: Contribution of a non-universal Z ′ boson into the magnetic moment of (anti)muon. Right side: Contribution to the decay,
μ− → e−γ . Any of the three (anti)leptons ( j = e, μ, τ ) could run in to the loop due to the non-universal charges under the extra U (1) symmetry

The dominant constraint comes from the muon decay μ− →
e−e−e+, with branching ratio bounded as Br(μ → eee) <

10−12 at 90% confidence level [45].

3 Non-universal U(1)′ models from F-theory

We now turn on to the class of F-theory constructions accom-
modating abelian factors bearing non-universal couplings
with the three families of the Standard Model. As already
mentioned, we focus on constructions based on an ellipti-
cally fibred compact space with E8 being the maximal sin-
gularity, and assume a divisor in the internal manifold where
the associated non-abelian gauge symmetry is SU (5). With
this choice, E8 decomposes as

E8 ⊃ SU (5) × SU (5)⊥. (3.1)

We will restrict our analysis in local constructions and
describe the resulting effective theory in terms of the Higgs
bundle picture which makes use of the adjoint scalars where
only the Cartan generators acquire a non-vanishing vacuum
expectation value (VEV).5 In the local picture we may work
with the spectral data (eigenvalues and eigenvectors) which,
for the case of SU (5), are associated with the 5th degree
polynomial

C5 =
5∑

k=0

bkt
5−k = b0t

5 + b1t
4

+b2t
3 + b3t

2 + b4t + b5 = 0. (3.2)

This defines the spectral cover for the fundamental represen-
tation of SU (5). Furthermore, as is the case for any SU (n),
the five roots

Q = {t1, t2, t3, t4, t5}, (3.3)

must add up to zero,

− b1 ≡
5∑

i=1

ti = 0. (3.4)

5 For non-diagonal generalisations (T-branes) see [46].

The remaining coefficients are generically non-zero, bk �=
0, k = 0, 2, 3, 4, 5 and carry the geometric properties of the
internal manifold.

The zero-mode spectrum of the effective low energy the-
ory descends from the decomposition of the E8 adjoint. With
respect to the breaking pattern (3.1), it decomposes as fol-
lows:

248 → (24, 1) + (1, 24) + (10, 5) + (5, 10) + (5, 10)

+(10, 5). (3.5)

Ordinary matter and Higgs fields, including the appearance
of possible singlets in the spectrum, appear in the box of
the right-hand side in (3.5) and transform in bi-fundamental
representations, with respect to the two SU (5)s. From the
above, we observe that the GUT decuplets transform in the
fundamental of SU (5)⊥, whilst the 5̄, 5-plets are in the anti-
symmetric representation of the ‘perpendicular’ symmetry.
For our present purposes however, it is adequate to work in
the limit where the perpendicular symmetry reduces down
to the Cartan subalgebra according to the breaking pattern
SU (5)⊥ → U (1)4⊥. In this picture, the GUT representations
are characterised by the appropriate combinations of the five
weights given in (3.3). The five 10-plets in particular, are
counted by t1,2,...5 and the fiveplets which originally trans-
form as decuplets under the second SU (5)⊥ are characterised
by the ten combinations ti + t j . In the geometric descrip-
tion, it is said that the SU (5) GUT representations reside in
Riemann surfaces (dubbed matter curves �a) formed by the
intersections of the SU (5) GUT divisor with ‘perpendicular’
7-branes. These properties are summarised in the following
notation

�10ti
: 10ti , 10−ti , �5ti+t j

: 5ti+t j , 5−ti−t j ,

�1ti−t j
: 1ti−t j . (3.6)

As we have seen above, since the weights ti=1,2,3,4,5 asso-
ciated with the SU (5)⊥ group, are the roots of the polyno-
mial (3.2), they can be expressed as functions of the coef-
ficients bk’s which carry the information regarding the geo-
metric properties of the compactification manifold. Based on
this fact, in the subsequent analysis, we will make use of the
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topological invariant quantities and flux data to determine the
spectrum and the parameter space of the effective low energy
models under consideration.

We start by determining the zero-mode spectrum of the
possible classes of models within the context discussed
above. According to the spectral cover description, see
Eqs. (3.2–3.6), the various matter curves of the theory accom-
modating the SU (5) GUT multiplets are determined by the
following equations:

�10ti
: P10 := b5 ∼

5∏

i=1

ti = 0, (3.7)

and

�5ti+t j
: P5 := b2

3b4 − b2b3b5 + b0b
2
5

∼
∏

i �= j

(ti + t j ) = 0. (3.8)

If all five roots ti of the polynomial (3.2) are distinct and
expressed as holomorphic functions of the coefficients bk ,
then, simple counting shows that there can be five matter
curves accommodating the tenplets(decuplets) and ten mat-
ter curves where the fiveplets(quintuplets) can reside. This
would imply that the polynomial (3.2) could be expressed
as a product

∏5
i=1(αi ti + βi ), with the coefficients αi , βi

carrying the topological properties of the manifolds, while
being in the same field as the original bk . However, in the
generic case not all five solutions ti (bk) belong to the same
field with bk . In effect, there are monodromy relations among
subsets of the roots ti , reducing the number of independent
matter curves. Depending on the specific geometric proper-
ties of the compactification manifold, we can have a variety
of factorisations of the spectral cover polynomial C5. (The
latter are parametrised by the Cartan subalgebra modulo the
Weyl group W (SU (5)⊥)). In other words, generic solutions
imply branch cuts and some roots are indistinguishable. The
simplest case is when two of them are subject to a Z2 mon-
odromy,

Z2 : t1 = t2. (3.9)

Remarkably, there is an immediate implication of the Z2

monodromy in the effective field theory model. It allows the
tree-level coupling in the superpotential

10t1 10t2 5−t1−t2
Z2−→ 10t1 10t1 5−2t1 , (3.10)

which can induce a heavy top-quark mass as required by low
energy phenomenology.

Returning to the spectral cover description, under the Z2

monodromy, the polynomial (3.2) is factorised accordingly
to

C5 = (a1 + a2t + a3t
2)(a4 + a7t)(a5 + a8t)(a6 + a9t),

(3.11)

where the existence of the second degree polynomial is not
factorisable in the sense presented above, indicating thus,
that the corresponding roots t1, t2 are connected by Z2.

Comparing this with the spectral polynomial in (3.2), we
can extract the relations between the coefficients bk and a j .
Thus, one gets

b0 = a3a7a8a9,

b1 = a3a6a7a8 + a3a4a9a8 + a2a7a9a8 + a3a5a7a9,

b2 = a3a5a6a7 + a2a6a8a7 + a2a5a9a7

+a1a8a9a7 + a3a4a6a8 + a3a4a5a9 + a2a4a8a9,

b3 = a3a4a5a6 + a2a5a7a6 + a2a4a8a6 + a1a7a8a6

+a2a4a5a9 + a1a5a7a9 + a1a4a8a9,

b4 = a2a4a5a6 + a1a5a7a6 + a1a4a8a6 + a1a4a5a9,

b5 = a1a4a5a6. (3.12)

We impose the SU (5) constraint b1 = 0 assuming theAnsatz
[47]

a2 = −c(a6a7a8 + a5a7a9 + a4a8a9), a3 = ca7a8a9,

where a new holomorphic section c has been introduced.
Substituting into (3.12) one gets

b0 = c a2
7a

2
8a

2
9,

b2 = a9(a1a7a8 − (a2
5a

2
7 + a4a5a8a7 + a2

4a
2
8)a9c)

−ca2
6a

2
7a

2
8 − ca6a7(a5a7 + a4a8)a9a8,

b3 = a1(a6a7a8 + (a5a7 + a4a8)a9)

−(a5a7 + a4a8)(a6a7 + a4a9)(a6a8 + a5a9)c,

b4 = a1(a4a6a8 + a5(a6a7 + a4a9)) − a4a5a6

×(a6a7a8 + (a5a7 + a4a8)a9)c,

b5 = a1a4a5a6. (3.13)

The equations of tenplets and fiveplets can now be
expressed in terms of the holomorphic sections a j ’s and c.
In the case of the tenplets we end up with four factors

P10 = a1 × a4 × a5 × a6, (3.14)

which correspond to four matter curves accommodating the
tenplets of SU (5). Substitution of (3.13) in to P5 factorises
the equation into seven factors corresponding to seven dis-
tinct fiveplets

P5 = (a5a7 + a4a8) × (a6a7 + a4a9)

× (a6a8 + a5a9)

× (a6a7a8 + a4a9a8 + a5a7a9)

× (a1 − a5a6a7c − a4a6a8c)

× (a1 − a5a6a7c − a4a5a9c)

× (a1 − a4a6a8c − a4a5a9c) . (3.15)

Finally, we compute the homologies of the section a j ’s
and c, and consequently of each matter curve. This can be
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Table 1 Homology classes of the coefficients a j and c. Note that χ = χ5 + χ7 + χ9 where χ7, χ8, χ9 are the unspecified homologies of the
coefficients a5, a7 and a9 respectively

a1 a2 a3 a4 a5 a6 a7 a8 a9 c

η − 2c1 − χ η − c1 − χ η − χ −c1 + χ7 −c1 + χ8 −c1 + χ9 χ7 χ8 χ9 η − 2χ

done by using the known homologies of the bk coefficients:

[bk] = (6 − k)c1 − t = η − k c1 (3.16)

where c1 is the 1st Chern class of the tangent bundle to SGUT ,
−t the 1st Chern class of the normal bundle to SGUT and
η = 6 c1 − t . The homologies of a j ’s and c are presented in
Table 1, while the homologies of the various matter curves are
given in Table 2. Because there are more a’s than b’s, three
homologies which are taken to be [a7] = χ7, [a8] = χ8 and
[a9] = χ9, remain unspecified.

3.1 SU (5) ×U (1)′ in the spectral cover description

Our aim is to examine SU (5) × U (1)′ models and partic-
ularly the rôle of the non-universal U (1)′ which should be
consistently embedded in the covering group E8. Clearly,
the U (1)′ symmetry should be a linear combination of the
abelian factors residing in SU (5)⊥. A convenient abelian
basis to express the desired U (1)′ emerges in the following
sequence of symmetry breaking

E8 ⊃ E6 × SU (3)⊥ ⊃ E6 ×U (1)⊥ ×U (1)′⊥ (3.17)

⊃ SO(10) ×U (1)ψ ×U (1)⊥ ×U (1)′⊥ (3.18)

⊃ SU (5)GUT ×U (1)χ ×U (1)ψ ×U (1)⊥ ×U (1)′⊥.

