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Abstract The Mukhanov–Sasaki equation is deduced from
linear perturbations for a general scalar-tensor model with
non-minimal coupling to curvature, to the Gauss–Bonnet
invariant and non-minimal kinetic coupling to curvature. The
general formulas for the power spectra of the primordial
scalar and tensor fluctuations are obtained for arbitrary cou-
pling functions. The results have been applied to models with
power-law, exponential, natural and double-well potentials. It
was found that the presence of these non-minimal couplings
affect the inflationary observables leading to values favored
by the latest observations, while some interesting results like
sub-planckian symmetry breaking scale in natural inflation
and sub-planckian v.e.v. of the scalar filed in the double-well
potential were obtained. The consistency with the reheat-
ing process was discussed and some numerical cases were
shown. The equivalence of the model to a sector of gener-
alized Galileons was shown and the functions that establish
the correspondence were found.

1 Introduction

The theory of cosmic inflation [1–6] that has been favored
by the latest observational data [7–10] is by now the most
likely scenario for the early universe, since it provides the
explanation to flatness, horizon and monopole problems,
among others, for the standard hot Bing Bang cosmology
[11–16]. Inflation also provides a detailed account of fluctu-
ations that constitute the seeds for the large scale structure
and the currently observed CMB anisotropies [17–25], as
well as predicts a nearly scale invariant power spectrum.

There are currently many inflationary scenarios in direct
proportion to the numerous existing models, being the mini-
mally coupled scalar field the simplest one [3,4] and contin-
uing with several non-minimal extensions inspired on quan-
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tization on curved spaces arguments or on fundamental theo-
ries like string theory or supergravity. To those non-minimal
scenarios belong inflation by non-minimally coupled scalar
field [26–28], kinetic inflation [29], vector inflation [30–
32], inflaton potential in supergravity [33–36], string theory
inspired inflation [37–41], Dirac-Born-Infeld inflation model
[42–45], α-attractor models originated in supergravity [46–
49]. Another class of ghost-free models has been recently
considered, named “Galileon” models [50,51]. A remarkable
property of these models is that they contain higher deriva-
tives of the scalar field and the metric but the corresponding
field equations contain derivatives no higher than two. The
effect of these Galileon terms is mostly reflected in the mod-
ification of the kinetic term compared to the standard canon-
ical scalar field, which in turn can relax the physical con-
straints on the potential. For the Higgs potential, for instance,
in the framework of Galilean models one of the effects of the
higher derivative terms is the reduction of the self coupling
of the Higgs boson, so that the spectra of primordial density
perturbations are consistent with the present observational
data [52–54]. Different aspects aspects of Galilean-inflation
have been considered in [52–59].

An interesting class of models that belong to the gener-
alized Galilean-type theories are models with non-minimal
derivative couplings to curvature (particularly to the Einstein
tensor) and non-minimal coupling to the Gauss–Bonnet four
dimensional invariant. In the appendices B and C we show
the correspondence of these models with the generalized
Galileons. This correspondence determines the Gi (X, φ)

functions of the generalized Galilean theory that give the
equivalence with the corresponding terms in the scalar-tensor
theory.

Non-minimal kinetic coupling (NMKC) to curvature and
non-minimal coupling of the scalar field to the Gauss–Bonnet
(GB) invariant appear from higher-order corrections to the
low-energy bosonic string action [60,61], and the effect of
such corrections on the background evolution has been stud-
ied in connection with non-singular pre big-gang scenarios
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[62–64]. It is then expected that, in a high curvature regime
typical of the inflationary period, these non-minimal cou-
plings may become important and could affect the slow-
roll dynamics and therefore the inflationary observables.
The early time inflation with non-minimal kinetic coupling
(NMKC) has been analyzed in [65–78], where it was shown
that the additional gravitational friction provided by this cou-
pling leads to successful inflation in various cosmological
scenarios. The study of slow-roll inflation in scalar-tensor
models with Gauss–Bonnet (GB) coupling has been done in
[79–88]. The combined effect of the NMKC and GB cou-
pling in the slow-roll inflation have been studied in [89–92]
where some cosmological scenarios have been analyzed.

On the other hand, it is expected that the end of the slow-
roll is followed by a reheating phase which eventually leads to
the production of ordinary matter and connects the inflation
with the hot big-bang phase [93–99]. This phase, that is one
of the most poorly known processes after the end of inflation,
can be a source of significant uncertainties for the inflationary
predictions, in part due to the unreliability in determining
the magnitude of the energy scale involved in the reheating
process. Using the approximation of constant equation of
state during reheating, some relations can be derived between
reheating characteristics like its equation of state parameter,
its energy scale and the inflationary indices. This allows to
do some analysis of the consistency between the slow-roll
phase and the reheating process, which in the present paper
is illustrated with some of the models we have considered.

In this paper we make a general study of the slow-roll
inflation in the frame of scalar-tensor model with NMKC to
curvature and non-minimal coupling to the Gauss–Bonnet 4-
dimensional invariant. We obtain the general formulas for the
power spectra of scalar and tensor perturbations by deducing
the Muhkanov-Sasaki equation within the first-order formal-
ism, without resorting to the second-order action for these
perturbations. The analytic formulas for the slow-roll param-
eters for the general scalar-tensor model with NMKC and
GB couplings have been found. Then, we consider general
models where the coupling functions are related to the scalar
field potential and analyze the specific cases of power-law,
exponential, natural and double-well potentials. The paper
is organized as follows. In the next section we introduce
the model, the background field equations and define the
slow-roll parameters. In Sect. 3 we deduce the Mukhanov–
sasaki equation from linear perturbations for scalar and ten-
sor modes. In Sect. 4 we perform the slow-roll analysis for
general relationships between the couplings and the poten-
tial and study models with power-law, exponential, natural
and double-well potentials. In Sect. 5 we analyze the con-
sistency of the slow-roll inflation with the reheating process
and show some numerical cases. A discussion is given in
Sect. 6. In appendix A we deduce the first-order perturba-
tions for all the terms in the model in the Newtonian Gauge.

In appendixes B and C we show the correspondence of the
present model with the generalized Galileons.

2 The model and background equations

We consider the scalar-tensor model with non-minimal cou-
pling of the scalar field to curvature, non-minimal kinetic
coupling of the scalar field to the Einstein’s tensor and
coupling of the scalar field to the Gauss–Bonnet (GB) 4-
dimensional invariant

S =
∫

d4x
√−g

[
1

2
F(φ)R − 1

2
∂μφ∂μφ − V (φ)

+ F1(φ)Gμν∂
μφ∂νφ − F2(φ)G

]
(2.1)

whereGμν is the Einstein’s tensor,G is the GB 4-dimensional
invariant given by

G = R2 − 4RμνR
μν + RμνλρR

μνλρ (2.2)

F(φ) = 1

κ2 + f (φ), (2.3)

and κ2 = M−2
p = 8πG. One remarkable characteristic

of this model is that it yields second-order field equations
and can avoid Ostrogradsky instabilities. Using the general
results of Appendix B, expanded on the flat FRW background

ds2 = −dt2 + a(t)2
(
dx2 + dy2 + dz2

)
(2.4)

one finds the following equations

3H2F

(
1 − 3F1φ̇

2

F
− 8H Ḟ2

F

)
= 1

2
φ̇2 + V − 3H Ḟ (2.5)

2Ḣ F

(
1 − F1φ̇

2

F
− 8H Ḟ2

F

)
= −φ̇2

−F̈ + H Ḟ + 8H2 F̈2 − 8H3 Ḟ2

−6H2F1φ̇
2 + 4HF1φ̇φ̈ + 2H Ḟ1φ̇

2 (2.6)

φ̈ + 3H φ̇ + V ′ − 3F ′ (2H2 + Ḣ
)

+24H2
(
H2 + Ḣ

)
F ′

2 + 18H3F1φ̇

+12H Ḣ F1φ̇ + 6H2F1φ̈ + 3H2F ′
1φ̇

2 = 0 (2.7)

where (′) denotes derivative with respect to the scalar field.
In order to perform the slow-roll analysis for this model and
taking into account the different couplings, we consider the
following slow-roll parameters

ε0 = − Ḣ

H2 , ε1 = ε̇0

Hε0
, (2.8)

�0 = Ḟ

H F
, �1 = �̇0

H�0
, (2.9)

k0 = 3F1φ̇
2

F
, k1 = k̇0

Hk0
, (2.10)
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�0 = 8H Ḟ2

F
, �1 = �̇0

H�0
, (2.11)

which must satisfy ε0, ε1, ... << 1 during inflation. From the
cosmological equations (2.5) and (2.6) and using the slow-
roll parameters (2.8)–(2.11) we find the following expres-
sions for φ̇2 and V

V = H2F

[
3 − 5

2
�0 − 2k0 − ε0 + 5

2
�0 + 1

2
�0 (�1 − ε0 + �0)

−1

2
�0 (�1 − ε0 + �0) − 1

3
k0 (k1 + �0 − ε0)

]
(2.12)

φ̇2 = H2F

[
2ε0 + �0 − �0 − 2k0 + �0 (�1 − ε0 + �0)

−�0 (�1 − ε0 + �0) + 2

3
k0 (k1 + �0 − ε0)

]
(2.13)

It is useful to define the variable Y from Eq. (2.13) as

Y = φ̇2

H2F
(2.14)

where it follows that Y = O(ε). The cosmological equations
(2.5)–(2.7) can be simplified under the slow-roll conditions
φ̈ << 3H φ̇ and �i , ki ,�i << 1 as follows

3H2F � V, (2.15)

2Ḣ F � −φ̇2 + H Ḟ − 6H2F1φ̇
2 − 8H3 Ḟ2, (2.16)

3H φ̇ + V ′ − 6H2F ′ + 18H3F1φ̇ + 24H4F ′
2 � 0 (2.17)

where the potential V gives the dominant contribution to the
Hubble parameter, while Eqs. (2.16) and (2.17) determine the
dynamics of the scalar field in the slow-roll approximation.
The number of e-folds is determined from

N =
∫ φe

φi

H

φ̇
dφ =

∫ φe

φi

H2 + 6H4F1

2H2F ′ − 8H4F ′
2 − 1

3V
′ dφ

(2.18)

where φi and φe are the values of the scalar field at the begin-
ning and end of inflation respectively, and the expression for
φ̇ was taken from (2.17). The criteria for choosing the initial
values will be discussed below.