(3.19)

Then, the Cartan generators corresponding to the four
U (1)’s are expressed as:

Q′⊥ = 1

2
diag(1,−1, 0, 0, 0),

Q⊥ = 1

2
√

3
diag(1, 1,−2, 0, 0),

Qψ = 1

2
√

6
diag(1, 1, 1,−3, 0),

Qχ = 1

2
√

10
diag(1, 1, 1, 1,−4).

(3.20)

The monodromy t1 ↔ t2 imposed in the previous sec-
tion, eliminates the abelian factor corresponding to Q′⊥ with
t1 �= t2. Then we are left with the remaining three SU (5)⊥
generators

Q⊥, Qψ, Qχ , (3.21)

given in (3.20). Next, we assume that a low energy U (1)′ is
generated by a linear combination of the unbroken U (1)’s:

Q′ = c1Q⊥ + c2Qψ + c3Qχ . (3.22)

Regarding the coefficients c1, c2, c3 the following normali-
sation condition will be assumed

c2
1 + c2

2 + c2
3 = 1, (3.23)

while, further constraints will be imposed by applying
anomaly cancellation conditions.

3.2 The Flux mechanism

We now turn into the symmetry breaking procedure. In F-
theory, fluxes are used to generate the observed chirality of
the massless spectrum. Most precisely, we may consider two
distinct classes of fluxes. Initially, a flux is introduced along
a U (1)⊥ and its geometric restriction along a specific matter
curve �n j is parametrised with an integer number. Then, the
chiralities of the SU (5) representations are given by

#10i − #10i = mi , (3.24)

#5 j − #5 j = Mj . (3.25)

The integers Mi ,m j are subject to the chirality condition
∑

i

mi = −
∑

j

M j = 3 (3.26)

which coincides with the SM anomaly conditions [48,49]
Next, a flux in the direction of hypercharge, denoted as FY ,
is turned on in order to break the SU (5)GUT down to the
SM gauge group. This “hyperflux” is also responsible for
the splitting of SU (5) representations. If some integers Ni, j

represent hyperfluxes piercing certain matter curves, then the
combined effect of the two type of fluxes into the 10-plets
and 5-plets is described according to:

10t j =

⎧
⎪⎪⎨

⎪⎪⎩

n(3,2) 1
6

− n(3̄,2)− 1
6

= m j

n(3̄,1)− 2
3

− n(3,1) 2
3

= m j − N j

n(1,1)+1 − n(1,1)−1 = m j + N j

, (3.27)

5ti =
⎧
⎨

⎩

n(3,1)− 1
3

− n(3̄,1)+ 1
3

= Mi

n(1,2)+ 1
2

− n(1,2)− 1
2

= Mi + Ni .
(3.28)

We note in passing that since the Higgs field is accommodated
on a matter curve of type (3.28), an elegant solution to the
doublet-triplet splitting problem is realised. Indeed, imposing
Mi = 0 the colour triplet is eliminated, while choosing Ni �=
0 we ensure the existence of massless doublets in the low
energy spectrum.
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−
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−
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−
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−
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−
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+
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−
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+
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c 1 The U (1)Y flux is subject to the conditions

FY · η = FY · c1 = 0,

in order to avoid a heavy Green–Schwarz mass for the corre-
sponding gauge boson. Furthermore, assumingFY ·χi = Ni

(with i = 7, 8, 9) and correspondingly FY · χ = N , with
N = N7 + N8 + N9, we can find the effect of hyperflux
on each matter curve. While mi and Mj are subject to the
constraint (3.26), hyperflux integers N7,8,9 are related to the
undetermined homologies χ7,8,9 and as such, they are free
parameters of the theory. The flux data and the SM content
of each matter curve are presented in Table 3. The particle
content of the matter curves arises from the decomposition of
10+10 and 5+5 pairs which reside on the appropriate matter
curves. The MSSM chiral fields arise from the decomposition
of 10 and 5, and are denoted by Q, L , uc, dc, ec. Depending
on the choice of the flux parameters, it is also possible that
some of their conjugate fields appear in the light spectrum
(provided of course that there are only three chiral families
in the effective theory). These conjugate fields arise from 10
and 5 and in Table 3 and are denoted by Q, L, uc, dc, ec.

In the same table we have also included the charges of the
remaining U (1)′ symmetry. We observe that the charges are
functions of the c1,2,3 coefficients which can be computed
by applying anomaly cancellation conditions.

There are also singlet fields defined in (3.6) which play
an important rôle in the construction of realistic F-theory
models. In the present framework, these singlet states are
parameterised by the vanishing combination ±(ti − t j ) =
0 , i �= j , therefore, due to Z2 monodromy we end up with
twelve singlets, denoted by θi j . TheirU (1)′ charges and mul-
tiplicities are collectively presented in Table 4. Details on
their rôle in the effective theory will be given in the subse-
quent sectors.

3.3 Anomaly cancellation conditions

In the previous sections we elaborated on the details of
the F-SU (5) GUT supplemented by a flavour-dependent
U (1)′ extension where this abelian factor is embedded in
the SU (5)⊥ ⊃ E8. Since the effective theory has to be
renormalisable and ultra-violet complete, the U (1)′ exten-
sion must be anomaly free. This requirement imposes sig-
nificant restrictions on the U (1)′ charges of the spectrum
and consequently, on the coefficients ci defining the linear
combination in (3.22). In this section we will work out the
anomaly cancellation conditions to determine the appropriate
linear combinations (3.22). This procedure will also spec-
ify all the possibly allowed U (1)′ charge assignments of the
zero-mode spectrum. Consequently, each such set of charges
will correspond to a distinct low energy model which can
give definite predictions to be confronted with experimental
data.
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Table 3 Matter curves along
with their U (1)′ charges, flux
data and the corresponding SM
content. Note that
N = N7 + N8 + N9

Matter curve Q′ NY M SM content

�101,±t1

10
√

3c1+5
√

6c2+3
√

10c3
60 −N m1 m1Q + (m1 + N )uc + (m1 − N )ec

�102,±t3

−20
√

3c1+5
√

6c2+3
√

10c3
60 N7 m2 m2Q + (m2 − N7)uc + (m2 + N7)ec

�103,±t4

√
10c3−5

√
6c2

20 N8 m3 m3Q + (m3 − N8)uc + (m3 + N8)ec

�104,±t5
−

√
2
5 c3 N9 m4 m4Q + (m4 − N9)uc + (m4 + N9)ec

�51,(±2t1)
− c1√

3
− c2√

6
− c3√

10
N M1 M1dc + (M1 + N )L

�52,±(t1+t3)

5
√

3c1−5
√

6c2−3
√

10c3
30 −N M2 M2dc + (M2 − N )L

�53,±(t1+t4)
− c1

2
√

3
+ c2√

6
− c3√

10
−N M3 M3dc + (M3 − N )L

�54,±(t1+t5)

−10
√

3c1−5
√

6c2+9
√

10c3
60 −N M4 M4dc + (M4 − N )L

�55,±(t3+t4)

c1√
3

+ c2√
6

− c3√
10

N7 + N8 M5 M5dc + (M5 + N7 + N8)L

�56,±(t3+t5)

20
√

3c1−5
√

6c2+9
√

10c3
60 N7 + N9 M6 M6dc + (M6 + N7 + N9)L

�57,±(t4+t5)

5
√

6c2+3
√

10c3
20 N8 + N9 M7 M7dc + (M7 + N8 + N9)L

Table 4 Singlet fields θi j along
with their corresponding U (1)′
charges and multiplicities Mi j .
The “(−)” sign on the weights
and charges refers to the singlets
in the parentheses

Singlet fields Weights Q′
i j (Q′

j i ) Multiplicity

θ13, (θ31) ±(t1 − t3) ±
√

3c1
2 M13, (M31)

θ14, (θ41) ±(t1 − t4) ± c1+2
√

2c2

2
√

3
M14, (M41)

θ15, (θ51) ±(t1 − t5) ± 1
12

(
2
√

3c1 + √
6c2 + 3

√
10c3

)
M15, (M51)

θ34, (θ43) ±(t3 − t4) ±
√

2c2−c1√
3

M34, (M43)

θ35, (θ53) ±(t3 − t5) ± 1
12

(
−4

√
3c1 + √

6c2 + 3
√

10c3

)
M35, (M53)

θ45, (θ54) ±(t4 − t5) ± 1
4

(√
10c3 − √

6c2

)
M45, (M54)

Although the well known MSSM anomaly cancella-
tion conditions coincide with the chirality condition (3.26)
imposed by the fluxes, there are additional contributions to
gauge anomalies due to the extra U (1)′ factor. In order to
consistently incorporate the new abelian factor into the effec-
tive theory, the following six anomaly conditions should be
considered:

A331 : SU (3)C SU (3)CU (1)′ (3.29)

A211 : SU (2)L SU (2)LU (1)′ (3.30)

AYY1 : U (1)YU (1)YU (1)′ (3.31)

AY11 : U (1)YU (1)′U (1)′ (3.32)

A111 : U (1)′U (1)′U (1)′ (3.33)

AG : Gauge Gravity Anomaly . (3.34)

Using the data of Table 3, it is straightforward to compute
the anomaly conditions (3.29–3.34). Analytical expressions
are given in Appendix A. It turns out (up to overall factors)
that A221 = A331 = AYY1 ≡ A , where A depends on Mi ,
m j , Nk and linearly on c1,2,3. On the other hand, the mixed
AY11 anomaly is not linear on c1,2,3 and depends only on the
hyperflux integers Nk .

The cubic (A111) and gravitational (AG) anomalies
depend only on the U (1)′ charges (and flux integers), hence
singlet fields come into play. The last terms of (A.4) and (A.3)
display the contribution from the singlets. Since Q′

i j = −Q′
j i

as a first approximation, we can assume that the singlets
always come in pairs (Mi j = Mji ), ensuring this way that
their contribution to the anomalies always vanishes.