3 The Mukhanov–Sasaki equation from linear
perturbations

Scalar perturbations

The Mukhanov–Sasaki equation for scalar perturbations can
be obtained from the linear perturbations in the Newtonian
gauge. As will be shown, the final expression matches exactly
the one obtained by the second perturbations in the uniform
gauge (δφ = 0). We will use the following metric with scalar
perturbations

ds2 = −(1 + 2�)dt2 + a2(t)
[
(1 − 2�)δi j

]
dxidx j (3.1)

The details of the first-order perturbations are given in
appendix A. The comovil curvature perturbation which is
a gauge invariant quantity [23,25] is given by

R = −� − H

φ̇
δφ (3.2)

Taking the derivative with respect to time one finds:

Ṙ = −�̇ − Ḣ

φ̇
δφ + H φ̈

φ̇2
δφ − H

φ̇
δφ̇ (3.3)

The next steep is algebraically large. From the system of
equations δT 0

0 = 0, δT 0
i = 0 and δT i

j − 1
3δijδT

k
k = 0

(see Appendix A) we obtain the expressions for �̇, δφ̇ and
�, which are replaced in (3.3). To simplify the (very large)
resulting expression, we use the background equations (2.6)
and (2.7) in order to eliminate φ̈ and V ′(φ). After some alge-
bra it is obtained:

Ṙ = 2w1
�

a2 � (3.4)

where

w1 = (H + Ḟ+Wa
2F+Wb

)(F + 1
2Wb)

(φ̇2 + 3 (Ḟ+Wa)
2

2F+Wb
+ Wc)

, (3.5)

� = −� + 1

φ̇

(
Ḟ + Wa

2F + Wb

)
, (3.6)

with
Wa = −8Ḟ2H

2 − 4φ̇2F1H

Wb = −16Ḟ2H − 2φ̇2F1

Wc = 6φ̇2F1H
2

A second relationship between R y � can be obtained by
eliminating �, δφ, � from the system of equations for δT 0

i =
0 and δT i

j − 1
3δijδT

k
k = 0, and the expressions (3.2) and

(3.6). The final expression can be simplified by using the
background equation (2.6). After a tedious algebraic process
it is obtained:

1

w2

d

dt
(w2�) = 1

2
w3R (3.7)

where

w2 = a(F + 1
2 Wb)

(H + Ḟ+Wa
2F+Wb

)
,

w3 =
φ̇2 + 3 (Ḟ+Wa )

2

2F+Wb
+ Wc + Wd + Ḟ+Wa

2F+Wb
We +

(
Ḟ+Wa

2F+Wb

)2
W f

(H + Ḟ+Wa
2F+Wb

)(F + 1
2 Wb)

(3.8)
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with

Wd = 4φ̇2F1 Ḣ

We = −32Ḟ2 Ḣ − 4φ̇(φ̇ Ḟ1 − 2φ̇F1H + 2F1φ̈)

W f = 16(F̈2 − Ḟ2H) − 4φ̇2F1

The equations (3.4) and (3.7) can be rewritten with the help
of the following definitions

c2
S = w1w3 , z =

√
aw2

w1
, u = zR , v =

√
w2

aw3
�

(3.9)

Taking into account the above definitions and in the confor-
mal time dt = adη (“prima” means derivative with respect
to conformal time), it is obtained that the equations (3.4) y
(3.7) can be rewritten in the following form:(
u

z

)′
= 2

cS
z

�v (3.10)

2

c2
Sz

(cSzv)′ = u (3.11)

Deriving (3.10) with respect to conformal time, one obtains:

u′′

z
− 2

z′u′

z2 + 2
z′2

z3 − z′′u
z2 = −4

z′

z3 �(cSzv) + 2

z2 �(cSzv)′

Using (3.10) y (3.11), the above expression can be rewritten
in the following form:

u′′

z
− 2

z′u′

z2 + 2
z′2

z3 − z′′u
z2 = −2

z′

z

(
u

z

)′
+ c2

S

z
�u

Multiplying the above equation by z and simplifying, gives

u′′ − c2
S�u − z′′

z
u = 0 (3.12)

It is worth noticing that in this deduction the gauge invari-
ant quantity R was used, and therefore this quantity is not
affected by the gauge fixing. This is the reason why the
Mukhanov–Sasaki equation matches the one obtained in the
uniform field gauge (δφ = 0) with second order perturba-

tions. In fact, in the uniform field gauge, R = −�, what
simplifies the calculations in relation to (3.2).

The equation (3.12) is the Mukhanov–Sasaki equation
obtained in general form from the linear perturbations, which
matches exactly the one obtained from quadratic perturba-
tions [89] and also coincides with the results reported in [100]
(see also [58] for generalized Galileons). To show this one
can write the quantities Wa, Wb, ... in terms of the slow-roll
parameters as follows

Wa = −HF

(
�0 + 4

3
k0

)
, (3.13)

Wb = −F

(
2�0 + 2

3
k0

)
, (3.14)

Wc = 2H2Fk0, (3.15)

Wd = −4

3
H2Fε0k0, (3.16)

We = 4HF

(
2

3
k0 + ε0�0 − 1

3
k0 (k1 + �0)

)
, (3.17)

W f = −2F

(
�0 + 2

3
k0 + �0 (ε0 + �0 + �1)

)
, (3.18)

where we used

F̈2 = F�0

8
(�1 + ε0 + �0) , (3.19)

and

Ḟ1φ̇
2

HF
+ 2F1φ̇φ̈

HF
= 1

3
k0k1 + 1

3
k0l0. (3.20)

Using these results in (3.24) and (3.8) we find the velocity of
the scalar perturbations defined in (3.9), as

c2
S = 1 +

1
2W

2
(
�0(ε0 + l0 + �1) − �0 − 2

3k0
)+ 2

3W (2k0 − k0 (l0 + k1) + 3�0ε0) − 4
3k0ε0

Y + 2k0 + 3
2W

2(1 − �0 − 1
3k0)

(3.21)

where

W = �0 − �0 − 4
3k0

1 − �0 − 1
3k0

. (3.22)

This is the same result that was obtained for c2
S using the

second order formalism. Expanding up to second order in
slow-roll parameters we find for c2

S

c2
S ≈ 1 + W 2

(− 1
2�0 − 1

3k0
)+ W

( 4
3k0
(
1 + �0 + 1

3k0
)− 2

3k0(k1 + l0) + 2�0ε0
)− 4

3k0ε0

2ε0 + l0 − �0
, (3.23)

where

W ≈ l0 − �0 − 4

3
k0.
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To find the variable z in terms of the slow-roll parameters we
first write w1 and w2 using (3.13)-(3.15) as

w1 = 1 + 1
2W
(
1 − �0 − 1

3k0
)

H
(
Y + 2k0 + 3

2W
2(1 − �0 − 1

3k0
) , (3.24)

w2 = aF

H

(
1 − �0 − 1

3k0

1 + 1
2W

)
. (3.25)

Then, from (3.9) follows

z =
√
aw2

w1
= a

(
F
(
Y + 2k0 + 3

2W
2
(
1 − �0 − 1

3 k0
))

(
1 + 1

2W
)2

)1/2

.

(3.26)

which can be written as

z = a
√

2GS, (3.27)

where GS is half the expression under the square root in
(3.26). This quantity is equal to that obtained in the second
order formalism [89]. Expanding up to second order in slow
roll parameters it is found for GS

GS ≈ F

[(
ε0 + 1

2
l0 − 1

2
�0

)
(1 − W ) + 1

2
�0 (�1 − ε0 + l0)

− 1

2
l0 (l1 − ε0 + l0) + 1

3
k0 (k1 + l0 − ε0) + 3

4
W 2
]

(3.28)

Taking into account that c2
S can also be written as c2

S =
FS/GS , we consider the following change of variables as
suggested in [58]

zS = √
2a(FSGS)

1/4 = √
cSz

ũ = zSR = √
cSu

d yS = cSdη,

after some algebra, the equation (3.12) can be rewritten in
terms of these variables, giving

ũ′′ − �ũ − z′′S
zS

ũ = 0 (3.29)

where “prima” indicates derivative with respect to yS . This
shows that the equation resulting from the the second order
action for the scalar perturbations [58,89] can be obtained
from (3.12) after the change of variables.

The next step is to derive de power spectrum using Eq.
(3.12). Taking the derivative of z with respect to the confor-
mal time it is obtained:

z′

z
= aH

(
1 + 1

2
gS

)
(3.30)

z′′

z
= a2H2

[(
1 + 1

2
gS

)(
2 + Ḣ

H2 + 1

2
gS

)
+ 1

2

1

H

dgS
dt

]

(3.31)

where

gS = ĠS

HGS

Expanding gS and 1
H

dgS
dt up to second order in slow-roll

parameters gives

gS ≈ l0 + ε0ε1 + 1
2 l0l1 − 1

2�0�1

ε0 + 1
2 l0 − 1

2�0
−
(
ε0ε1 + 1

2 l0l1 − 1
2�0�1

) (
l0 − �0 − 4

3k0
)

ε0 + 1
2 l0 − 1

2�0

−
(
ε0 + 1

2 l0 − 1
2�0
) (
l0l1 − �0�1 − 4

3k0k1
)− 1

2�0�1 (�1 − ε0 + l0) − 1
2�0 (�1�2 − ε0ε1 + l0l1)

ε0 + 1
2 l0 − 1

2�0

−
1
2 l0l1 (l1 − ε0 + l0) + 1

2 l0 (l1l2 − ε0ε1 + l0l1) − 1
3k0k1 (k1 + l0 − ε0) − 1

3k0 (k1k2 + l0l1 − ε0ε1)

ε0 + 1
2 l0 − 1

2�0

+
3
2

(
l0 − �0 − 4

3k0
) (
l0l1 − �0�1 − 4

3k0k1
)

ε0 + 1
2 l0 − 1

2�0

1

H

dgS
dt

≈ l0l1 +
(
ε0ε

2
1 + ε0ε1ε2 + 1

2 l0l
2
1 + 1

2 l0l1l2 − 1
2�0�

2
1 − 1

2�0�1�2
) (

ε0 + 1
2 l0 − 1

2�0
)

(
ε0 + 1

2 l0 − 1
2�0
)2

−
(
ε0ε1 + 1

2 l0l1 − 1
2�0�1

)2
(
ε0 + 1

2 l0 − 1
2�0
)2

where

ε2 = ε̇1

Hε1
, l2 = l̇1

Hl1
, �2 = �̇1

H�1
, k2 = k̇1

Hk1
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match exactly with the respective expressions obtained from
the generalized Galileons using second order perturbations.
Note also that in the first order approximation in slow-roll
parameters, the last term in (3.31) can be neglected. Thus, up
to first order

z′

z
≈ aH

(
1 + 1

2
l0 + 1

2

ε0ε1 + 1
2 l0l1 − 1

2 �0�1

ε0 + 1
2 l0 − 1

2 �0

)
(3.32)

z′′

z
≈ a2H2

[
2 − ε0 + 3

2
l0 + 3

2

(
ε0ε1 + 1

2 l0l1 − 1
2 �0�1

ε0 + 1
2 l0 − 1

2 �0

)]

(3.33)

This result allows to calculate the spectral index. Solving
the equation (3.12) in Fourier components with z′′

z given by
(3.33), and imposing the Bunch-Davies vacuum state [101,
102] we find the power spectrum of the curvature perturbation
as

PS = ASH2

(2π)2GSc3
S

, (3.34)

where

AS = 1

2
22μs−3

∣∣∣ �(μs)

�(3/2)

∣∣∣2.
The spectral index is

ns−1 = d ln PS

d ln k

∣∣∣
cSk=aH

= −2ε0−�0− 2ε0ε1 + �0�1 − �0�1

2ε0 + �0 − �0

(3.35)

which is evaluated at the horizon crossing, cSk = aH (k is
the comovil wavenumber).

Tensor perturbations

The tensor perturbations affect only the traceless part of the
spatial metric and the traceless part of the stress tensor. Then
the amplitudes of tensor perturbations and πT

i j (the dissipa-
tive correction to the stress tensor) are automatically gauge
invariant. In order to calculate the power spectrum of tensor
perturbations, we consider the following perturbed metric

ds2 = −dt2 + a2(t)
(
δi j + hi j

)
dxidx j (3.36)

where hi j is the tensor perturbation which satisfies hii = 0,
hi j = h ji and ∂i hi j = 0. The spatial component of the
perturbed field equation (up to first order) gives the following
result for the tensorial modes

(
−1

2
F + 1

2
F1φ̇

2 + 4H Ḟ2

)
ḧij

+
(

1

2
F + 1

2
F1φ̇

2 − 4F̈2

)
�hij
a2

+
(

3H

(
−1

2
F + 1

2
F1φ̇

2 + 4H Ḟ2

)
− 1

2
Ḟ

+F1φ̇φ̈ + 1

2
Ḟ1φ̇

2 + 4Ḣ Ḟ2 + 4H F̈2

)
ḣij = 0. (3.37)

The above expression can be rewritten in the following form

ḧij +
[

3H + Ḟ − 2F1φ̇φ̈ − Ḟ1φ̇
2 − 8Ḣ Ḟ2 − 8H F̈2

F − F1φ̇2 − 8H Ḟ2

]

ḣij −
[

F + F1φ̇
2 − 8F̈2

F − F1φ̇2 − 8H Ḟ2

]
�hij
a2 = 0 (3.38)

Let us define the following quantities

GT = F − F1φ̇
2 − 8H Ḟ2 = F

(
1 − 1

3
k0 − �0

)
(3.39)

FT = F + F1φ̇
2 − 8F̈2 = F

(
1 + 1

3
k0 − �0 (ε0 + �0 + �1)

)