3.4 Solution strategy

The anomaly conditions displayed above are complicated
functions of the ci -coefficients and the flux integers mi , Mj

and Nk . In order to solve for the ci ’s we have to deal with
the flux integers first. The precise determination of the spec-
trum in the present construction, depends on the choice of
these flux parameters. While there is a relative freedom on the
choice and the distribution of generations on the various mat-
ter curves, some phenomenological requirements may guide
our choices. For example, the requirement for a tree-level top
Yukawa coupling suggests that the top quark must be placed
on the 101 matter curve (see Table 3) and the MSSM up-Higgs
doublet at 51 since, due to Z2 monodromy, the only renor-
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Table 5 MSSM flux solutions along with the resulting ci ’s. For this class of models (Class A), singlets come in pairs (Mi j = Mji )

Model m1 m2 m3 m4 M1 M2 M3 M4 M5 M6 M7 N7 N8 N9 c1 c2 c3

A1 1 2 0 0 0 −1 0 0 −1 −1 0 1 0 0 0 − 1
2

√
3
2

1
2

√
5
2

A2 1 0 2 0 0 0 −1 0 −1 0 −1 0 1 0 1√
3

− 1
2
√

6
− 1

2

√
5
2

A3 1 0 0 2 0 0 0 −1 0 −1 −1 0 0 1 1√
3

−
√

2
3 0

A4 1 0 0 2 0 0 0 0 −1 −1 −1 0 0 1 1√
3

−
√

2
3 0

A5 1 0 2 0 0 0 0 0 −1 −1 −1 0 1 0 1√
3

− 1
2
√

6
− 1

2

√
5
2

A6 1 2 0 0 0 0 0 0 −1 −1 −1 1 0 0 0 − 1
2

√
3
2

1
2

√
5
2

malisable top-like operator is: 10t1 10t1 5−2t1 ≡ 10110151.
This suggests the following conditions on some of the flux
integers:

m1 = 1, m1 + N ≥ 1, M1 + N ≥ 1. (3.35)

Furthermore, a solution to the doublet-triplet splitting prob-
lem implies that

|N7| + |N8| + |N9| �= 0. (3.36)

Additional conditions can be imposed by demanding cer-
tain properties of the effective model and a specific zero-
mode spectrum. In what follows, we will split our search
into two major directions. Namely, minimal models which
contain only the MSSM spectrum (no exotics), and models
with vector-like pairs.

For each case we put conditions on the fluxes and then we
scan for all possible combinations of flux integers satisfying
all the constraints. Next, each set of flux solutions is applied
to the anomaly conditions (A.1)–(A.4) and we check whether
a solution for the ci ’s exists. Each solution for the ci ’s must
also fulfill the normalisation condition (3.23).

4 Models with MSSM spectrum

We start with the minimal scenario where the models we are
interested in have the MSSM spectrum accompanied only
by pairs of conjugate singlet fields. In particular, three chiral
families of quarks and leptons of the MSSM spectrum are
ensured by the chirality condition (3.26).

On top of the conditions (3.35) and (3.36) we also assume
that

M1 = 0, N = 1, (4.1)

avoiding this way exotics since Hu will be the only MSSM
state in 51 matter curve. In addition, absence of exotics nec-
essarily implies that

mi ≥ 0, −Mj ≥ 0. (4.2)

Then we search the flux parameter space for combinations
ofmi , Mj and Nk which respect the conditions (3.26), (3.35),
(3.36), (4.1) and (4.2). We allow the flux parameters to vary
in the range [−3, 3].

Our scan identifies 54 sets of flux integers that are con-
sistent with all the MSSM spectrum criteria and a tree-level
top term. From these 54 flux solutions, only 6 of them yield
a solution for the ci coefficients with equal pairs of singlets,
Mi j = Mji . This class of solutions are shown in Table 5 and
the spectrum of the corresponding models are presented in
Table 6. We refer to this class of models as Class A.
Note that the SM states of all the models above carry the
same charges under the extra U (1)′ and differ only on how
the SM states are distributed among the various matter curves.
In all cases we expect similar low energy phenomenological
implications.

Solutions for the remaining forty-eight set of fluxes arise
if we relax the condition Mi j = Mji and allow for gen-
eral multiplicities for the singlets. Scanning the parameter
space, three new classes (named as Class B, Class C and
Class D), of consistent solutions emerge. Some representa-
tive solutions from each class6 are shown in Table 7 while the
corresponding models are presented in Table 8. A complete
list of all the flux solutions, the corresponding charges and
singlet spectrum is given in Appendix B.

It is being observed that for all the models presented so
far, one of the tenplets 102, 103, 104 acquires the sameU (1)′
charge with the 101 matter curve accommodating the top-
quark. Thus, at least one of the lightest left-handed quarks
will have the same Q′ charge with the top quark. In this case,
the corresponding flavour processes associated with these
two families are expected to be suppressed.

Next, we will investigate some phenomenological aspects
of the models presented so far. We first write down all the
possible SU (5) ×U (1)′ invariant tree-level Yukawa terms:

6 Each class consists of various flux and ci solutions that results to the
same Q′ charges. The various models inside a class are differ on how
the SM fields distributed on the matter curves.
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• Renormalisable top-Yukawa type operator:

1011015̄1, (4.3)

which is the only tree-level top quark operator allowed by
the ti weights (see Tables 7, 8) thanks to the Z2 monodromy.

• Renormalisable bottom-type quarks operators:

1015̄25̄7, 1015̄35̄6, 1015̄45̄5,

1025̄35̄4, 1035̄25̄4, 1045̄25̄3. (4.4)

Depending on how the SM states are distributed among the
various matters curves, tree level bottom and/or R-parity vio-
lation (RPV) terms may exist in the models.

4.1 Phenomenological analysis

Up till now we have sorted out a small number of phenomeno-
logically viable models distinguished by their low energy
predictions. In the remaining of this section, we will focus
on Model D9. The implications of the remaining models will
be explored in the Appendix.

Details for the fermion sectors of this model are given in
Table 8, while the properties of the singlet sector can be found
in Appendix B. In order to achieve realistic fermion hierar-
chies, we assume the following distribution of the MSSM
spectrum in to the various matter curves:

101 −→ Q3 + uc2,3, 102 −→ Q1 + uc1 + ec1,

104 −→ Q2 + ec2,3 ,

51 −→ Hu, 5̄2 −→ Hd , 5̄3 −→ L3, 5̄4 −→ L2,

5̄5 −→ dc1 + L1, 5̄6 −→ dc2, 5̄7 −→ dc3 ,

where the indices (1,2,3) on the SM states denote generation.

Top sector
The dominant contributions to the up-type quarks descend

from the following superpotential terms

W ⊃ yt10110151 + y1

�
10110251θ13

+ y2

�
10110451θ15 + y3

�2 10210451θ13θ15

+ y4

�2 10210251θ
2
13

+ y5

�2 10110251θ15θ53 + y6

�3 10210251θ15θ53θ13, (4.5)

where yi ’s are coupling constant coefficients and � is a char-
acteristic high energy scale of the theory. The operators yield
the following mass texture:
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Table 7 MSSM flux solutions along with the corresponding ci ’s for a general singlet spectrum

Model m1 m2 m3 m4 M1 M2 M3 M4 M5 M6 M7 N7 N8 N9 c1 c2 c3

B7 1 0 1 1 0 −1 0 0 −1 0 −1 0 1 0 −
√

5
3

1
6

√
5
2 − 1

2

√
3
2

C8 1 0 0 2 0 0 −1 0 0 −1 −1 0 0 1 −
√

5
6

7
12

√
5
2 − 1

4
√

6

D9 1 1 0 1 0 0 0 0 −1 −1 −1 0 0 1 1
2

√
5
6

5
8

√
5
3 − 3

8

Table 8 MSSM like models
accompanied by a general
singlet spectrum

Curve ModelB7 ModelC8 ModelD9
√

15Q′ SM
√

15Q′ SM
√

10Q′ SM

101 −1 Q + 2uc 1/4 Q + 2uc 3/4 Q + 2uc

102 3/2 – 3/2 – −1/2 Q + uc + ec

103 −1 Q + 2ec −9/4 – −7/4 –

104 3/2 Q + uc + ec 1/4 2Q + uc + 3ec 3/4 Q + 2ec

51 2 Hu −1/2 Hu −3/2 Hu

5̄2 1/2 dc + 2L 7/4 L 1/4 L

5̄3 −2 L −2 dc + 2L −1 L

5̄4 1/2 L 1/2 L 3/2 L

5̄5 1/2 dc −3/4 − −9/4 dc + L

5̄6 3 dc 7/4 dc 1/4 dc

5̄7 1/2 – −2 dc −1 dc

Mu = vu

⎛

⎝
y4ϑ

2
13 + y6ϑ15ϑ53ϑ13 y3ϑ13ϑ15 y1ϑ13 + y5ϑ15ϑ53

y1ϑ13 + y5ϑ15ϑ53 y2ϑ15 εyt
y1ϑ13 + y5ϑ15ϑ53 y2ϑ15 yt

⎞

⎠ ,

(4.6)

where vu = 〈Hu〉, ϑi j = 〈θi j 〉/� and ε � 1 is a suppression
factor introduced here to capture local effects of Yukawa cou-
plings descending from a common tree-level operator [50–
52]. The matrix has the appropriate structure to explain the
hierarchy in the top sector.

Bottom sector
There is one tree-level and several non-renormalisable

operators contributing to the down-type quarks. The dom-
inant terms are:

W ⊃ yb1015̄75̄2 + κ1

�
1015̄55̄2θ53

+ κ2

�
1015̄65̄2θ43 + κ3

�
1025̄75̄2θ13

+ κ4

�2 1025̄65̄2θ13θ43 + κ5

�2 1025̄55̄2θ13θ53

+ κ6

�2 1025̄75̄2θ15θ53 + κ7

�3 1025̄55̄2θ15θ
2
53

+ κ8

�3 1025̄65̄2θ14θ
2
43 + κ9

�
1045̄75̄2θ15

+ κ10

�
1045̄55̄2θ13 + κ11

�2 1045̄65̄2θ13θ45

+ κ12

�2 1045̄55̄2θ15θ53 + κ13

�3 1045̄65̄2θ15θ45θ53,

(4.7)

with κi , yb being coupling constant coefficients. These oper-
ators generate the following down quark mass matrix:

Md = vd

⎛

⎝
κ5ϑ53ϑ13 + κ7ϑ15ϑ

2
53 κ10ϑ13 + κ12ϑ15ϑ53 κ1ϑ53

κ4ϑ13ϑ43 + κ8ϑ14ϑ
2
43 κ11ϑ13ϑ45 + κ13ϑ15ϑ45ϑ53 κ2ϑ43

κ3ϑ13 + κ6ϑ15ϑ53 κ9ϑ15 yb

⎞

⎠ ,

(4.8)

where vd = 〈Hd〉 is the VEV of the down-type MSSM Higgs.
This matrix is subject to corrections from higher order terms
and due to the many contributing operators, we expect large
mixing effects.

Charged lepton sector
In the present construction, when flux pierces the various

matter curves, the SM generations are distributed on differ-
ent matter curves. As a consequence, in general, down type
quarks and charged lepton sectors emerge from different cou-
plings.