(3.40)

that allow to write the above equation in compact form as

ḧij +
[

3H + ĠT

GT

]
ḣij −

[FT

GT

]
�hij
a2 = 0, (3.41)

which can be rewritten in the following form

1

a3GT

d

dt

[
a3GT ḣ

i
j

]
−
[FT

GT

]
�hij
a2 = 0. (3.42)

Introducing the variable vij ≡ zT hij with zT ≡ a
√GT , the

above equation can be rewritten as

1

zT

[
z2
T

(
vij

zT

)′]′
−
[FT

GT

]
�vij = 0, (3.43)

where “prima” indicates differentiation with respect to con-
formal time η, with dt = adη. Taking the derivatives and
simplifying it is obtained

(
vij

)′′ − c2
T vij − zT ′′

zT
vij = 0, (3.44)

where

c2
T = FT

GT
. (3.45)

Following the same process as for scalar modes we find the
power spectra for the tensor fluctuations created by inflation
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as

PT = 16AT
H2

(2π)2

G1/2
T

F3/2
T

= 16AT H2

(2π)2GT c3
T

(3.46)

where

AT = 1

2
22μT −3

∣∣∣ �(μT )

�(3/2)

∣∣∣2.
For the tensor spectral index it is found

nT = d lnPT

d ln k

∣∣∣
cSk=aH

= −2ε0 − �0. (3.47)

Another important quantity is the relative contribution to the
power spectra of tensor and scalar perturbations, defined as
the tensor/scalar ratio r

r = PT

PS
� 16

GS

GT
(3.48)

where in the last approximation we used the fact that
AT /AS � 1 and cT � cS � 1 during inflation, when
ε0, �0,�0, ... << 1 holds. Using the results for GS (3.28)
and GT (3.39), up to first order in slow-roll parameters we
find

r = 8

(
2ε0 + �0 − �0

1 − 1
3k0 − �0

)
� 8 (2ε0 + �0 − �0) , (3.49)

which is the consistency relation in presence of non-minimal
kinetic and GB couplings, that modifies the standard relation
r = 16ε0. An observational deviation from the standard con-
sistency relation could be a signal of interactions beyond the
simple canonical scalar field.

4 Slow-roll analysis

From Eqs. (2.15)–(2.17) and the equations that define the
slow-roll parameters (2.8)–(2.11) one can express the slow-
roll parameters and the main inflationary observables in terms
of the scalar field potential V (φ) and the couplings F , F1,
F2. In the following analysis we will consider the effect of
the kinetic and GB couplings with

F = 1

κ2 = M2
P .

From the equations (2.15)–(2.17) we find in terms of the
scalar field H(φ), Ḣ(φ), Ḧ(φ), φ̇ and φ̈, which are used to
find ε0, ε1, ... from (2.8)–(2.11). After some algebra we find
the following expressions for ε0, �0, k0

ε0 =
V ′
(

8V 2F ′
2 + 3M4

pV
′
)

6V 2
(
M2

p + 2F1V
) , k0 =

F1

(
8V 2F ′

2 + 3M4
pV

′
)2

9M4
pV
(
M2

p + 2F1V
)2 ,

�0 = −
8F ′

2

(
8V 2F ′

2 + 3M4
pV

′
)

9M4
p

(
M2

p + 2F1V
) (4.1)

taking the time derivative of these magnitudes and replacing
φ̇ and φ̈ we find for ε1, k1 and �1 the following result

ε1 = − 2

3V 2V ′
(
M2

p + 2F1V
)2

×
[

− 3M6
pV

′3 − 3M4
pV

2V ′ (F ′
1V

′ − 2F1V
′′)

+3V
(
−3M4

p F1V
′3 + M6

pV
′V ′′)

+V 3
(
−8F1F

′
2V

′2 + 4M2
p

(
V ′F ′′

2 + F ′
2V

′′))

+V 4 (−8F ′
1F

′
2V

′ + 8F1
(
V ′F ′′

2 + F ′
2V

′′)) ], (4.2)

k1 = 1

3F1V 2
(
M2

p + 2F1V
)2

×
[
3M6

p F1V
′2 + 16F1V

4 (F ′
1F

′
2 − 2F1F

′′
2

)

−8V 3
(
M2

p F
′
1F

′
2 + 2F1

(
F1F

′
2V

′ + M2
p F

′′
2

))

−6M2
p F1V

2(− M2
p F

′
1V

′

+4F ′
2V

′ + 2M2
p F1V

′′)

−3V
(
M6

p F
′
1V

′ + 2M4
p F1

(
−3F1V

′2 + M2
pV

′′)) ], (4.3)

�1 = 1

3M2
pV F ′

2

(
M2

p + 2F1V
)2

×
[

− 16M4
pV F ′

2

(
F ′

2V
′ + V F ′′

2

)

+16M2V 2F ′
2

(−F1F
′
2V

′ + V
(
F ′

1F
′
2 − 2F1F

′′
2

))
−3M8

p

(
V ′F ′′

2 + F ′
2V

′′)

+M6
p

(
6F1F

′
2V

′2 + 6V
(
F ′

1F
′
2V

′ − F1
(
V ′F ′′

2 + F ′
2V

′′))) ],
(4.4)

where “prima” indicates derivative with respect to φ. Using
these results we find the analytical expressions, in terms of
the scalar field, for the scalar spectral index ns and the tensor-
to-scalar ratio r as follows

ns = 1

3V 2
(
M2

p + 2F1V
)2

[
4V 4
(

3F2
1 − 4F ′

1F
′
2 + 8F1F

′′
2

)

+ 4M2
pV

2 (3F1V + 2F ′
2V

′ + 4V F ′′
2

)
+ M6

p

(
−9V ′2 + 6VV ′′)

+ 3M4
pV
(
−8F1V

′2 + V
(
1 − 2F ′

1V
′ + 4F1V

′′)) ],
(4.5)
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and

r =
8
(

8V 2F ′
2 + 3M4

pV
′
)2

9M4
pV

2
(
M2

p + 2F1V
) . (4.6)

These magnitudes must be evaluated at the value that the
scalar field takes at the horizon crossing. Note that ns and
r reduce to the corresponding expressions for the standard
minimally coupled scalar field (given F1 = 0, F2 = 0)

ns = 1 − 3M2
p

(
V ′

V

)2

+ 2M2
p
V ′′

V
(4.7)

and

r = 8M2
p

(
V ′

V

)2

(4.8)

It can be seen that all above magnitudes depend onV, F1, F2

only through combinations

V ′

V
, F1V, F2V

′,

which can be used to discuss some general aspects of inflation
in the frame of scalar-tensor models with kinetic and GB
couplings. ε0, can be rewritten as follows

ε0 = 8V F ′
2 + 3M4

pV
′/V

6
(
M2

p + 2F1V
)
(
V ′

V

)
, (4.9)

and similarly for ε1, k0, ... given in (4.2–(4.4). The scalar
spectral index and tensor-to-scalar ratio can be rewritten the
form

ns = 1

3
(
M2

p + 2F1V
)2

{
4
[
3(F1V )2 − 4(F ′

2V )

(
(F1V )′ − (F1V )

(
V ′

V

))

+8(F1V )

(
(F ′

2V )′ − (F ′
2V )

(
V ′

V

))]
+ 4M2

p

[
3(F1V ) + 2(F ′

2V )

(
V ′

V

)

+4(F ′
2V )′ − 4(F ′

2V )

(
V ′

V

)]
+ 3M4

p

[
1 − 8(F1V )

(
V ′

V

)2

− 2(F1V )′
(
V ′

V

)

+2(F1V )

(
V ′

V

)2

+ 4(F1V )

(
V ′

V

)′
+ 4(F1V )

(
V ′

V

)2 ]
+ M6

p

(
6

(
V ′

V

)′
− 3

(
V ′

V

)2
)}

(4.10)

r = 8

9M4
p

(
M2

p + 2F1V
)
(

8F ′
2V + 3M4

p

(
V ′

V

))2

.

(4.11)

The number of e-foldings (2.18) takes the form

N = −
∫ φe

φi

3
(
M2

p + 2F1V
)

8F ′
2V + 3M4

p

(
V ′
V

)dφ. (4.12)

All above magnitudes should be evaluated at the beginning
of inflation or the horizon crossing, when cSk = aH . From
this last equation it follows the dependence of the scalar field
at the beginning of inflation on the coupling constants asso-
ciated to the kinetic and GB terms as well as the potential.
Only after the form of these interactions are given one can
analyze different asymptotic behavior of the model but still,
we can make some general considerations.

So for example the kinetic coupling appears only in the
denominator in ε0, which in the case of chaotic inflation
(which usually takes place for large scalar field) could allow
small field inflation (φ < Mp). At first glance it can also
be seen that the strong coupling limit for the GB term is not
allowed since ε0 could grow unlimitedly. The tensor/scalar
ratio can also take lower values at strong kinetic coupling
limit as follows from (4.11), which could improve the results
for power-law (chaotic) potentials. On the other hand, it is
clear that by establishing relationships between the potential
and the coupling functions F1 and F2 one can extract inter-
esting results. For a more detailed analysis we will consider
some special cases.

Inverse proportionality between V and the couplings

We consider the relations

F1(φ)V (φ) = const. = βM2
p, F ′

2(φ)V (φ) = −ηM4
p
V ′(φ)

V (φ)
.

(4.13)

The last relation is equivalent to F2(φ)V (φ) = ηM4
p. This

restriction has been frequently used in the study of slow-
roll inflation with scalar-tensor couplings and gives viable
theoretical predictions for ns and r [103–109]. Note that from
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the definition of k0 in Eq. (2.10) and Eq. (2.13) follows

F1 ∼ k0

3(2ε0 + · · · )H2 ∼ 1

H2 , (4.14)

valid during slow-roll inflation and assuming that the slow-
roll parameters are of the same order or are approximately
constant during most of the time of inflation. Hence, taking
into account the approximation 3H2 ≈ κ2V , valid during
potential-driven inflation [see Eq. (2.15)], it follows from
(4.14) that the choice F1 ∝ V−1 seems suitable for inflation.

With this choice of F1 and F2 the corresponding contri-
butions to the Lagrangian during inflation are of the size

F1R (∂φ)2 ∼ βM2
p

V
H2
i (∂φ)2 ∼ βM2

pH
2
i

V0
(∂φ)2 (4.15)

and

F2R
2 ∼ ηM4H4

i

V
∼ ηM4

pH
4
i

Vi
, (4.16)

where Hi and Vi are the Hubble parameter and the scale of
the potential during inflation. Assuming the typical values
for Hi and Vi , Hi ∼ 10−5Mp, Vi ∼ 10−10M4

p we find

F1R (∂φ)2 ∼ β (∂φ)2 and F2R2 ∼ 10−10ηM4
p. Then values

of η ∼ 1 and β > 1 (or even >> 1 whenever β (∂φ)2 <<

Vi ) lead to inflationary dynamics driven by the potential.
In order to have a consistent reheating process at the end of

inflation where the scalar field can oscillate at the minimum of
the potential, when needed, we can add a small constant cor-
rection to the relations (4.13) in the form F1(V +α) = βM2

p

and F2(V + α) = ηM4
p, where α << V during inflation.

In this way we can avoid possible divergences in the cou-
pling functions during oscillations around the minimum of
the potential.

Using (4.13) the slow-roll parameters take the following
simple form (we are going to use κ2 = M−2

p = 1 for sim-
plicity and recover M2

p when needed)

ε0 = 3 − 8η

6(1 + 2β)

(
V ′2

V 2

)
, �0 = 8η (3 − 8η)

9(1 + 2β)

(
V ′2

V 2

)
,

k0 = β (3 − 8η)2

9(1 + 2β)2

(
V ′2

V 2

)

ε1 = �1 = k1 = 2 (3 − 8η)

3 (1 + 2β)

(
V ′2 − VV ′′

V 2

)
(4.17)

For ns and r the following expressions are obtained

ns = 3 (8η − 3) V ′2 + V
[
(6 − 16η) V ′′ + 3 (2β + 1) V

]
3 (2β + 1) V 2

(4.18)

r = 8 (3 − 8η)

9 (1 + 2β)

(
V ′2

V 2

)
. (4.19)

For the number of e-folds form (4.12) we find

N = −3(1 + 2β)

3 − 8η

∫ φe

φi

(
V

V ′

)
dφ. (4.20)

Then the slow-roll dynamics becomes determined by the
form of the potential. The following cases are of interest.

Power-law potential
Let us consider potential

V = λ

n
φn (4.21)

In the canonical model this potential includes the simplest
chaotic models characterized by large values of the inflaton
field. The slow-roll parameters are

ε0 = (3 − 8η) n2

6 (2β + 1) φ2 , �0 = 16η

3
ε0, k0 = β (3 − 8η)2 n2

9 (2β + 1)2 φ2

ε1 = �1 = k1 = 2 (3 − 8η) n

3 (2β + 2) φ2 . (4.22)

The inflaton field at the beginning and at the end of inflation
takes the values (recovering κ)

φi =
√
n(4N + n)(3 − 8η)

6(1 + 2β)
Mp, φe =

√
3 − 8η

6(1 + 2β)
Mp

(4.23)

valid for η < 3/8. Note that the inflaton can take values
φ < Mp if the the kinetic coupling constant β is large enough
or in the case η close to 3/8. For the observables ns and r we
find

ns = 4N − n − 4

4N + n
, r = 16n(3 − 8η)

3(4N + n)
. (4.24)

While ns remains the same as in the standard minimal case,
the tensor/scalar ratio is influenced by the GB coupling and
can take values in the range consistent with observations
(r < 0.05) [9]. This favors the simplest inflationary model
corresponding to n = 2 (assuming for instance η = 1/4,
then for 60 e-foldings gives r ≈ 0.044). As will be shown
in Sect. 6, if the subsequent reheating process is taken into
account, then in the approximation of instantaneous reheat-
ing the φ2 and φ4 potentials become favored since ns and r
can take values well inside the region favored by the latest
observations.

Exponential potential
The exponential potential is given by

V = V0e
−λφ/Mp , (4.25)
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where V0 is fixed by COBE normalization and λ is a free
parameter. With the couplings (4.13) this potential has been
considered in [90]. In the canonical model the inflation is of
power-law type since the scale factor evolves as a ∝ t2/λ2

,
and the slow-roll parameters are constant (ε0 = λ2/2, which
for consistency requires λ2 << 1) and therefore there is no
way out of inflation. This result also holds for the couplings
satisfying the conditions (4.13), as follows from (4.17). How-
ever it predicts the following results for the inflationary
observables ns and r [90]

ns = 6β + 8ηλ2 − 3λ2 + 3

6β + 3
, r = 8 (8η − 3)2 λ2

9 (2β + 1)
(4.26)

that can give values compatible with observations. Taking
for instance λ = 2/3, β = 6/7, η = 0.3 gives ns ≈
0.967 and r ≈ 0.052. This would make sense if there were
a mechanism of exit from inflation that does not alter the
results of perturbations.

Natural inflation potential
In natural inflation the effective potential for the axion

scalar field takes the form [110,111]

V = �4
(

1 + cos

(
φ

f

))
, (4.27)

where � is the scale of the potential which is fixed by appro-
priate normalization of the scalar perturbations and f is the
axion scale that controls the slope of the potential. this model
gives consistent results with CMB for f � 5Mp [9], while
theoretical requirements of consistency demand f < Mp ( f
is the symmetry breaking scale of the shift symmetry (see
[110])). Some mechanisms have been proposed in order to
obtain natural inflation in terms of axions in sub-Planckian
scale [54,112–115]. If one assumes a non-standard coupling
of the axion field in the form of coupling to the GB term

and kinetic coupling to curvature that satisfy the relations
(4.13), then the symmetry properties of the potential remain
preserved and, as will be shown, the axion field can lead to
inflation while maintaining f < Mp. The scalar field at the
end and at the beginning of inflation are

φe = 2 f arctan

[
f

√
6(2β + 1)

3 − 8η

]
,

φi = 2 f arcsin

⎡
⎣ e

− (3−8η)N
6 f 2(2β+1)√

1 + 3−8η

6 f 2(2β+1)

⎤
⎦ . (4.28)

Note that for η the physically allowable values are η < 3/8.
Taking into account the periodicity, 0 ≤ φ/ f ≤ 2π , from
these expressions it follows that the size of φi , φe is of the
same order of f . Then, if the scale of symmetry breaking is
sub Planckian, the inflation occurs in the small field regime.
The slow-roll indices at the horizon crossing take the values

ε0 = (3 − 8η)e
− (3−8η)N

3 f 2(2β+1)

6 f 2(2β + 1)

(
1 − e

− (3−8η)N
3 f 3(2β+1)

)
− 8η + 3

,

�0 = 16η

3
ε0, k0 = 2β(3 − 8η)

3(2β + 1)
ε0

ε1 = �1 = k1 = 3 − 8η

3 f 2(2β + 1)

[
1 − e

− (3−8η)N
3 f 2(2β+1)

1+ 3−8η

6 f 2(2β+1)

] . (4.29)

Note that making β large enough and/or η close to 3/8 we can
make the slow-roll parameters as small as necessary under
the condition f < Mp. The scalar spectral index and the
tensor/scalar ratio as functions of the scalar field from (4.17)
are

ns = 2
[(

3 f 2(2β + 1) − 8η + 3
)

cos (φ/ f ) + 3
(
f 2(2β + 1) + 8η − 3

)]
cos2 (φ/(2 f ))

3 f 2(2β + 1) (cos (φ/ f ) + 1)2

(4.30)

r =
8 (8η − 3)2 tan2

(
φ

2 f

)

9 f 2 (2β + 1)
(4.31)
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and evaluating them at the horizon crossing gives

ns =
18 f 4(2β + 1)2

[
e
− (3−8η)N

3 f 2(2β+1) − 1

]
+ 3 f 2(2β + 1)(3 − 8η)

[
2e

− (3−8η)N
3 f 2(2β+1) + 1

]
+ (8η − 3)2

3 f 2(2β + 1)

[
6 f 2(2β + 1)

(
e
− (3−8η)N

3 f 2(2β+1) − 1

)
+ 8η − 3

]

(4.32)

r = 16(8η − 3)2e
− (3−8η)N

3 f 2(2β+1)

3

[
6 f 2(2β + 1)

(
1 − e

− (3−8η)N
3 f 2(2β+1)

)
− 8η + 3

] . (4.33)

In the region β >> 1 the spectral index takes values close
to the asymptotic limit

ns = 2N − 3

2N + 1
(4.34)

for 50 ≤ N ≤ 70 ns varies in the interval 0.960 ≤ ns ≤
0.972 which is consistent with observations. The correspond-
ing limit for r is

r = 16(3 − 8η)

6N + 3
, (4.35)

which in the interval 50 ≤ N ≤ 70 is very small when η is
very close to 3/8. Imposing an upper bound for r , for instance
for r < 0.05, then in the interval 50 ≤ N ≤ 70 η must take
values in the interval 3.9×10−4(957−6N ) < η < 3/8. For
N = 60 and η = 1/3 we find r ≈ 0.015. The scalar field at
the beginning and at the end of inflation behaves as

lim
β→∞ φi = 2 f, lim

β→∞ φe = π f. (4.36)

Then in the strong kinetic coupling limit the inflation can
be realized with small fields and at sub Planckian symmetry
breaking scales.

On the other hand, neglecting the kinetic coupling, setting
β = 0, we can analyze the effect of the GB coupling on the
slow-roll dynamics driven by the natural potential (4.27). ns
and r in this case are given by the following expressions

ns =
18 f 4

[
e
− (3−8η)N

3 f 2 − 1

]
+ 3 f 2(3 − 8η)

[
2e

− (3−8η)N
3 f 2 + 1

]
+ (8η − 3)2

3 f 2

[
6 f 2

(
e
− (3−8η)N

3 f 2 − 1

)
+ 8η − 3

]

(4.37)

r = 16(8η − 3)2e
− (3−8η)N

3 f 2

3

[
6 f 2

(
1 − e

− (3−8η)N
3 f 2

)
− 8η + 3

] . (4.38)

In the limit η → 3/8 we find

ns = 2N − 3

2N + 1
, (4.39)

which is the same limit obtained for β >> 1, but the signa-
tures of gravitational waves disappear since

lim
η→3/8

r = 0.

The initial conditions for the inflaton become

lim
η→3/8

φi = 2 f, lim
η→3/8

φe = π f. (4.40)

For small values f << 1 we can neglect the exponential
terms in the expression (4.37) for ns , leading to

ns = 1 − 3 − 8η

3 f 2 (4.41)

Thus to obtain ns = 0.966 with f = 10−2 we find η =
0.374999, i.e. η must be very close to the critical value 3/8.
On the other hand, the exponential in the numerator of the

expression (4.38) rapidly tends to zero and r ∝ e
− (3−8η)N

3 f 2 .
Taking for instance f ∼ 10−2 then r ∼ 10−695 and there will
be no signal of gravitational waves. As will be shown bellow
this problem does not exist if kinetic coupling is considered.
So natural inflation with additional GB interaction can be
realized for the symmetry breaking scale f � 10−2Mp but
at the expense of having no signals of GW. A very weak signal
of gravitational waves is present in the interval 0.3 ≤ f ≤ 1.
In Fig. 1 we show some curves in the ns−r plane for N = 60.

If only the kinetic coupling is present, ns and r become

ns =
18 f 4(2β + 1)2

[
e
− N

f 2 (2β+1) − 1

]
+ 9 f 2(2β + 1)

[
2e

− N
f 2 (2β+1) + 1

]
+ 9

3 f 2(2β + 1)

[
6 f 2(2β + 1)

(
e
− N

f 2 (2β+1) − 1

)
− 3

] ,

(4.42)

r = 48e
− N

f 2 (2β+1)

6 f 2(2β + 1)

(
1 − e

− N
f 2 (2β+1)

)
+ 3

. (4.43)

From the last expression it follows that for r not to be
excessively small the product f 2β must be of the order
f 2β � O(N ). If f 2β > O(N ) then r increases taking
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values over 0.1 and approaching the limit r = 16/(2N + 1)

as f 2β >> 1. This would leave r outside the region delim-
ited by the observations. In Fig. 2 we show some numerical
results

Therefore the natural inflation with the inflaton kinetic
term non-minimally coupled to curvature leads to successful
inflation with symmetry breaking scale f ∼ 1016 Gev which
is the GUT scale. Hence the problem of super-Planckian val-
ues of f can be successfully addressed with the inclusion
of additional friction encoded in the non-minimal KC. This
problem can not be solved with the inclusion of the Galileon
term G3 [54]. This scale can not be achieved with the only
GB coupling without affecting the tensor/scalar ratio, which
at such low scales disappears.

It is clear form above results that the combined effect of
the GB and non-minimal kinetic coupling can lead to wider
range for ns and r within the the region of consistency with

Fig. 1 ns vs r for the potential (4.27) with additional GB coupling for
some values of f in the interval 0.3 ≤ f ≤ 1 and N = 60. The curves
correspond to the narrow interval 0.374 < η < 0.37459. While ns is in
the region favored by observational data, r is very small although it is
within the region delimited by current observations

Fig. 2 ns vs r for the potential (4.27) with non-minimal kinetic cou-
pling (η = 0, β �= 0) for f in the interval 10−3Mp ≤ f ≤ 10−2Mp ,
β = 2 × 107 and N = 50, 60, 70. for N between 60 and 70 ns can
take values in the region favored by observational data. The scale of
symmetry breaking f is of the order of the GUT scale (1016 Gev)

Fig. 3 ns vs r for β in the interval 107 ≤ β ≤ 108 for N = 60 and
η = 1/3, 1/4, 1/5. Note that ns basically does not change along this
interval while r is significantly more susceptible to changes in η. For
all curves f = 0.001

Fig. 4 ns vs r for η in the interval 1/4 ≤ η ≤ 1/3 for N = 60 and
β = 107, 2 × 107, 5 × 107. The scale f for all curves is f = 0.001

the latest observations. Fig. 3 shows a numerical study for
inflation in the interval 107 ≤ β ≤ 108, in Fig. 4 we study
the interval 1/4 ≤ η ≤ 1/3 and Fig. 5 shows results for the
symmetry breaking interval 0.001 ≤ f ≤ 0.01.