In the present model the common operators between bot-
tom and charged lepton sector are those given in (4.8) with
couplings κ5, κ7, κ10 and κ12. All the other contributions
descend from the operators

W ⊃ yτ 1045̄35̄2 + λ1

�
1025̄45̄2θ43 + λ2

�
1025̄35̄2θ53

+λ3

�
1045̄45̄2θ45, (4.9)
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where yτ is a tree level Yukawa coefficient, λi coupling con-
stants and η � 1 encodes local tree-level Yukawa coupling
effects. Collectively we have the following mass texture for
the charged leptons of the model:

Me = vd

⎛

⎝
κ5ϑ53ϑ13 + κ7ϑ15ϑ

2
53 λ1ϑ43 λ2ϑ53

κ10ϑ13 + κ12ϑ15ϑ53 λ3ϑ45 ηyτ
κ10ϑ13 + κ12ϑ15ϑ53 λ3ϑ45 yτ

⎞

⎠ . (4.10)

The μ-term
The bilinear term 515̄2 is not invariant under the extra
U (1)′ symmetry. However, the μ-term appears dynamically
through the renormalisable operator:

κ515̄3θ13 −→ κ〈θ13〉HuHd ≡ μHuHd . (4.11)

There are no constraints imposed on the VEV of singlet field
θ13, thus, a proper tuning of the values of κ and 〈θ13〉 can lead
to an acceptable μ-parameter, μ ∼ O(T eV ). As a result, the
θ13 singlet which also contributes to the quarks and charged
lepton sectors, must receive VEV at some energy scale close
to the TeV region.

We also note that some of the singlet fields couple to the
left-handed neutrinos and, in principle, can play the rôle of
their right-handed partners. In particular, as suggested in [6],
the six-dimensional massive KK-modes which correspond to
the neutral singlets identified by the Z2 symmetry θ12 ≡ θ21

are the most appropriate fields to be identified as θ12 → νc

and θ21 → ν̄c so that a Majorana mass term MNνcν̄c is
possible. We will not elaborate on this issue any further; some
related phenomenological analysis can be found in [53].

CKM matrix
The square of the fermion mass matrices obtained so far

can be diagonalised via the unitary matrices V fL . The vari-
ous coupling constants and VEVs can be fitted to make the
diagonal mass matrices satisfy the appropriate mass relations
at the GUT scale. In our analysis we use the RGE results for
a large tan β = vu/vd scenario produced in Ref. [54]. In
addition, the combination VuL V

†
dL

must resemble as close as
possible the CKM matrix.

For the various parameters of the present model, we use a
natural set of numerical values

κi � 1, y1 = y4 = y5 = y6 = 25y2 = 25y3

� 0.5, ε = 10−4, yt = 0.5, yb = 0.36 .

Then, the singlet VEV’s ϑi j are fitted to:

ϑ13 � 3.16 × 10−12, ϑ14 � 3.98 × 10−3, ϑ15 � 10−1,

ϑ43 � 1.9 × 10−2, ϑ53 � 6.94 × 10−3, ϑ45 � 10−2.

For the up and down quark diagonalising matrices, they yield

VuL =
⎛

⎝
−1 −0.000694 0.000694

0.000694 −1 0.000116
0.0006939 0.000116 1

⎞

⎠ ,

VdL =
⎛

⎝
−0.9738 0.2273 0.00674
−0.2266 −0.9726 0.0519
0.0183 0.04908 0.9986

⎞

⎠ . (4.12)

The resulting CKM matrix is in agreement with the experi-
mentally measured values

|VCKM | �
⎛

⎝
0.973659 0.227932 0.00601329
0.227325 0.972437 0.0518632

0.0176688 0.04913 0.998636

⎞

⎠ . (4.13)

It is clear that the CKM matrix is mostly influenced by the
bottom sector while VuL is almost diagonal and unimodular.

Next, we compute the unitary matrix VeL which diago-
nalises the charged lepton mass matrix. The correct Yukawa
relations and the charged lepton mass spectrum are obtained
for

VeL =
⎛

⎝
−0.801463 0.597943 0.0110641
−0.597877 −0.801539 0.00888511
0.0141811 0.000506117 0.999899

⎞

⎠ , (4.14)

where the remaining parameters were fitted to: λ1 =
0.4, λ2 = λ3 = 1, η = 10−4 and yτ =� 0.51.

R-parity violating terms
In the model under discussion, several tree-level as well

as bilinear operators leading to RPV effects remain invariant
under all the symmetries of the theory. More precisely, the
tree-level operators :

1015̄35̄6 −→ λ′Q3L3dc2 , (4.15)

1025̄35̄4 −→ λL3L2ec1 , (4.16)

violate both lepton and baryon number. Notice however, the
absence of ucucdc type of RPV terms which in combination
with QLdc terms can spoil the stability of the proton.
There also exist bilinear RPV terms descending from tree-
level operators. In the present model, these are:

515̄3θ14, 515̄4θ15. (4.17)

The effect of these terms strongly depend on the dynamics
of the singlets, however it would be desirable to completely
eliminate such operators.

One can impose an R-symmetry by hand [47] or to investi-
gate the geometric origin of discrete ZN symmetries that can
eliminate such operators [55–58]. In addition, the study of
such Yukawa coefficients at a local-level, shows that they can
be suppressed for wide regions of the flux parameter space
[59]. Since in this work we focus mostly in Z ′ flavour chang-
ing effects,7 we will assume that one of the aforementioned
mechanisms protects the models from unwanted RPV terms.

7 Notice however that some RPV terms of the type Qldc and llec con-
tribute to flavour violation processes, see [60,61]. For an explanation
of the LHCb anomalies through RPV interactions see [62–64].
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Fig. 4 Bounds to the neutral gauge boson mass MZ ′ of Model D9 due
to K0 − K̄0 mixing effects. The vertical axis displays Z ′ contributions
(�MZ ′

K ) to the mass split of the neutral Kaon system. Dotted, dashed
and solid black curves correspond to gauge coupling values: g′ = 0.1,
0.5 and 1 respectively. The shaded region is excluded due the constrain
�MNP

K < 0.2�Mexp
K

4.2 Z ′ bounds for model D9

Having obtained the V f matrices for the top/bottom quark
and charged lepton sectors, it is now straightforward to com-
pute the flavour mixing matrices Q′

fL
defined in (2.6). These

matrices, along with the Z ′ mass (MZ ′) and gauge coupling
(g′), enter the computation of the various flavour violating
observables described in Sect. 2. Hence, we can use the con-
straints on these observables in order to derive bounds for
the Z ′ mass and gauge coupling or, more precisely, for the
ratio g′/MZ ′ . In any case, the so derived bounds must be
in accordance with LHC bounds coming from dilepton and
diquark channels [65–67]. For heavy Z ′ searches, the LHC
bounds on neutral gauge boson masses are strongly model
dependent. For most of the GUT inspired Z ′ models, masses
around ∼ 2−3 TeV are excluded.

In the model at hand, we have seen that the lightest gener-
ations of the left-handed quarks have differentU (1)′ charges.
Consequently, strong constraints on the Z ′ mass are expected
to come from the K −K mixing bounds. Hence, we first start
from the neutral Kaon system.

K 0 − K 0 mixing

Using Eq. (2.10) we find for the Kaon oscillation mass split
that:

�MZ ′
K � 3.967 × 10−14

(
g′

MZ ′

)2

.

The results are plotted in Fig. 4. As expected, the Kaon system
puts strong bounds on MZ ′ . To get an estimate, for g′ � 0.5
the constraint in (2.15) implies that MZ ′ � 120 TeV which
lies far above the most recent collider searches.

B0
s − B0

s mixing

From Eq. (2.13) we have that:

CLL
bs ≈ 1.9 × 10−5

(
g′ TeV

MZ ′

)2

which is too small in magnitude to significantly contribute to
�Ms . This happens because the U (1)′ charges of bL and sL
are equal.

D0 − D0 mixing

For MD � 1.86483 GeV [37] and using for the decay con-
stant the value fD � 212 MeV found in [68] , the equation
(2.10) gives:

�MZ ′
D � 2.71 × 10−18

(
g′ TeV

MZ ′

)2

.

Then, for 
D = 1/τD � 2.43843 (ps)−1 [37] we have that

xD := �MD


D
� 0.0017

(
g′ TeV

MZ ′

)2

which always obeys the bound xD � 0.32.

P0 → li l̄i decays

We have found that all the Z ′ contributions are well sup-
pressed when compared to the experimental bounds. As an
example, consider the decay B0

d → μ+μ−. Using Eq. (2.17)
we obtain that

Br(B0
d → μ+μ−) � 5.34 × 10−9

(
g′ TeV

MZ ′

)4

which always satisfies the experimental bound Br(B0
d →

μ+μ−) < 1.6+1.6
−1.4 ×10−10, for g′ < 1 and MZ ′ ∼ O(T eV ).

Similar results were obtained for lepton flavour violating
decays of the form P0 → li l̄ j .

Muon anomalous magnetic moment and μ → eγ

Our results imply that Z ′ contributions to �aμ are always
smaller than the observed discrepancy. Even for the limiting
case where g′ = 1 and MZ ′ = 1 TeV our computations
return: �aZ ′

μ � 3 × 10−11. This suggests that for small Z ′
masses the model can explain the observed (g−2)μ anomaly.
However for larger MZ ′ values implied from the Kaon system
the results are very suppressed.

For LFV radiative decays of the form li → l jγ , the
strongest bounds are expected from the muon channel. For
g′ = 1, the present model predicts that MZ ′ � 1.3 TeV if
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Fig. 5 Bounds to the neutral gauge boson mass MZ ′ as predicted in
Model D9 from Z ′ contributions to the lepton flavour violation decay
μ− → e−e−e+. The plot shows the branching ratio of the decay as
function of the Z ′ mass for various values of the gauge coupling g′.
Both axis are in logarithmic scale. Dotted, dashed and solid black curves
correspond to U (1)′ gauge couplings: g′ = 0.1, 0.5 and 1 respectively.
The shaded region is excluded due to the current experimental bound:
Br(μ− → e−e−e+) < 10−12. The red horizontal line represents the
estimated reach of future μ → 3e experiments

the predicted μ → eγ branching ratio is to satisfy the exper-
imental bounds. Tau decays (τ → eγ , τ → μγ ) are well
suppressed, due to the short lifetime of the tau lepton.

μ− → e−e−e+

While all the three body lepton decays of the form li → l j l j l̄k
are suppressed for the tau channel, strong constraints are
obtained from the muon decay μ− → e−e−e+. In particular,
the model predicts that

Br(μ− → e−e−e+) � 4.92 × 10−5
(
g′ TeV

MZ ′

)4

.

The results are compared with the experimental bounds in
Fig. 5. We observe that, for g′ = 0.5 (dashed line in the plot)
we receive MZ ′ � 42 TeV in order the model to satisfy the
current experimental bound, Br(μ− → e−e−e+) < 10−12.
While the constraints coming from this decay are stronger
than the other lepton flavour violating processes discussed so
far, they still are not compatible with the restrictions descend-
ing from the Kaon system.

However, important progress is expected by future lep-
ton flavour violation related experiments [69]. In particu-
lar, the Mu3e experiment at PSI [70] aim to improve the
experimental sensitivity to ∼ 10−16. In the absence of a sig-
nal, three-body LFV muon decays can then be excluded for
Br(μ− → e−e−e+) < 10−16. In Fig. 5 the red horizon-
tal line represents the estimated reach of future μ → 3e
experiments. For, g′ = 0.5 we find that MZ ′ � 420 TeV in
order the predicted branching ratio is to satisfy the foreseen
Mu3e experimental bounds. Hence, for the present model,

the currently dominant bounds from the Kaon system will
be exceeded in the near future by the limits of the upcoming
μ− → e−e−e+ experiments.

RK anomalies

The bounds derived from the Kaon oscillation system and
the three-body decay μ → e−e−e+ leaves no room for a
possible explanation of the observed RK anomalies. Indeed,
for the relevant Wilson coefficient the model predicts that

C9 ≈ −0.079

(
g′ TeV

MZ ′

)2

which has the desired sign (C9 < 0), but for MZ ′ ∼ 200
TeV and g′ � 1 the resulting value is too small to explain
the observed B meson anomalies.

Similar phenomenological analysis have been performed
for all the other models presented so far. A discussion on their
flavour violation bounds is given in Appendix C. Collectively,
the results are very similar with those of Model D9. For all the
U (1)′ models with MSSM spectrum the dominant bounds on
MZ ′ comes from K 0 − K 0 oscillation effects and the muon
decay μ → e−e−e+.

It is clear from the analysis so far that a successful expla-
nation of the LHCb anomalies in the present F-theory frame-
work, requires the use of some other type of mechanism. A
common approach, is the explanation of the LHCb anoma-
lies through the mixing of the conventional SM matter with
extra vector-like fermions [71–79]. Next, we present such an
F-theory model while a full classification of the various F-
theory models with a complete family of vector-like fermions
will be presented in a future work.

5 Models with vector-like exotics

We expand our analysis to models with the MSSM spectrum
+ vector-like (VL) states forming complete (10+10), (5+ 5̄)

pairs under the SU (5) GUT symmetry. Hence, as in the pre-
vious study, we choose appropriate fluxes, solve the anomaly
cancellation conditions, and derive the U (1)′ charges of all
the models with additional vector-like families.

Among the various models, particular attention is paid to
models with different U (1)′ charges for the VL states, while
keeping universal theU (1)′ charges for the SM fermion fami-
lies. This way one can explain the observed B-meson anoma-
lies due to the mixing of the SM fermions with the VL exotics
while at the same time controlling other flavour violation
observables. A model with these properties (first derived in
[17]) is materialised with the following set of fluxes:

m1 = 2, m2 = m3 = −m4 = 1,

M1 = M2 = M3 = M7 = 0, M4 = −M6 = 1,
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M5 = −3,

which through anomaly cancellation gives the solution

(c1, c2, c3) = (
√

3
2 , − 1

4

√
3
2 , 1

4

√
5
2 ). This corresponds

to the following U (1)′ charges for the various matter curves

101 : 1

4
, 102 : −1

2
, 103 : 1

4
, 104 : −1

4
,

51 : −1

2
, 52 : 1

4
, 53 : −1

2
,

54 : 0, 55 : 1

4
, 56 : 3

4
, 57 : 0.

Assuming the following distribution of the fermion gen-
erations and Higgs fields into matter curves

101 −→ Q2,3 + uc1,2,3 + ec3, 102 −→ Q4 + uc4 + ec4,

103 −→ Q1 + ec1,2, 1̄04 −→ Q4 + uc4 + ec1,

51 −→ Hu , 5̄2 −→ L1, 5̄3 −→ Hd ,

54 −→ dc4 , 5̄5 −→ dc1,2,3 + L2,3, 5̄6 −→ dc4 + L4, 57 −→ L4,

we obtain the desired U (1)′ charge assignment where all the
SM families appear with a common charge (Q′

1,2,3 = 1/4)
while those of the VL states are non-universal.

Here Qi , uci , e
c
i , Li , d̄ci with i = 1, 2, 3 refer to the three

SM fermion generations while uc4, ūc4, Q4, Q4, e4, ec4, L4,
L̄4, d4, d

c
4 represent the extra VL states. In a simplified

notation, the components of the SM doublets are defined as
Qi = (ui , di ) and similarly for the lepton doublets Li . The
components of the exotic doublets are Q4 ≡ (U ′, D′) and
Q4 ≡ (D̄′, Ū ′) and similar for the lepton exotic doublet. For
the exotic singlets we use the notation uc4 = Ū , uc4 = U and
similar ec4 = Ē, ec4 = E , dc4 = D̄, dc4 = D.

The various mass terms can be written in a 5 × 5 notation
as FRMFFL where FR = ( f ci , F̄, F̄ ′) and FL = ( fi , F ′, F)T

with f = u, d, e and F = U, D, E . We will focus on the
down-type quark sector. The up quark sector can be treated
similarly, while the parameters can be adjusted in such a way
so that the CKM mixing is ensured. The various invariant
operators yield a mass matrix of the form

Md =

⎛

⎜⎜⎜⎜⎝

k0ϑ14ϑ54vd kε3ϑ54vd kε2ϑ54vd k4ϑ14ϑ53vd k3ϑ14θ53

k0ϑ14ϑ54vd kε2ϑ54vd kεϑ54vd k4ϑ14ϑ53vd k3ϑ14θ53

k0ϑ14ϑ54vd kεϑ54vd kϑ54vd k4ϑ14ϑ53vd k3ϑ14θ53

k2θ14vd k1ξvd k1vd k9ϑ13vd k10θ13

k6θ54vd k5ξθ51 k5θ51 k8θ53 k7ϑ14ϑ53vu

⎞

⎟⎟⎟⎟⎠
,

(5.1)

where k’s are coupling constant coefficients and ε, ξ are small
constant parameters encode local Yukawa effects. Here we
represent the singlet VEVs simply as θi j = 〈θi j 〉 while ϑi j

represents the ratio 〈θi j 〉/�.
In order to simplify the matrix we consider that some terms

are very small and that approximately vanish. In particular,

we assume that k2 = k3 = k5θ51 = k6 = k7ϑ14ϑ53 ≈ 0.
Moreover, we introduce the following simplifications

kϑ54vd = m , k0ϑ54ϑ14vd = αm , k4ϑ14ϑ53 = γ ξ ,

k9ϑ13vd = βμ , k10θ13 � k8θ53 = M , ε ≈ ξ,

where the mass parameter M characterises the VL scale while
m = kϑ54vd is related to the low energy bottom quark mass
scale. We have also assumed that the small Yukawa parame-
ters are identical ε ≈ ξ . With these modifications the matrix
takes the following simplified form

Md ≈

⎛

⎜⎜⎜⎜⎝

αm mξ3 mξ2 γ ξvd 0
αm mξ2 mξ γ ξvd 0
αm mξ m γ ξvd 0
0 k1ξvd k1vd βμ M
0 0 0 M 0

⎞

⎟⎟⎟⎟⎠
. (5.2)

The local Yukawa parameter ξ connects the VL sector with
the physics at the electroweak scale so we will use this small
parameter to express the mixing between the two sectors.
We proceed by perturbatively diagonalizing the down square
mass matrix (M2

d ) using ξ as the expansion parameter.
Setting k1 ≈ 0, γ vd = cμ and keeping up to O(ξ) terms

we write the mass square matrix in the form M2
d ≈ A+ ξ B

where:

A =

⎛

⎜⎜⎜⎜⎝

α2m2 α2m2 α2m2 0 0
α2m2 α2m2 α2m2 0 0
α2m2 α2m2 (α2 + 1)m2 0 0

0 0 0 M2 βμM
0 0 0 βμM M2

⎞

⎟⎟⎟⎟⎠
,

B =

⎛

⎜⎜⎜⎜⎝

0 0 0 cβμ2 cμM
0 0 m2 cβμ2 cμM
0 m2 0 cβμ2 cμM

cβμ2 cβμ2 cβμ2 0 0
cμM cμM cμM 0 0

⎞

⎟⎟⎟⎟⎠
(5.3)

The block-diagonal matrix A, is the leading order part of
the mass square matrix and can be diagonalised by a unitary
matrix V 0

bL
as V 0

bL
AV 0T

bL
. Its mass square eigenvalues are

x1 = 0, x2 = m2

2

(
1 + 3α2 −

√
1 − 2α2 + 9α4

)
,

x3 = m2

2

(
1 + 3α2 +

√
1 − 2α2 + 9α4

)

x4 = M(M − βμ), x5 = M(M + βμ), (5.4)

where x1,2,3 correspond to the mass squares of the three down
type quark generations d1,2,3 respectively. At this stage we
ignore the small mass of the first generation down quark
which can be generated by high order corrections. For the
second and third generation we observe that the ratio

√
x2/x3

depends only on the parameter α. Hence, from the known
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strange-bottom quark mass ratio (ms/mb) we estimate that
α � 10−2.

The corresponding normalised eigenvectors which form
the columns of the diagonalising matrix are

v0
b1 = 1√

2

⎛

⎜⎜⎜⎜⎝

−1
1
0
0
0

⎞

⎟⎟⎟⎟⎠
, v0

b2 = 1√
1 + 2q2

⎛

⎜⎜⎜⎜⎝

q
q
1
0
0

⎞

⎟⎟⎟⎟⎠
,

v0
b3 = −1√

2(1 + 2q2)

⎛

⎜⎜⎜⎜⎝

1

1
−2q

0
0

⎞

⎟⎟⎟⎟⎠
, v0

b4 = 1√
2

⎛

⎜⎜⎜⎜⎝

0
0
0

−1
1

⎞

⎟⎟⎟⎟⎠
,

v0
b5 = 1√

2

⎛

⎜⎜⎜⎜⎝

0
0
0
1
1

⎞

⎟⎟⎟⎟⎠
,

(5.5)

where q = 1 − m2

x2
depends only on the parameter α, since

x2 ∼ m2.
The corrections to the above eigenvectors due to the per-

turbative part ξB are given by the relation

vbi ≈ v0
bi + ξ

5∑

j �=i

(V 0
bL
BV 0†

bL
) j i

xi − x j
v0
b j

(5.6)

where the second term displays the O(ξ) corrections to the
basic eigenvectors of the leading order matrix A. The cor-
rected diagonalizing matrices schematically receive the form
VbL = V 0

bL
+ ξV 1

bL
and through them the mixing parameter

ξ enters on the computation of the various flavour violation
observables.