To illustrate the behavior of the slow-roll parameters for
this model, in Fig. 6 we show the evolution of the slow-roll
parameters during inflation period for β = 5×107, η = 0.35
and f = 10−3Mp.

All curves in Figs. 3, 4 and 5 fall within the region delim-
ited by current observational data. We can conclude that the
non-minimal kinetic coupling increases the signal of pri-
mordial GW compared to the GB coupling and also allows
successful inflation for a range of the symmetry breaking
scale of the order of the GUT scale (∼ 1016 Gev). Com-
pared to the cases η = 0 and β = 0 we can conclude that
the combined effect of both couplings allows a wider range
of parameter values leading to inflationary observables well
inside the region quoted by the latest observations. In all
cases the spectral index was found in a very good interval,
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Fig. 5 ns vs r for f in the interval 0.01 ≤ f ≤ 0.001 and N = 60. In
all curves ns ≈ 0.967 while r is also constant along the studied interval
for each curve, but it varies from one curve to another depending on β

and η

Fig. 6 The variation of ε0, ε1, . . . during inflation, for β = 5 × 107,
η = 0.35 and f = 10−3Mp . This behavior is typical of all cases
considered and lead to appropriate results for the inflationary indices

ns ∼ 0.96−−0.97, and the tensor/scalar ratio can take values
bellow the bound 0.05 without getting too small.

We can apply the COBE normalization to estimate the
scale � of the potential. For the amplitude of perturbations
N e-folds before the end of inflation we find from (3.34)

PS = H2

2(2π)2GS
= H2

(2π)2M2
p

1

2ε0 − �0
(4.44)

where we used the approximation AS ≈ 1/2 and cS ≈ 1
during horizon crossing. For Gs up to first order from (3.28)
was also used, which is given by (κ2 = 1)

Gs = ε0 − 1

2
�0. (4.45)

In terms of the scalar field we find

PS = 3 f 2(2β + 1)�4 (1 + cos[φ/ f ]) cot2[φ/(2 f )]
4π2 (3 − 8η)2 M4

p

∣∣∣
φ=φi

(4.46)

Replacing φi from (4.28) we find

PS =
e

(3−8η)N
3 f 2(2β+1)

[
6 f 2(2β + 1)

(
e
− (3−8η)N

3 f 2(2β+1) − 1

)
+ 8η − 3

]2

�4

4π2(3 − 8η)2
(
6 f 2(2β + 1) − 8η + 3

)
M4

p

(4.47)

Applying the COBE normalization,PS � 2.5×10−9 we can
find the scale � as function of f and the coupling parameters
for a given number of e-foldings before the end of inflation.
Taking for instance N = 60, β = 107, η = 1/3, for
f = 0.001Mp we find � � 5 × 10−3Mp, which is the
order of the GUT scale. This gives for the axion mass scale
m2

φ = �4/ f 2 ∼ 10−6M2
p. Note that for all above cases

β >> 1 and also β >> η, and therefore (3−8η)N
6 f 2β

<< 1
we find that the scale � does not depend on η and can be
approximated by

� ∼
(

12π2β f 2

N 2 PS

)1/4

(4.48)

For f varying in the interval 10−4Mp − 10−2Mp � varies
almost in the same interval preserving approximately the
same order of f . According to this, for the above numeri-
cal cases the axion mass is approximately m2

φ ∼ �2 ∼ f 2,
i.e. is of the order of the symmetry breaking scale.

Double-well inflation
The potential is given by

V = M4

[(
φ

φ0

)2

− 1

]2

, (4.49)

where the scale M is determined by the COBE normalization,
and φ0 corresponds to the vev. The shape of this potential is
that of the Mexican hat and it gives the best illustration of
spontaneous symmetry breaking [116]. If the scalar field is
minimally coupled, then successful inflation with this poten-
tial consistent with observations demands super-Planckian
values of φ0 [98,117]. If we consider non-minimal kinetic
and GB couplings that satisfy (4.13), then as will be shown,
the restriction of super-Planckian values can be relaxed while
the inflationary observables remain in the range of values
consistent with observations. The slow-roll parameters take
the form

ε0 = 8(3 − 8η)M2
pφ

2

3(1 + 2β)
(
φ2 − φ2

0

)2 , �0 = 16η

3
ε0,

123



10 Page 14 of 32 Eur. Phys. J. C (2021) 81 :10

k0 = 2

3
β (3 − 8η) ε0

ε1 = �1 = k1 = 8 (3 − 8η) M2
p

(
φ2 + φ2

0

)
3 (1 + 2β)

(
φ2 − φ2

0

)2 (4.50)

It is worth noticing that the functional dependence of the
slow-roll parameters with respect to the scalar field is the
same as in the case of canonical case except for the coeffi-
cients, that makes the difference in the physical restrictions
on the parameters. The slow-roll goes from the left to the
right towards the minimum of the potential at φ0 and the
slow-roll parameters are increasing functions for φ in the
interval [0, φ0]. But at φ = 0

ε1,�1, k1 = 8 (3 − 8η) M2
p

3 (1 + 2β) φ2
0

.

Then, in order to be consistent with the slow-roll dynamics
ε1,�1, k1 < 1, which leads to

φ2
0 >

3 − 8η

3(1 + 2β)
M2

p. (4.51)

Note that the coefficient of M2
p can be made much smaller

that 1 for and β >> 1 (η can not be very close to 3/8 as
discussed bellow). Then, the vev of the scalar field can be
much less than Mp due to the non-minimal kinetic coupling.

In terms of the scalar field, the scalar spectral index and
the tensor/scalar ratio are given by the simple expressions

ns = 1 − (3 − 8η) M2
p

(
3φ2 + φ2

0

)
3 (1 + 2β)

(
φ2 − φ2

0

)2 (4.52)

r = 128 (3 − 8η)2 M2
pφ

2

9 (1 + 2β)
(
φ2 − φ2

0

)2 (4.53)

The end of inflation (ε0 = 1) occurs at the following value
of the scalar field

φe = 1

3(1 + 2β)

[
4(3 − 8η)M2

p + 3(1 + 2β)φ2
0

−2
√

2

√
(3 − 8η)M2

p

(
2(3 − 8η)M2

p + 3(1 + 2β)φ2
0

)]

(4.54)

After the integration of the e-folds number, that can be per-
formed exactly, one obtains the following expression for the
scalar field N e-folds before the end of inflation

φi =
√√√√−W

[
−M2

p

φ2
0

exp

(
−8 (3 − 8η) (N − Ne) M2

p

3 (1 + 2β) φ2
0

)]
φ0,

(4.55)

where

Ne =
3 (1 + 2β)

(
φ2 − φ2

0 ln
[
φ2/M2

p

])

8 (8η − 3) M2
p

∣∣∣
φe

, (4.56)

with φe given by (4.54).
The properties of the Lambert function W imply a restric-

tion on his argument in order for the results to be real. Since
the argument in W is negative, then for the argument in the
interval [−1/e, 0], W takes values in the interval [−1, 0]
which imply the following restriction on φ0

0 ≤ 8 (3 − 8η) (N − Ne) Mp

3 (1 + 2β) φ0
≤ 1 − 2 ln

(
φ0

Mp

)
(4.57)

The calculation of the observables ns and r at Hubble cross-
ing gives

ns = 1 −
8 (3 − 8η) M2

p

(
1 − 3W

[
− M2

p

φ2
0

exp

(
− 8(N−Ne)(3−8η)M2

p

3(1+2β)φ2
0

)])

3(1 + 2β)φ2
0

(
1 + W

[
− M2

p

φ2
0

exp

(
− 8(N−Ne)(3−8η)M2

p

3(1+2β)φ2
0

)])2

(4.58)

r = −
128 (3 − 8η)2 M2

pW

[
− M2

p

φ2
0

exp

(
− 8(N−Ne)(3−8η)M2

p

3(1+2β)φ2
0

)]

9(1 + 2β)φ2
0

(
1 + W

[
− M2

p

φ2
0

exp

(
− 8(N−Ne)(3−8η)M2

p

3(1+2β)φ2
0

)])2 .

(4.59)

Limiting ourselves to the case when only the GB coupling
is present, i.e. β = 0, we find that in the region of small
φ0 (0.01Mp < φ0 < 0.1Mp) it is possible to find suitable
values for ns (ns ∼ 0.064 − 0.968) but η must be extremely
close to the critical value 3/8 (η = 0.3749999) which ren-
ders extremely small r (r ∼ 10−8). For even smaller values
of φ0, ns acquires values inconsistent with observations and
r reduces practically to zero, unless we consider values for η

even closer to 3/8 but in this case any signal of gravitational
waves disappears. For φ0 > Mp (in fact for η > 10) there is
a wider range of η values that lead to successful inflation with
suitable range for ns and r , but in this case as in the canon-
ical model the scale of symmetry breaking becomes super
Planckian. On the other hand for negative η, −1 < η < 0,
we can find values of ns and r favored by observations but
always for super Planckian values of φ0. η < −1 leads to
large values of r disfavored by observations. Resuming, the
inflation with sub Planckian φ0 can be realized with GB cou-
pling but at the cost of very weak (r ∼ 10−8) or no signals of
primordial gravitational waves. With super Planckian scale
of symmetry breaking inflation is always possible with suit-
able values of ns and r .

To have another appreciation and make a close estimate
of the regions of suitability of the model we can follow the
behavior of the Lambert function in (4.58) and (4.59). It can
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Fig. 7 ns vs r for β in the interval 108 ≤ β ≤ 109 for N = 50, 60, 70
and φ0 = 10−3Mp . Note that larger number of e-folds moves r well
inside the region quoted by latest observations

Fig. 8 ns vs r for φ0 in the interval 10−4Mp ≤ φ0 ≤ 10−3Mp for
N = 50, 60, 70 and β = 1010. All curves pass through zones of the
region favored by observations

be checked numerically that for β = 0 and φ0 << Mp, for
instance φ0 ∼ 10−2 − 10−4Mp, independently of η (as long
as η is not extremely close to 3/8) it follows that W ≈ 0
from which we can conclude that

ns ≈ 1 − 8(3 − 8η)M2
p

3φ2
0

, r ≈ 0, (4.60)

from which it becomes clear that the GB coupling can not lead
to successful inflation with the symmetry breaking below the
Planck scale, unless η is extremely close to its critical value
3/8, which can lead to suitable ns but without signals of
gravitational waves.

Considering only the non-minimal kinetic coupling in
Figs. 7 and 8 we show some curves in the (ns − r )-plane
for different regions β and φ0. These results show that it is
possible to realize successful inflation with ns and r in the
regions favored by observations, with the symmetry breaking
scale of the order of the GUT scale (φ0 ∼ 10−3Mp).

In the strong coupling limit the inflationary magnitudes
can be simplified and take the following form that numeri-
cally give results very close to those obtained with the exact
expressions. From (4.54) and (4.55) the following expression

is obtained for φi in the regime β >> 1

φi =
√√√√−W

[
− exp

(
−1 − 4NM2

p

βφ2
0

)]
φ0, (4.61)

which leads to the following results for the inflationary
indices

ns = 1 −
8

(
1 − 3W

[
− exp

(
−1 − 4NM2

p

βφ2
0

)])
M2

p

(2β + 1)

(
1 + W

[
− exp

(
−1 − 4NM2

p

βφ2
0

)])2

φ2
0

(4.62)

r = −
128W

[
− exp

(
−1 − 4NM2

p

βφ2
0

)]
M2

p

(2β + 1)

(
1 + W

[
− exp

(
−1 − 4NM2

p

βφ2
0

)])2

φ2
0

.