For the explanation of the LHCb anomalies we will con-
sider that perturbative corrections are important for the cor-
responding bs coupling while almost vanish for the other
flavour mixing coefficients. That way , due to the universal
U (1)′ charges of the SM matter most of the flavour violation
process are suppressed.

Assuming that the corresponding lepton contribution is
(Q′

eL )22 ≈ 1 and for α = 0.016 we find for the b → s
transition matrix element that :

(Q′
dL )23 ≈ Q′

1,2,3ξ
2 − 0.7(cβ)2

( m

M

)2 ( μ

M

)4
Q′

4ξ
2 (5.7)

where Q′
1,2,3 = 1/4 is the common charge of the MSSM

fermions and Q′
4 = −1/2 is the charge of the extra matter

descending from 102 matter curve. Note that the correspond-
ing U (1)′ charge of the states descending from 54 matter
curve is zero and consequently does not contribute to the
above formula.

It is clear from Eq. (5.7) that the first term is dominant
since the second one is suppressed due to the large VL mass
scale characterized by the parameter M . Hence, keeping only
the first term we have through Eq. (2.9) that

C9 ≈ −963

(
g′

MZ ′

)2

Q′
1,2,3ξ

2 (5.8)

and for g′ � 1, MZ ′ � 4 TeV and ξ2 ∼ O(10−1) predicts
C9 ≈ −1 which is the desired value for the explanation of
the LHCb anomalies. It is emphasised here that this approach
is valid in the small ξ < 1 regime. If ξ is large perturbation
breaks down and a more general treatment is required.

6 Conclusions

In the present work we have examined the low energy impli-
cations of F-theory SU (5) ×U (1)′ GUT models embedded
in SU (5) × SU (5)′ ⊃ SU (5) ×U (1)4. This gauge symme-
try emerges naturally from a single point of E8 enhancement,
associated with the maximal geometric singularity appearing
in the elliptic fibration of the internal manifold. In order to
ensure realistic fermion mass textures and a tree-level top
quark Yukawa coupling, we have imposed a Z2 monodromy
group which acts on the geometric configuration of 7-branes
and identifies two out of the four abelian factors descending
from the SU (5)′ reduction. The U (1)′ symmetry of the so
derived effective field theory models, is a linear combina-
tion of the three remaining abelian symmetries descending
from SU (5)′. Imposing anomaly cancellation conditions we
have constructed all possible U (1)′ combinations and found
as a generic property the appearance of non-universal Z ′-
couplings to the three families of quarks and leptons. Intro-
ducing fluxes consistent with the anomaly cancellation con-
ditions, and letting the various neutral singlet-fields acquire
non-zero vevs, we obtained various effective models distin-
guished from each other by their different low energy spectra.
We have focused on viable classes of models derived in this
framework. We have investigated the predictions on flavour
changing currents and other processes mediated by the Z ′
neutral gauge boson associated with the U (1)′ symmetry,
which is supposed to break at some low energy scale. Using
the bounds on such processes coming from current investi-
gation at LHC and other related experiments we converted
them to lower bounds on various parameters of the effec-
tive theory and in particular the Z ′ mass. The present work
provides a comprehensive classification of semi-local effec-
tive F-theory constructions reproducing the MSSM spectrum
either with or without vector-like fields. On the phenomeno-
logical side, the focus is mainly in explorations of models
with the MSSM fields accompanied by several neutral sin-
glets. Fifty four (54) MSSM models have been obtained and
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are classified with respect to their predictions on the U (1)′
charges of the MSSM matter content. In most of these cases,
U (1)′ couples non-universally to the first two fermion fami-
lies, and consequently the K0 −K0 oscillation system forces
the strongest bound on the Z ′ mass. As such, assuming rea-
sonable values of the U (1)′ gauge coupling g′ we obtain
MZ ′ bounds at few hundreds TeV, well above the most recent
LHC searches. In other occasions various flavour violation
processes are predicted that can be tested on the ongoing
or future experiments. The dominant process mediated by
Z ′ is the lepton flavour violating μ → eee decay, whilst
its associated μ → eγ rare reaction remains highly sup-
pressed. Future experiments designed to probe the lepton
flavour violating process μ → eee are expected to increase
their sensitivity at about four orders of magnitude compared
to the recent bounds. In this case the models analysed in
the present work are a spearhead for the interpretations of a
positive experimental outcome. Even in the absence of any
signal, the foreseen bounds from μ → eee searches will
be compatible with, if not dominant compared to the current
bounds obtained in our models from neutral Kaon oscillation
effects. On the other hand, we have seen that, models with
Z ′ coupled non-universally but only with MSSM spectrum,
are not capable to interpret the recently observed LHCb B-
meson anomalies. All the same, our classification includes
a class of models with vector-like families with non-trivial
Z ′-couplings which are capable to account for such effects.
These models display a universal nature of the Z ′ couplings to
the first two families with negligible contributions to K0−K0

oscillations. Their main feature is that the U (1)′ charges of
the vector-like fields differ from those of the first two gen-
erations inducing this way non-trivial mixing effects. As an
example, we briefly described such a model which includes
a complete family of vector-like of fields where the observed
LHCb B-meson anomalies can be explained through the mix-
ing of the extra fermions with the three generations of the SM.
A detailed investigation of the whole class of these models
will be presented in a future publication.
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Appendices

A Anomaly conditions: analytic expressions

Up to overall factors, our computations give:A221 = A331 =
AYY1 ≡ A , with

A =
(

30
√

3c1 + 15
√

6c2 + 9
√

10c3

)
m1

+
(
−60

√
3c1 + 15

√
6c2 + 9

√
10c3

)
m2

+
(

9
√

10c3 − 45
√

6c2

)
m3 − 36

√
10c3m4

+
(
−20

√
3c1 − 10

√
6c2 − 6

√
10c3

)
M1

+
(

10
√

3c1 − 10
√

6c2 − 6
√

10c3

)
M2

+
(
−10

√
3c1 + 10

√
6c2 − 6

√
10c3

)
M3

+
(
−10

√
3c1 − 5

√
6c2 + 9

√
10c3

)
M4

+
(

20
√

3c1 + 10
√

6c2 − 6
√

10c3

)
M5

+
(

20
√

3c1 − 5
√

6c2 + 9
√

10c3

)
M6

+
(

15
√

6c2 + 9
√

10c3

)
M7

+30
√

3c1N7 +
(

10
√

3c1 + 20
√

6c2

)
N8

+
(

10
√

3c1 + 5
√

6c2 + 15
√

10c3

)
N9 . (A.1)

For the mixed AY11 anomaly we have:

AY11 = 3

2

√
3

5
c2

1N7 + 1

30

×
(√

15c2
1 + 4

√
30c2c1 + 8

√
15c2

2

)
N8

+ 1

60

(
2
√

15c2
1 + 2

√
30c2c1 + 30

√
2c3c1

+√
15c2

2 + 15
√

15c2
3 + 30c2c3

)
N9 (A.2)

The U (1)′-gravity anomaly yields the following expres-
sion:

AG =
(

20
√

3c1 + 10
√

6c2 + 6
√

10c3

)
m1

+
(
−40

√
3c1 + 10

√
6c2 + 6

√
10c3

)
m2
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+
(

6
√

10c3 − 30
√

6c2

)
m3

−24
√

10c3m4 +
(
−20

√
3c1 − 10

√
6c2 − 6

√
10c3

)
M1

+
(

10
√

3c1 − 10
√

6c2 − 6
√

10c3

)
M2

+
(
−10

√
3c1 + 10

√
6c2 − 6

√
10c3

)
M3

+
(
−10

√
3c1 − 5

√
6c2 + 9

√
10c3

)
M4

+
(

20
√

3c1 + 10
√

6c2 − 6
√

10c3

)
M5

+
(

20
√

3c1 − 5
√

6c2 + 9
√

10c3

)
M6

+
(

15
√

6c2 + 9
√

10c3

)
M7

+24
√

3c1N7 +
(

8
√

3c1 + 16
√

6c2

)
N8

+
(

8
√

3c1 + 4
√

6c2 + 12
√

10c3

)
N9 +

∑

i �= j

Mi j Q
′
i j . (A.3)

and the pure cubic U (1)′ anomaly is:

A111 =
(

20
√

3c3
1 + 6

(
5
√

6c2 + 3
√

10c3

)
c2

1

+6
(

5
√

3c2
2 + 6

√
5c3c2 + 3

√
3c2

3

)
c1

+ 5
√

6c3
2 + 9

√
2

5
c3

3 + 9
√

6c2c
2
3 + 9

√
10c2

2c3

)
m1

+
(
−160

√
3c3

1 + 24
(

5
√

6c2 + 3
√

10c3

)
c2

1

−12
(

5
√

3c2
2 + 6

√
5c3c2 + 3

√
3c2

3

)
c1

+5
√

6c3
2 + 9

√
2

5
c3

3 + 9
√

6c2c
2
3 + 9

√
10c2

2c3

)
m2

−9

(
15

√
6c3

2 − 9
√

10c3c
2
2 + 3

√
6c2

3c2 −
√

2

5
c3

3

)