(4.63)

In the large β limit we find

ns = N − 2

N
, r = 8

N
(4.64)

which for N = 60 give ns ≈ 0.967, r ≈ 0.133. Since the
function (4.63) is an increasing function with respect to β

and φ0, then r = 8
N is the upper limit for r in this model. It

should be noted that at β → ∞ from (4.55) follows φi → φ0

which from (4.52) and (4.53) gives that ns, r apparently
blow up, but also β → ∞ which amounts to finite ns and
r . This becomes clear when Ne is replaced in (4.58) and
(4.59). The above numerical analysis shows that the scalar
field with the double well potential (4.49) and non-minimal
kinetic coupling term gives inflationary indices in the region
favored by observations with small field inflation and the
symmetry breaking scale of the order of GUT scale.

The effect of both GB and NMKC is illustrated in Figs.
9, 10 and 11, where different regions of the parameters is
considered.

The above results show that coupling of scalar field to
curvature and specially the NMKC could be important in
the slow-roll dynamics leading to inflationary indices in the
region favored by observations. For the double well potential
this becomes possible with a scale of symmetry breaking of
the order of the GUT scale or bellow.

Constant NMKC and GB coupling ∝ V−1

The effect of constant NMKC in inflation in various cos-
mological scenarios has been studied in [65–69,71–78]. We
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Fig. 9 ns vs r for φ0 in the interval 2×10−4Mp ≤ φ0 ≤ 2×10−3Mp
for N = 50, 60, 70, η = 0.3 and β = 109. All curves fall well inside
the region favored by latest observations

propose the following class of couplings

F1 = β

M2
p
, F2(φ) = ηM4

p

V (φ)
, (4.65)

which give the following slow-roll parameters

ε0 = (3 − 8η)M6
pV

′2

6V 2
(

2βV + M4
p

) , �0 = 16η

3
ε0, k0 = β(3 − 8η)2M6

pV
′2

9V
(

2βV + M4
p

)2

ε1 = �1 =
2(3 − 8η)M6

p

(
V ′2 − 2V ′′V

) (
2βV + M4

p

)

3V 2(2βV + M4
p)

2 ,

k1 =
(3 − 8η)M6

p

(
V ′2 − 2V ′′V

) (
2βV + M4

p

)

3V 2(2βV + M4
p)

2 . (4.66)

For the inflationary indices ns and r we obtain

ns =
V
(

2βV + M4
p

) [
2(3 − 8η)M6

pV
′′ + 3V (2βV + M4

p)
]

− (3 − 8η)M6
pV

′2(8βV + 3M4
p)

3V 2
(

2βV + M4
p

)2 (4.67)

r = 8(3 − 8η)2M6
pV

′2

9V 2(2βV + M4
p)

(4.68)

For the number of e-folds form (4.12) we find

N = −
∫ φe

φi

3V
(

2βV + M4
p

)

(3 − 8η)M6
pV

′ dφ. (4.69)

Note that for consistency at the end of inflation the coefficient
of �0 in (4.66) must be of the order 1, i.e. 16η/3 ∼ O(1).
Note also that unlike the previous models, the slow-roll
parameters and therefore the inflationary indices for mod-
els of the type (4.65) depend on the scale of the potential.
For the models (4.65) we can appreciate the contribution of

Fig. 10 ns vs r for φ0 in the interval 3×10−4Mp ≤ φ0 ≤ 3×10−3Mp
for N = 60, β = 109 and η = 0.2, 0.3, 0.35. All curves run though
values favored by latest observations

the couplings F1 and F2 to the Lagrangian during inflation
as follows

F1R (∂φ)2 ∼ β

M2
p
H2
i (∂φ)2 ∼ 10−10β (∂φ)2 (4.70)

and

F2R
2 ∼ ηM4H4

i

V
∼ ηM4

pH
4
i

Vi
∼ 10−10ηM4

p (4.71)

where we assumed the typical values, Hi ∼ 10−5Mp, Vi ∼
10−10M4

p. Then values of η ∼ 1 and β >> 1 (whenever

10−10β (∂φ)2 << Vi ) lead to inflationary dynamics driven
by the potential. Bellow we analyze some cases that are of
interest.

Power-law potential
The power-law potential with dimensionless self-coupling

λ is given by

V = λM4
p

n

(
φ

Mp

)n
, (4.72)

where λ is fixed by COBE normalization. This potential leads
to the following slow-roll parameters
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ε0 = (3 − 8η)n3Mn+2
p

6φ2
(
2βλφn + nMn

p
) , �0 = 16η

3
ε0,

k0 = βλ(3 − 8η)2Mn+2
p φn

9φ2
(
2βλφn + nMn

p
)2

ε1 = �1 =
2n2(3 − 8η)Mn+2

p

(
(n + 2)βλφn + nMn

p

)

3φ2
(
2βλφn + nMn

p
)2

k1 =
n2(3 − 8η)Mn+2

p

[
4βλφn + 2n(βλφn + Mn

p) − n2Mn
p

]

3φ2
(
2βλφn + nMn

p
)2 ,

(4.73)

that give the following observables in terms of the scalar field

ns = 1 −
(3 − 8η)n2Mn+2

p

(
4βλφn(n + 1) + n(n + 2)Mn

p

)

3φ2
(

2βλφn + nMn
p

)2

(4.74)

r = 8n3(3 − 8η)2Mn+2
p

9φ2
(

2βλφn + nMn
p

) (4.75)

which are evaluated at the horizon crossing, φ = φi .
We can consider some cases that allow analytical approach

(the case n = 2 has been discussed in [89]). In absence of

kinetic coupling the fields at the beginning and at the end of
inflation are

φi =
√
n(4N + n)(3 − 8η)

6
Mp, φe =

√
3 − 8η

6
Mp

(4.76)

where η < 3/8. For the inflationary indices we find the
same results of the power-law potential for the model (4.13),
namely

ns = 4N − n − 4

4N + n
, r = 16n(3 − 8η)

3(4N + n)
. (4.77)

that have been already discussed.
In absence of GB coupling we need to fix n in order to

find analytical expressions. For n = 2 the scalar field takes
the values

Fig. 11 ns vs r for φ0 in the interval 3×10−4Mp ≤ φ0 ≤ 3×10−3Mp
for N = 60, η = 0.25 and β = 109, 1010, 1011. All curves follow the
same trajectory but start at different points depending on β

φi = Mp√
2βλ

√√
2(4βλ(4N + 1) +√8βλ + 1 + 1) − 2,

φe = Mp√
2βλ

√√
8βλ + 1 − 1. (4.78)

From (4.74) and (4.75) we find

ns = 1 −
8βλ
(

3
√

2
√

4βλ(4N + 1) + √
8βλ + 1 + 1 − 2

)
(
4βλ(4N + 1) + √

8βλ + 1 + 1
) (√

2(4βλ(4N + 1) + √
8βλ + 1 + 1) − 2

) (4.79)

r = 64
√

2βλ√
4βλ(4N + 1) + √

8βλ + 1 + 1
(√

2(4βλ(4N + 1) + √
8βλ + 1 + 1) − 2

) (4.80)

In the limit β >> 1 these magnitudes approach the values

ns = 4N − 5

4N + 1
, r = 16

4N + 1
(4.81)

Taking into account the results (4.77) (for β = 0) we find
that the inflationary indices take values in the intervals

2N − 3

2N + 1
< ns <

4N − 5

4N + 1
(4.82)

16

4N + 1
< r <

16

2N + 1
(4.83)

Thus, for N = 60: 0.967 < ns < 0.975 and 0.066 < r <

0.132. For N = 50: 0.96 < ns < 0.97 and 0.0796 < r <

0.158.
Considering the two couplings we find the following

asymptotic behavior at β >> 1

ns = 4N − 5

4N + 1
, r = 16(3 − 8η)

3(4N + 1)
(4.84)
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comparing to (4.77) that correspond to β = 0 it can be seen
that for 0 < β < ∞ the values of ns remain in the same
interval (4.82) and r takes values in the following interval

16 (3 − 8η)

3 (4N + 1)
< r <

16 (3 − 8η)

3 (2N + 1)
(4.85)

so the GB coupling affects only r in the large β regime. So
it is clear that 50 ≤ N ≤ 60 gives suitable values for ns and
for r we can always choose η in such a way that satisfies the
bound r < 0.05.

For n = 4 the algebraic expressions for the fields are too
large, but in the regime β >> 1 the following limits for ns
and r are found

ns = 3N − 4

3N + 1
, r = 16

3N + 1
. (4.86)

From (4.77) (for η = 0) we find that the inflationary indices
for 0 < β < ∞ take values

N − 2

N + 1
< ns <

3N − 4

3N + 1
(4.87)

16

3N + 1
< r <

16

N + 1
(4.88)

which give the intervals for N = 60: 0.951 < ns < 0.972
and 0.088 < r < 0.262. For N = 50: 0.941 < ns < 0.967
and 0.106 < r < 0.314. For n = 70: 0.958 < ns < 0.976
and 0.076 < r < 0.225. It is clear that the only interval
that marginally saves r corresponds to 70 e-folds. Taking
into account the GB coupling, it is found that the behavior
of ns remains unchanged in the interval 0 < β < ∞, while
r varies in the following interval

16(3 − 8η)

3(3N + 1)
< r <

16(3 − 8η)

3(N + 1)
, (4.89)

so that theoretically for n = 4, r can satisfy the bound r <

0.05 by choosing an appropriate η < 3/8.

Exponential potential

V = V0e
−λφ/Mp . (4.90)

The slow-roll parameters for this model with couplings (4.65)
are

ε0 = (3 − 8η) λ2M4
pe

λφ/Mp

6
(
M4

pe
λφ/Mp + 2βV0

) , �0 = 16η

3
ε0,

k0 = (3 − 8η)2 λ2βV0M4
pe

λφ/Mp

9
(
M4

pe
λφ/Mp + 2βV0

)2

ε1 = �1 = 2 (3 − 8η) λ2βV0M4
pe

λφ/Mp

3
(
M4

pe
λφ/Mp + 2βV0

)2

k1 =
(3 − 8η) λ2M4

p

(
2βV0 − M4

pe
λφ/Mp

)
eλφ/Mp

3
(
M4

pe
λφ/Mp + 2βV0

)2 .

(4.91)

For the scalar fields the following expressions are found

φi = 1

6λ

[
6 ln

[
12βV0(

(3 − 8η)λ2 − 6
)
M4

p

]

+6W

[
1

6

(
(3 − 8η)λ2 − 6

)
e−1+ 1

6 (3−8η)(2N+1)λ2
]

−(3 − 8η)(2N + 1)λ2 + 6
]
Mp, (4.92)

φe = 1

λ
ln

[
12βV0(

(3 − 8η)λ2 − 6
)
M4

p

]
Mp, (4.93)

which imposes the following restriction on η and λ to avoid
negative arguments in the logarithmic function

η <
3λ2 − 6

8λ2 . (4.94)

So that the upper limit of η depends onλ and in the limitλ >>

1 this limit is the critical value 3/8. The inflationary indexes
con be expressed analytically in terms of the parameters as
follows

ns = 1 −
(3 − 8η)λ2

(
2W
[

1
6

(
(3 − 8η)λ2 − 6

)
e−1+ 1

6 (3−8η)(2N+1)λ2
]

+ 1
)

3

(
W

[
1

6

(
(3 − 8η)λ2 − 6

)
e−1+ 1

6 (3−8η)(2N+1)λ2
]

+ 1

)2

(4.95)

r = 8(3 − 8η)λ2

9
(
W
[

1
6

(
(3 − 8η)λ2 − 6

)
e−1+ 1

6 (3−8η)(2N+1)λ2
]

+ 1
) (4.96)

A remarkable property of ns and r in this model is that they
do not depend on β. Note that if β = 0 then the slow-roll
parameters become constant. Then the principal role of β is
to provide the graceful exit from inflation, apart from setting
the initial conditions on the scalar field as seen in (4.92) and
(4.93), which allows small-field inflation. Note also from
(4.95) and (4.96) that as η approaches its critical value 3/8
the spectral index approaches the value ns = 2N−1

2N , very
close to the scale invariance for N ∼ 60 − 70, and the signal
of gravitational waves disappears. In Figs. 12 and 13 we show
some trajectories in the (ns − r )-plane.

To estimate which values of λ and η are more suitable for
inflation we can look at the slow-roll parameters at the end
of inflation, which are given by

ε0 = 1, ε1 = 2 − 12

(3 − 8η)λ2 , �0 = 16η

3
,

�1 = 2 − 12

(3 − 8η)λ2

k0 = 1 − 8η

3
− 2

λ2 , k1 = 2 − 24

(3 − 8η)λ2 . (4.97)
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Fig. 12 ns vs r for η = 0.2, λ = 3 (dotted), η = 0.25, λ = 10
(dashed) and η = 0.35, λ = 100 (dot-dashed) in the N - e-fold interval
50 ≤ N ≤ 70. ns increases while r decreases with N . All curves are in
the region favored by latest observations

Note that if λ >> 1 then ε1,�1, k1 ≈ 2 and δ0, k0 ∼ ε0

(provided η ∼ 0.1 − 0.3). To keep them of the order O(1)

one can choose η, λ that satisfy the relation η ≈ 3(λ2−5)

8λ2 .

Natural inflation potential
This potential that has been discussed above (4.27) [110,

111]

V = �4
(

1 + cos

(
φ

f

))
, (4.98)

with the NMKC and GB couplings defined in (4.65) leads
to the following slow-roll parameters in terms of the scalar
field (setting Mp = 1 and α = β�4)

ε0 =
(3 − 8η) tan2

(
φ

2 f

)

6 f 2
[
2α cos

(
φ
f

)
+ 2α + 1

] , �0 = 16η

3
ε0,

k0 =
2α (3 − 8η)2 sin2

(
φ

2 f

)

9 f 2
[
2α cos

(
φ
f

)
+ 2α + 1

]2 ,

Fig. 13 ns vs r for N = 60 and λ = 2 (dotted), λ = 5 (dashed) and
λ = 10 (dot-dashed) with η in the interval 0.1 ≤ η ≤ 0.35

ε1 = �1 =
(3 − 8η)

[
4α cos

(
φ
f

)
− α cos

(
2φ
f

)
+ 5α + 2

]
sec2
(

φ
2 f

)

6 f 2
[
2α cos

(
φ
f

)
+ 2α + 1

]2 ,

k1 =
(3 − 8η)

[
6α − 2α cos

(
φ
f

)
+ 1
]

3 f 2
[
2α cos

(
φ
f

)
+ 2α + 1

]2 . (4.99)

For the scalar spectral index and the tensor-to-scalar ratio
it is found

ns =
sec2
(

φ
2 f

)

6 f 2
[
2α cos

(
φ
f

)
+ 2α + 1

]2
[ [

3 f 2
(

15α2 + 8α + 1
)

−(4β − 1)(3 − 8η)] cos

(
φ

f

)

+2α
[
3 f 2(3α + 1) − 8η + 3

]
cos

(
2φ

f

)

+3

[
f 2α2 cos

(
3φ

f

)
+ f 2

(
10α2 + 6α + 1

)

−(2α + 1)(3 − 8η)]
]

(4.100)

r =
8 (3 − 8η)2 tan2

(
φ

2 f

)

9 f 2
[
2α cos

(
φ
f

)
+ 2α + 1

] (4.101)

where the scalar field is evaluated at the horizon crossing,
φ = φ1. From ε0 = 1 we find the field at the end of inflation

φe = 2 f arctan

⎡
⎣
√√√√48 f 2α + 6 f 2 − 8η + 3 −√(6 f 2 − 8η + 3)2 + 96 f 2α(3 − 8η)√

(6 f 2 − 8η + 3)2 + 96 f 2α(3 − 8η) − 6 f 2 + 8η − 3

⎤
⎦ (4.102)
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For the number of e-foldings the following expression is
obtained

N = 6 f 2α

3 − 8η
(I [φe] − I [φi ]) , (4.103)

where

I [φ] = cos

(
φ

f

)
+ 4α + 1

α
ln

[
sin

(
φ

f

)]
(4.104)

This equation cannot be solved analytically with respect to
φi . We can numerically evaluate ns and r in terms of the e-
foldings and the model parameters. In Fig. 14 we plot some
(ns, r) curves for f in the range 0.001Mp ≤ f ≤ 0.1Mp.

Using the COBE normalization we find the following
expression for � using (4.46) and (4.99) (recovering Mp)

� =
√

2π (3 − 8η)M5/2
p P1/4

S[
3 f 2
(

cos
(

φ
f

)
+ 1
) [

2α cos
(

φ
f

)
+ 2α + M4

p

]
cot2
(

φ
f

)]1/4 ∣∣∣
φ=φi

(4.105)

The behavior of � and V for the curves of Fig. 14 is ploted
in Fig. 15. This numerical behavior shows that � is of the
order of the GUT scale for f ∼ 10−3Mp and the potential
is in the expected scale according to COBE normalization.

In Fig. 16 we illustrate the typical behavior of the slow-roll
parameters that lead to the trajectories in Fig. 14.

Double-Well Inflation
The potential

V = M4

[(
φ

φ0

)2

− 1

]2

, (4.106)

Has been discussed in the previous case. The slow-roll param-
eters with the couplings defined in (4.65) are given by

ε0 = 8 (3 − 8η) M6
pφ

4
0φ2

3
(
φ2 − φ2

0

)2 [
M4

pφ
4
0 + 2βV0

(
φ2 − φ2

0

)2] , �0 = 16η

3
ε0

k0 = 16βM6V0 (3 − 8η)2 φ4
0φ2

9
[
M4

pφ
4
0 + 2βV0

(
φ2 − φ2

0

)2]2 ,

ε1 = �1 =
8 (3 − 8η) M6φ4

0

[
φ4

0M
4
(
φ2 + φ2

0

)+ 2βV0
(
φ2 − φ2

0

)2 (
3φ2 + φ2

0

)]

3
(
φ2 − φ2

0

)2 [
M4

pφ
4
0 + 2βV0

(
φ2 − φ2

0

)2]2 ,

k1 = −
8 (3 − 8η) M6φ4

0

[
M4

pφ
4
0 − 2βV0

(
3φ4 − 2φ2

0φ2 − φ4
0

)]

3
(
φ2 − φ2

0

) [
φ4

0M
4
p + 2βV0

(
φ2 − φ2

0

)2]2 . (4.107)

Fig. 14 ns vs r for N = 60 and 0.001 ≤ f ≤ 0.1 (Mp = 1). As η

gets closer to 3/8, r gets smaller and is suppressed for η = 3/8

For the spectral index and the tensor-to-scalar ratio we
find

ns = 1

3
(
φ2 − φ2

0

)2
[
M4

pφ
4
0 + 2βV0

(
φ2 − φ2

0

)2
]2

×
[
12β2V 2

0

(
φ2 − φ2

0

)6 + 3M8φ8
0

(
φ2 − φ2

0

)2

−8 (3 − 8η) M10
p φ8

0

(
3φ2 + φ2

0

)
+ 4βV0M

4
pφ

4
0

×
[

3
(
φ2 − φ2

0

)4 − 4 (3 − 8η) M2
p

(
φ2 − φ2

0

)2 (
5φ2 + φ2

0

)]

(4.108)

r = 128 (3 − 8η)2 M6
pφ

4
0φ2

9
(
φ2 − φ2

0

)2
[
M4

pφ
4
0 + 2βV0

(
φ2 − φ2

0

)2
] (4.109)

For the number of e-folds we find

N = 1

(8η − 3) M6
pφ

4
0

(I1 [φe] − I1 [φi ]) , (4.110)

where
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Fig. 15 The scale � and the potential vs f for N = 60 and 0.001 ≤ f ≤ 0.1, corresponding to the curves in Fig. 13. The scale � from COBE
normalization is of the order of the GUT scale for f ∼ 10−3Mp

Fig. 16 The variation of ε0, ε1, . . . during inflation, for α = 5 × 106,
η = 0.2 and f = 10−3Mp . Note that α = βV0, where V0 is fixed by
COBE normalization

I1 [φ] =
[
3M4

pφ
4
0 + βV0

(
2φ4 − 9φ2

0φ2 + 18φ4
0

)]

φ2 − 6
(

2βV0 + M4
p

)
φ6

0 ln
(
φ/Mp

)
(4.111)

The remaining expressions are too long and the scalar field
at the horizon crossing cannot be found explicitly, allowing
only numerical analysis. The case β = 0 that can be treated
analytically is the same as the model (4.13) already analyzed.
In the numerical example shown in Fig. 17 we plot the results
of the model for ns and r .

The curves corresponding to N = 50 and N = 60 are
clearly more favored by observational data. Note also that
along the large interval 1 ≤ β ≤ 1010 for each curve, the
inflationary observables ns and r suffer only a small variation
of the order of 10−3. The scalar spectral index is a growing
function of β while r decreases with β. Numerical analysis
shows that η does not have much impact on ns but it does
affect the value of r . Thus for φ0 = 0.001 and β = 107, r
decreases from 0.0983 for η = 0 to 0 for η = 3/8.

Fig. 17 ns vs r for η = 0.2, φ0 = 10−3Mp and 1 ≤ β ≤ 1010.
The three curves correspond to N = 50, 60, 70. On average, over the
β-interval, ns and r vary only in ∼ 10−3

5 Consistency with the reheating process

After the end of inflation the Universe enters into the next
phase called pre/reheating [93–99] that originates, according
to one of the simplest mechanisms, from the oscillations of
the scalar field around the minimum of the potential, which
eventually leads to the production of ordinary matter. During
this period the Universe expands under matter domination
passing trough period of radiation domination followed by
matter domination, which lasts until a redshift of the order
one, giving way to the current dark energy dominated era. The
reheating phase, which allows us to understand how inflation
is connected to the hot big-bang phase, represents one of
the most poorly known processes after the end of inflation
and can lead to important uncertainties for the inflationary
predictions. This is due in part to the fact that there are not
strict constraints on the reheating energy scale.

In order to understand and illustrate how the inflation
predictions depend on the details of the reheating era, one
can use the approximation of constant equation of state dur-
ing reheating which allows to derive relations between some
reheating characteristics like its equation of state parame-
ter, its energy scale and the inflationary indices. These new
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constraints could in principle break degeneracies between
different models of inflation that give the same predictions
for ns and r .

Let ρrh and prh be the energy density and pressure of the
effective fluid that originates during reheating and dominates
the Universe . The continuity equation for this fluid gives

ρrh(N ) = ρe exp

[
−3
∫ N

Ne

(
1 + wrh(N

′)
)
dN ′
]

, (5.1)

where wrh = prh/ρrh is the EoS during reheating. A useful
quantity is the mean EoS w̃rh defined as

w̄rh = 1

�N

∫ Nrh

Ne

wrh(N
′)dN ′ (5.2)

where �N = Nrh − Ne is the total number of e-folds dur-
ing reheating. A useful phenomenological parameter that
encodes the deviations of the reheating from the pure radia-
tion era is defined as [94,95]

Rrad = ae
arh

(
ρe

ρrh

)1/4

, (5.3)

where ρrh represents the energy density at the end of reheat-
ing era, ρrh = ρrh(Nrh). Taking the logarithm and using
(5.1) we can write

ln Rrad = −�N + 3

4
�N (1 + w̄rh) = 1

4
�N (3w̄rh − 1)

(5.4)

using �N from (5.2) we find

ln Rrad = 1 − 3w̄rh

12 (1 + w̄rh)
ln

(
ρrh

ρe

)
(5.5)

The label “∗′′ will be used to make explicitly that the mag-
nitudes are evaluated at the horizon crossing. Thus, at the
horizon crossing the equality

k∗
a(N∗)H(N∗)

= 1 (5.6)

takes place, which can be written as

k∗
a0

(1 + ze) e
�N∗ = H∗ (5.7)

where H∗ = H(N∗) and �N∗ = Ne − N∗ = ln (ae/a∗) is
the number of e-folds before the end of inflation (see (2.18)
where N∗ and Ne correspond to the integral evaluated in
its lower and upper limits respectively). On the other hand
H∗ can be obtained from the amplitude of the scalar power
spectrum (3.34) which is evaluated at the horizon crossing
and is directly related to the COBEnormalization

PS = H2∗
(2π)2M2

p

1

2ε0∗ − �0∗
(5.8)

where ε0 and �0 are given by

ε0 =
V ′(φ)

[
8V (φ)2F ′

2(φ) + 3M4
pV

′(φ)
]

6V (φ)2
[
M2

p + 2F1(φ)V (φ)
] ∣∣∣

φ=φ∗
, (5.9)

�0 = −
8F ′

2(φ)
[
8V (φ)2F ′

2(φ) + 3M4
pV

′(φ)
]

9M4
p

[
M2

p + 2F1(φ)V (φ)
] ∣∣∣

φ=φ∗
.