×m3 − 576

√
2

5
c2

3m4

−
(

80
√

3c3
1 + 24

(
5
√

6c2 + 3
√

10c3

)
c2

1

+24
(

5
√

3c2
2 + 6

√
5c3c2 + 3

√
3c2

3

)
c1

+20
√

6c3
2 + 9

√
10c3

3

+36
√

6c2c
2
3 + 36

√
10c2

2c3

)
M0

+
(

10
√

3c3
1 − 6

(
5
√

6c2 + 3
√

10c3

)
c2

1

+12
(

5
√

3c2
2 + 6

√
5c3c2 + 3

√
3c2

3

)
c1 − 20

√
6c3

2

−36
√

10c3c
2
2 − 36

√
6c2

3c2 − 36

√
2

5
c3

3

)
M1

−
(

10
√

3c3
1 + 6

(
5
√

6c2 − 3
√

10c3

)
c2

1

−12
(

5
√

3c2
2 − 6

√
5c3c2 + 3

√
3c2

3

)
c1

+ 20
√

6c3
2 − 36

√
2

5
c3

3 + 36
√

6c2c
2
3 − 36

√
10c2

2c3

)
M2

−
(

10
√

3c3
1 − 3

(
5
√

6c2 − 9
√

10c3

)
c2

1

Table 9 Singlets charges of Class A models

Class A Charges

Models Q′
13 Q′

14 Q′
15 Q′

34 Q′
35 Q′

45

A1, A6 0 1
2 − 1

2
1
2 − 1

2 −1

A2, A5 1
2 0 − 1

2 − 1
2 −1 − 1

2

A3, A4 − 1
2

1
2 0 1 1

2 − 1
2

−3
(

5
√

3c2
2 − 18

√
5c3c2 + 27

√
3c2

3

)
c1

− 5

√
3

2
c3

2 + 243c3
3√

10
− 81

√
3

2
c2c

2
3 + 27

√
5

2
c2

2c3

)
M3

+
(

80
√

3c3
1 + 20

√
6c3

2 − 36

√
2

5
c3

3

+36
√

6c2c
2
3 − 36

√
10c2

2c3

+24
(

5
√

6c2 − 3
√

10c3

)
c2

1 + 24
(

5
√

3c2
2

−6
√

5c3c2 + 3
√

3c2
3

)
c1

)
M4

+
(

80
√

3c3
1 − 12

(
5
√

6c2 − 9
√

10c3

)
c2

1

+6
(

5
√

3c2
2 − 18

√
5c3c2 + 27

√
3c2

3

)
c1

− 5

√
3

2
c3

2 + 243c3
3√

10
− 81

√
3

2
c2c

2
3 + 27

√
5

2
c2

2c3

)
M5

+27

10

(
25

√
6c3

2 + 45
√

10c3c
2
2 + 45

√
6c2

3c2 + 9
√

10c3
3

)

×M6 +
∑

i �= j

Mi j Q
′ 3
i j (A.4)

The sums in (A.3) and (A.4) represents the contribution from
the singlets.

B List of models

In this Appendix all the flux solutions subject to MSSM spec-
trum criteria, the corresponding U (1)′-charges and details
about the singlet spectrum are presented. For each ci -solution
presented, a similar solution subject to ci → −ci is also pre-
dicted from the solution of the anomaly cancellation condi-
tions. Hence, models with charges subject to Q′ → −Q′ are
also exist.

As mentioned on the main text, there are fifty-four solu-
tions that fall into four classes of models: Class A, B, C and
D.

Class A

This class consists of six models. The flux data solutions
along with the resulting ci -coefficients have been presented
in Table 5 of the main text. The corresponding models defined
by these solutions along with their U (1)′ charges are given
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Table 10 Class B models, flux data and the corresponding ci -solutions

Class B Flux data ci coefficients

Model m1 m2 m3 m4 M1 M2 M3 M4 M5 M6 M7 N7 N8 N9 c1 c2 c3

B1 1 0 1 1 0 −1 0 0 0 −1 −1 0 0 1 -
√

5
3 −

√
5
2

3
1√
6

B2 1 0 1 1 0 0 −1 0 0 −1 −1 0 0 1 −
√

5
3 −

√
5
2

3
1√
6

B3 1 0 1 1 0 0 0 −1 −1 0 −1 0 1 0
√

5
3 −

√
5
2

6

√
3
2

2

B4 1 0 1 1 0 0 0 0 −2 0 −1 0 1 0
√

5
3 −

√
5
2

6

√
3
2

2

B5 1 0 1 1 0 0 0 0 −1 0 −2 0 1 0
√

5
3 −

√
5
2

6

√
3
2

2

B6 1 0 1 1 0 0 0 0 0 −2 −1 0 0 1 −
√

5
3 −

√
5
2

3
1√
6

B7 1 0 1 1 0 −1 0 0 −1 0 −1 0 1 0
√

5
3 −

√
5
2

6

√
3
2

2

B8 1 0 1 1 0 0 0 0 0 −1 −2 0 0 1 −
√

5
3 −

√
5
2

3
1√
6

B9 1 1 0 1 0 −1 0 0 0 −1 −1 0 0 1 −
√

5
3 −

√
5
2

3
1√
6

B10 1 1 0 1 0 0 −1 0 −1 −1 0 1 0 0 0 −
√

5
2

2 −
√

3
2

2

B11 1 1 0 1 0 0 −1 0 0 −1 −1 0 0 1 −
√

5
3 −

√
5
2

3
1√
6

B12 1 1 0 1 0 0 0 −1 −1 −1 0 1 0 0 0 −
√

5
2

2 −
√

3
2

2

B13 1 1 0 1 0 0 0 0 −2 −1 0 1 0 0 0 −
√

5
2

2 −
√

3
2

2

B14 1 1 0 1 0 0 0 0 −1 −2 0 1 0 0 0 −
√

5
2

2 −
√

3
2

2

B15 1 1 0 1 0 0 0 0 0 −2 −1 0 0 1 −
√

5
3 −

√
5
2

3
1√
6

B16 1 1 0 1 0 0 0 0 0 −1 −2 0 0 1 −
√

5
3 −

√
5
2

3
1√
6

B17 1 1 1 0 0 −1 0 0 −1 0 −1 0 1 0
√

5
3 −

√
5
2

6

√
3
2

2

B18 1 1 1 0 0 0 −1 0 −1 −1 0 1 0 0 0 −
√

5
2

2 −
√

3
2

2

B19 1 1 1 0 0 0 0 −1 −1 −1 0 1 0 0 0 −
√

5
2

2 −
√

3
2

2

B20 1 1 1 0 0 0 0 −1 −1 0 −1 0 1 0
√

5
3 −

√
5
2

6

√
3
2

2

B21 1 1 1 0 0 0 0 0 −2 −1 0 1 0 0 0 −
√

5
2

2 −
√

3
2

2

B22 1 1 1 0 0 0 0 0 −2 0 −1 0 1 0
√

5
3 −

√
5
2

6

√
3
2

2

B23 1 1 1 0 0 0 0 0 −1 −2 0 1 0 0 0 −
√

5
2

2 −
√

3
2

2

B24 1 1 1 0 0 0 0 0 −1 0 −2 0 1 0
√

5
3 −

√
5
2

6

√
3
2

2

in Table 6. Here we present only the singlet spectrum for this
class of models.

As have been already discussed, in this particular class
of models the singlets come in pairs, meaning that Mi j =

Mji . Hence, a minimal singlet spectrum scenario implies that
Mi j = Mji = 1. The singlet charges Q′

i j for each model are
given in Table 9, below.
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Table 11 U (1)′ charges of Class B models

Class B Charges×√
15

Models Q′
101

Q′
102

Q′
103

Q′
104

Q′
51

Q′
52

Q′
53

Q′
54

Q′
55

Q′
56

Q′
57

B1, B2, B6, B8, B9, B11, B15, B16 −1 3/2 3/2 −1 2 −1/2 −1/2 2 −3 −1/2 −1/2

B3, B4, B5, B7, B17, B20, B22, B24 1 −3/2 1 −3/2 −2 1/2 −2 1/2 1/2 3 1/2

B10, B12, B13, B14, B18, B19, B21, B23 −1 −1 3/2 3/2 2 2 −1/2 −1/2 −1/2 −1/2 − 3

Table 12 Singlets spectrum of Class B models

Class B Multiplicities Charges×√
15

Models M13 M14 M15 M34 M35 M45 M31 M41 M51 M43 M53 M54 Q′
13 Q′

14 Q′
15 Q′

34 Q′
35 Q′

45

B1, B2, B6, B8, B9, B11, B15, B16 1 2 2 1 1 1 1 1 1 1 1 1 − 5
2 − 5

2 0 0 5
2

5
2

B3, B4, B5, B7, B17, B20, B22, B24 1 2 2 1 1 1 1 1 1 1 1 1 5
2 0 5

2 − 5
2 0 5

2

B10, B12, B13, B14, B18, B19, B21, B23 1 2 2 1 1 1 1 1 1 1 1 1 0 − 5
2 − 5

2 − 5
2 − 5

2 0

Class B

This class of models consists of 24 solutions. All the rele-
vant data characterized the models organized in three tables.
In particular, Table 10 contains the flux data of the mod-
els along with the corresponding ci -solutions, as those have
been extracted from the solution of the anomaly cancella-
tion conditions. In Table 11, the U (1)′ charges of the matter
curves are given. Finally, details about the singlet spectrum
presented in Table 12.

Class C

Twelve models define this class. Gauge anomaly cancellation
solutions are given in Table 13 while the corresponding mat-
ter curve U (1)′ charges are listed in Table 14. The properties
of the singlet spectrum are described in Table 15.

Class D

This class contains twelve models. Flux data along with the
corresponding solution for the ci -coefficients are given in
Table 16. The U (1)′ charges are listed in Table 17 while
the properties (multiplicities and Q′

i j charges) of the singlet
spectrum are described in Table 18.

Phenomenological analysis of Model D9 was presented
in the main body of the present text.

Regarding the singlet sector of the models, their superpo-
tential can be written as

W ⊃ μ
αβ
i j θα

i jθ
β
j i + λ

αβγ

i jk θα
i jθ

β
k jθ

γ

ki (B.1)

where μ
αβ
i j are mass parameters and λ

αβγ

i jk dimensionless cou-
pling constants. The Greek indices run from 1 up to the mul-

tiplicity Mi j of the corresponding singlet. Minimalization
of the superpotential (∂W/∂θα

i j = 0) leads to the F-flatness
conditions.

C Flavour violation bounds for the various models

In the main text we have analyse in detail the low energy
implications of model D9. A similar phenomenological anal-
ysis have been performed for all the MSSM spectrum models
discussed so far. Due to the large number of models we do
not present in detail the analysis for each model. Here we
discuss the main flavor violation results for the four classes
of MSSM models presented in the previous sections.

Models of the same class share common U (1)′ properties
and consequently their phenomenological analysis is very
similar. Next, we discuss the basic flavour violation bounds
for each class of models. The main results collectively pre-
sented in Table 19.

Class A: The six models that compromised the Class A have
very similar U (1)′ charges. More specifically, only two val-
ues allowed for the |Q′| charges, 0 and 1/2. Matter fields
descending from the SU (5) tenplets have zero charge and
as a result the corresponding flavor violation process appear
very suppressed. The Q′ charges appear (semi) non-universal
in the lepton sector but again the corresponding LFV pro-
cess are well suppressed in comparison with the experimental
results. In summary, flavor violation process in Class A mod-
els appear to be suppressed and consequently MZ ′ bounds
cannot extracted for this class of models.

Class B: From the 24 models of this class, eight-teen of them
have been analysed in detail. In particular, the models B4, B5,
B8, B13, B15 and B16 predict inappropriate mass hierarchies
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Table 13 Class C models, flux data along with the corresponding ci -coefficients

Class C Flux data ci coefficients

Model m1 m2 m3 m4 M1 M2 M3 M4 M5 M6 M7 N7 N8 N9 c1 c2 c3

C1 1 0 0 2 0 −1 0 0 0 −1 −1 0 0 1 −
√

5
3

5
√

5
2

12
1

4
√

6

C2 1 0 0 2 0 0 0 0 0 −2 −1 0 0 1 −
√

5
3

5
√

5
2

12
1

4
√

6

C3 1 0 0 2 0 0 0 0 0 −1 −2 0 0 1 −
√

5
6

7
√

5
2

12 − 1
4
√

6

C4 1 0 2 0 0 −1 0 0 −1 0 −1 0 1 0
√

5
3 −

√
5
2

6 −
√

3
2

2

C5 1 0 2 0 0 0 0 −1 −1 0 −1 0 1 0
√

5
6 −

√
5
2

12 − 3
√

3
2

4

C6 1 0 2 0 0 0 0 0 −2 0 −1 0 1 0
√

5
3 −

√
5
2

6 −
√

3
2

2

C7 1 0 2 0 0 0 0 0 −1 0 −2 0 1 0
√

5
6 −

√
5
2

12 − 3
√

3
2

4

C8 1 0 0 2 0 0 −1 0 0 −1 −1 0 0 1 −
√

5
6

7
√

5
2

12 − 1
4
√

6

C9 1 2 0 0 0 0 −1 0 −1 −1 0 1 0 0 0

√
5
2

2 −
√

3
2

2

C10 1 2 0 0 0 0 0 −1 −1 −1 0 1 0 0 0

√
5
2

4 − 3
√

3
2

4

C11 1 2 0 0 0 0 0 0 −2 −1 0 1 0 0 0

√
5
2

2 −
√

3
2

2

C12 1 2 0 0 0 0 0 0 −1 −2 0 1 0 0 0

√
5
2

4 − 3
√

3
2

4

Table 14 U (1)′ charges of
Class C models. The charges are
multiplied with

√
15

Class C Charges×√
15

Models Q′
101

Q′
102

Q′
103

Q′
104

Q′
51

Q′
52

Q′
53

Q′
54

Q′
55

Q′
56

Q′
57

C1, C2 −1/4 9/4 −3/2 −1/4 1/2 −2 7/4 1/2 −3/4 −2 7/4

C3, C8 1/4 3/2 −9/4 1/4 −1/2 −7/4 2 −1/2 3/4 −7/4 2

C4, C6 1/4 −9/4 1/4 3/2 −1/2 2 −1/2 −7/4 2 3/4 −7/4

C5, C7 −1/4 −3/2 −1/4 9/4 1/2 7/4 1/2 −2 7/4 −3/4 −2

C9, C11 1/4 1/4 −9/4 3/2 −1/2 −1/2 2 −7/4 2 −7/4 3/4

C10, C12 −1/4 −1/4 −3/2 9/4 1/2 1/2 7/4 −2 7/4 −2 −3/4

Table 15 Singlets spectrum of Class C models

Class C Multiplicities Charges×√
15

Models M13 M14 M15 M34 M35 M45 M31 M41 M51 M43 M53 M54 Q′
13 Q′

14 Q′
15 Q′

34 Q′
35 Q′

45

C1, C2 1 1 1 1 1 1 1 1 1 2 1 1 − 5
2

5
4 0 15

4
5
2 − 5

4

C3, C8 1 1 1 2 1 1 1 1 1 1 1 1 − 5
4

5
2 0 15

4
5
4 − 5

2

C4, C6 1 1 1 1 1 1 1 1 1 1 2 1 5
2 0 − 5

4 − 5
2 − 15

4 − 5
4

C5, C7 1 1 1 1 2 1 1 1 1 1 1 1 5
4 0 − 5

2 − 5
4 − 15

4 − 5
2

C9, C11 1 1 1 1 1 1 1 1 1 1 1 2 0 5
2 − 5

4
5
2 − 5

4 − 15
4

C10, C12 1 1 1 1 1 2 1 1 1 1 1 1 0 5
4 − 5

2
5
4 − 5

2 − 15
4
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Table 16 Class D models flux
data

Class D Flux data ci coefficients

Model m1 m2 m3 m4 M1 M2 M3 M4 M5 M6 M7 N7 N8 N9 c1 c2 c3

D1 1 0 1 1 0 0 −1 0 −1 0 −1 0 1 0

√
5
6

2 −
√

5
3

8
7
8

D2 1 0 1 1 0 0 0 −1 0 −1 −1 0 0 1

√
5
6

2

5
√

5
3

8 − 3
8

D3 1 0 1 1 0 0 0 0 −1 −1 −1 0 0 1 −
√

5
6 −

√
5
3

8
3
8

D4 1 0 1 1 0 0 0 0 −1 −1 −1 0 1 0
√

5
6 −

√
5
3

4
1
4

D5 1 1 0 1 0 −1 0 0 −1 −1 0 1 0 0 0 −
√

15
8 − 7

8

D6 1 1 0 1 0 0 0 −1 0 −1 −1 0 0 1 −
√

5
6 −

√
5
3

8
3
8

D7 1 1 0 1 0 0 0 0 −1 −1 −1 1 0 0 0 −
√

15
4 − 1

4

D8 1 1 1 0 0 −1 0 0 −1 −1 0 1 0 0 0 −
√

15
4 − 1

4

D9 1 1 0 1 0 0 0 0 −1 −1 −1 0 0 1

√
5
6

2

5
√

5
3

8 − 3
8

D10 1 1 1 0 0 0 −1 0 −1 0 −1 0 1 0
√

5
6 −

√
5
3

4
1
4

D11 1 1 1 0 0 0 0 0 −1 −1 −1 0 1 0

√
5
6

2 −
√

5
3

8
7
8

D12 1 1 1 0 0 0 0 0 −1 −1 −1 1 0 0 0 −
√

15
8 − 7

8

Table 17 U (1)′ charges of
Class D models

Class D Charges×√
10

Models Q′
101

Q′
102

Q′
103

Q′
104

Q′
51

Q′
52

Q′
53

Q′
54

Q′
55

Q′
56

Q′
57

D1, D11 3/4 −1/2 3/4 −7/4 −3/2 −1/4 −3/2 1 −1/4 9/4 1

D2, D9 3/4 −1/2 −7/4 3/4 −3/2 −1/4 1 −3/2 9/4 −1/4 1

D3, D6 −3/4 7/4 1/2 −3/4 3/2 −1 1/4 3/2 −9/4 −1 1/4

D4, D10 3/4 −7/4 3/4 −1/2 −3/2 1 −3/2 −1/4 1 9/4 −1/4

D5, D12 −3/4 −3/4 1/2 7/4 3/2 3/2 1/4 −1 1/4 −1 −9/4

D7, D8 −3/4 −3/4 7/4 1/2 3/2 3/2 −1 1/4 −1 1/4 −9/4

and as a result have been excluded from further analysis.
For the remaining realistic models, the dominant constraints
descents from the Kaon oscillation system. Approximately,
the Z ′ contribution to the K 0 − K 0 mass split is

�MZ ′
K � 10−13g′2

M2
Z ′

(C.1)

which compared to the experimental bounds, for g′ = 0.5
gives the constraint: MZ ′ � 190 TeV.

Class C: Due to the flux integers which characterize this
class of models (see Table 13), all the matter fields descend-

ing from the SU (5) tenplets have the sameU (1)′ charges and
as a result the corresponding flavour violation processes (like
semi-leptonic meson decays and meson mixing effects) are
suppressed. However, on the lepton sector the U (1)′ charges
are non-universal leading to lepton flavor violation phenom-
ena at low energies. The dominant constraint descent from
the three body decay μ− → e−e−e+. Approximately for
all the C-models, we find that the Z ′ contributions to the
branching ratio of the decay is

Br(μ− → e−e−e+) � 7.2 × 10−6
(
g′ TeV

MZ ′

)4
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Table 18 Singlets spectrum of Class D models

Class D Multiplicities Charges×√
10

Models M13 M14 M15 M34 M35 M45 M31 M41 M51 M43 M53 M54 Q′
13 Q′

14 Q′
15 Q′

34 Q′
35 Q′

45

D1, D11 1 1 3 4 1 2 2 2 1 1 4 1 5
4 0 5

2 − 5
4

5
4

5
2

D2, D9 1 1 1 1 4 1 3 1 2 3 1 4 5
4 − 5

2 0 5
4 − 5

4 − 5
2

D3, D6 3 1 1 3 1 3 1 1 1 1 3 1 − 5
2 − 5

4 0 5
4

5
2

5
4

D4, D10 3 1 1 1 3 1 1 1 1 3 1 3 5
2 0 5

4 − 5
2 − 5

4
5
4

D5, D12 1 1 2 1 3 1 1 4 1 3 1 3 0 − 5
4 − 5

2 − 5
4 − 5

2 − 5
4

D7, D8 1 2 1 2 1 4 3 1 3 1 3 1 0 − 5
2 − 5

4 − 5
2 − 5

4
5
4

Table 19 Dominant flavour violation process for each model along with the corresponding bounds on the mass of the flavour mixing Z ′ boson

Models Dominant process (MZ ′/g′) bound (TeV)

Class-B K 0 − K 0 mixing MZ ′/g′ � 380

(excluded: B4, B5, B8, B13, B15, B16)

μ− → e−e−e+ MZ ′/g′ � 51.8

Class-C

Future μ− → e−e−e+ searches MZ ′/g′ � 518

D1, D2, D5, D6, D8, D10 K 0 − K 0 mixing MZ ′/g′ � 475

K 0 − K 0 mixing MZ ′/g′ � 238

D3, D4, D7, D9, D11, D12

Future μ− → e−e−e+ searches MZ ′/g′ � 420

which compared to the current experimental bound implies
that MZ ′ � (51.8 × g′) TeV, where g′ the U (1)′ gauge cou-
pling. In the absence of any signal in future μ− → e−e−e+
searches, this bound is expected to increased by one order of
magnitude: MZ ′ � (518 × g′) TeV.

Class D: In this class of models the dominant constraints
descend from the Kaon system. In some cases, strong bounds
will be placed by future μ− → e−e−e+ searches. In partic-
ular, for the models D1, D2, D5, D6, D8 and D10 the con-
straints from Z ′ contributions to the K 0 − K 0 mass split
is: MZ ′ � (475 × g′) TeV. For the rest of D-models (D3,
D4, D7, D9, D11, D12), the results are similar with those
of model D9 which have been detailed analysed in the main
body of the present text.
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