(5.10)

The redshift at which the inflation ends can be expressed in
terms of Rrad from (5.3) as [97–99]

1 + ze = 1

Rrad

(
ρe

Qrhργ

)1/4

(5.11)

where ργ = 3H2
0 M

2
p�γ is the current energy density of

radiation and Qrh measures the change of relativistic degrees
of freedom from reheating to current epoch. By replacing
(5.11) in (5.7) we find

�N∗ = ln Rrad + ln

(
H∗
Mp

)
− 1

4
ln

(
ρe

M4
p

)
− N0 (5.12)

where

N0 = ln

(
k∗/a0(

Qrhργ

)1/4

)
.

The density ρe can be obtained using the Friedman equation
(2.15) and the expression (2.12) for the potential up to first
order in slow-roll parameters

ρe = 3Ve
3 − ε0e − 5

2�0e − 2k0e
= 3M2

pH
2∗
(
Ve
V∗

)

×3 − ε0∗ − 5/2�0∗ − 2k0∗
3 − ε0e − 5/2�0e − 2k0e

≈

≈
(
Ve
V∗

)
9M2

pH
2∗

3 − ε0e − 5/2�0e − 2k0e
(5.13)

where we used the fact that ε0∗,�0∗, k0∗ << 1. In this form
ρe does not depend on the normalization of the potential.
Replacing (5.13) in (5.12) we find

�N∗ = ln Rrad − 1

4
ln

⎡
⎣ 9

(2ε0∗ − �0∗)
(

3 − ε0e − 5
2 �0e − 2k0e

) Ve
V∗

⎤
⎦

+ 1

4
ln
(

4π2PS

)
− N0 (5.14)

Using ln Rrad from (5.5) and (5.13) gives the final
expression
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�N∗ = 1 − 3w̄rh

12(1 + w̄rh)
ln (ρrh) + 1 + 3w̄rh

6(1 + w̄rh)
ln
(

4π2PS

)
−

1

3 + 3w̄rh
ln

⎡
⎢⎣ 9

(2ε0∗ − �0∗)
1+3w̄rh

2

(
3 − ε0e − 5

2�0e − 2k0e

)
(
Ve
V∗

)⎤⎥⎦− N0

(5.15)

Once one performs the integration in Eq. (2.18) we find
�N∗ = �N (φ∗) (φ∗ = φi ), which after being replaced in
the l.h.s of (5.15) turns this equation into an algebraic equa-
tion whose solution determines φ∗ (which in turn gives us the
number of e-folds required before the end of inflation). The
difficulty lies in specifying ρrh and w̄rh that depend on the
process of reheating which is the less known post-inflationary
phase.

A crude appreciation of �N∗ can be obtained if one
assumes instantaneous reheating, i.e. ρrh = ρe, in which case
as follows from (5.3) and (5.4) Rrad = 1 and w̄rh = 1/3 and
therefore �N∗ will depend only on quantities defined during
inflation. In this case from (5.15) it follows that

�N∗ = 1

4
ln
(

4π2PS

)
− 1

4
ln

⎡
⎣ 9

(2ε0∗ − �0∗)
(

3 − ε0e − 5
2�0e − 2k0e

)
(
Ve
V∗

)⎤
⎦− N0 (5.16)

Further analysis requires the specification of the inflationary
model, that is to define V (φ), F1(φ) and F2(φ).

In order to apply the above results to at least show the con-
sistency with the subsequent reheating process, we can con-
sider here an additional simplification (apart from assuming
instantaneous reheating) by assuming that there is not signifi-
cant drop in energy density during the lasts stages of inflation,
so that V∗ ≈ Ve. This leads to the number of e-foldings from
(5.16) [93]

�N∗ ≈ 1

4
ln
(

4π2PS

)
− 1

4
ln

[
3

(2ε0∗ − �0∗)

]
− N0

≈ 63.3 − 1

4
ln

[
3

(2ε0∗ − �0∗)

]
(5.17)

where for the numerical estimation in the second equality
we have based on [93], and we have neglected ε0e, . . . which
is equivalent to setting ρe = Ve in (5.12). So, the above
estimation still keeps trace of the non-minimal couplings.
Note that the smaller (2ε0∗ − �0∗), the more significant the
contribution of this term can be. In terms of φ∗ we can write
the following equation

�N∗ ≈ 63.3 − 1

4
ln

⎡
⎢⎣

27M4
pV

2(φ∗)
(

2F1(φ∗)V (φ∗) + M2
p

)
[
8V 2(φ∗)F ′

2(φ∗) + 3M4
pV ′(φ∗)

]2

⎤
⎥⎦ (5.18)

To illustrate some cases let us consider the power-law
potential in the model (4.13) where the scalar spectral index
depends only on the power n and the proposed number of e-
foldings N , favoring only the model n = 2 as follows from
(4.24). Taking into account the Eq. (5.18) in Fig. rvsnskin16
we show the behavior of ns and r for the cases n = 2 and
n = 4, showing that both models become favored by obser-
vations.

Along the trajectories in Fig. 18 the number of e-folds
�N∗ does not present major variations, being equal to 61.3
for n = 2 and 61.7 for n = 4.

In Fig. 19 we show some (ns, r) trajectories for the natural
potential in the model (4.13).

6 Discussion

The analysis of general slow-roll inflation for a scalar-tensor
model with non-minimal kinetic and Gauss–Bonnet cou-
plings was performed and the results were applied to study
some inflationary scenarios. The Mukhanov–Sasaki equation

Fig. 18 ns vs r for φ2 and φ4 potentials, where the number of e-folds
satisfies the consistency with instantaneous reheating (5.18). For n = 2,
η was taken in the interval 0.34 ≤ η ≤ 0.35 and β = 0.5, and for n = 4,
0.31 ≤ η ≤ 0.33 and β = 0.3. Note that both curves satisfy the current
observational bounds
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Fig. 19 ns vs r for the natural potential (4.27) in the β-interval
105 ≤ η ≤ 108 and assuming f = 10−3Mp . The curves correspond to
η = 0.15, 0.2, 0.25. All curves are in the region favored by observa-

tions. The right panel shows the corresponding to each curve number
of e-folds, that satisfies the consistency of slow-roll results with the
instantaneous reheating (5.18)

and the general expression for the power spectra have been
deduced within the first-order formalism without resorting to
second-order action. The correspondence of this model with a
sector of generalized Galileons was shown and the functions
Gi (X, φ) that give the equivalence with the corresponding
terms in the scalar-tensor model were found.

From the general expressions for the slow-roll parameters
and the inflationary indices, it was found that these magni-
tudes depend on the scalar field only through the ratio V ′/V
(V ′′/V = (V ′/V )′ + (V ′/V )2) and the products F1V and
F ′

2V . This feature can facilitate the analysis in some cases
depending on the relationships between F1, F2 and V , and
two classes of couplings were considered that, for some mod-
els, lead to exact analytical results in the slow-roll approxima-
tion. The first one considers models where the coupling func-
tions F1 and F2 have an inverse relation with the potential,
which significantly simplifies the expressions for the slow-
roll indices and the derived magnitudes as seen in (4.17)–
(4.20)).

It was shown in the present study that the couplings
F1, F2 ∝ V−1 lead to inflationary indices well inside the
region favored by observations [9] for scalar potentials that
otherwise would not achieve it. An important consequence of
considering these couplings is that the inflationary indices, as
seen in [see (4.17)–(4.20)], do not depend on the scale of the
potential. For the power-law models the most favored model
is the quadratic potential and for the exponential potential
there is no graceful exit from inflation although very accept-
able values can be obtained for ns and r . In natural infla-
tion with the potential (4.27), in the strong coupling limit ns
increases towards the values ns = (2N −3)/(2N +1) which
gives suitable values in the interval 50 ≤ N ≤ 70, while r
depends on η as r = 16(3−8η)/(6N +3)) and can satisfy a
suitable bound for appropriate η-interval. It was also found
that the successful inflation can be realized with small fields
leading to symmetry breaking scale below the Planck scale,

which can be of the order of the GUT scale (∼ 1016 Gev).
If only GB coupling is considered, then for f << 1 suitable
values for ns can be obtained for η very close to 3/8 but at the
expense of having no signals of GW. With the only NMKC
successful inflation with symmetry breaking scale f ∼ 1016

Gev can be achieved as shown in Fig. rvsnskin2.
For the double-well potential (4.49) the functional depen-

dence of the slow-roll parameters with respect to the scalar
field is the same as in the case of canonical case except for the
coefficients, that makes the difference in the physical restric-
tions on the parameters. The NMKC allows inflation with
the vev φ0 << Mp. When only the GB coupling is present,
the inflation with sub Planckian φ0 can be realized as long
as η is extremely close to its critical value 3/8 but at the
cost of very weak (r ∼ 10−8) or no signals of primordial
gravitational waves. Considering only the NMKC as shown
in Fig. rvsnskin7 it is possible to realize successful inflation,
with ns and r in the regions favored by observations, with
the symmetry breaking scale of the order of the GUT scale.

In the second type of models the GB coupling maintains
the same form F2 ∝ V−1 while the kinetic coupling function
F1 is assumed constant. As follows from (4.66)–(4.69) the
inflationary observables depend on the scale of the potential.
This imply that only after fixing the scale of the potential
by COBE normalization we can determine the numerical
value of β. The power-law potential in the regime η = 0
and 0 < β < ∞ leads to intervals 0.967 < ns < 0.975
and 0.066 < r < 0.132 for N = 60 as follows from (4.82),
(4.83). For the power-law potential, as follows from (4.82)–
(4.89) for n = 2, 4, it was found that the interval of variation
of ns is not affected by the GB coupling while for r the GB
coupling leads to values that satisfy the bound r < 0.05. For
the exponential potential the results are plotted in Figs. 12
and 13, showing that the inflationary indices fall well inside
the region favored by observations. Numerical analysis for
natural inflation and the double-well inflation potential show
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also successful small-field inflation with the scale of sym-
metry breaking bellow the Planck scale. The behavior of the
slow-roll parameters during inflation was illustrated for the
natural inflation model, but similar behavior takes place for
all the models considered.

When the reheating phase was taken into account it was
obtained that, at least in the instantaneous reheating approxi-
mation, the slow-roll results were consistent with the reheat-
ing phase which was illustrated numerically for power-law
and natural inflation. Particularly interesting is that this con-
sistency improves the behavior of φ2 and φ4 inflation in the
model (4.13) where ns and r moved to the region favored by
the latest observations, as seen in Fig. 18.

Resuming, the inclusion of non-minimal kinetic and GB
couplings in single scalar field inflationary scenarios can
lead to significant effects. It was shown that the inflation-
ary indices can take values favored by the latest obser-
vations, which cannot be attained with a canonical scalar
field in some models. Additionally, some interesting results
like small-field successful inflation with power-law potential,
sub-planckian scale of symmetry breaking in natural infla-
tion and sub-planckian v.e.v for the scalar filed in double-well
potential can be achieved. It was also shown that N ∼ 60 is
consistent with the reheating process and that taking account
of it can improve in some models the behavior of the infla-
tionary observables.
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A First order perturbations

We start from the full action

S =
∫

d4x
√−g

[
1

2
F(φ)R − 1

2
∂μφ∂μφ − V (φ)

+F1(φ)Gμν∇μφ∇νφ − F2(φ)G
]

(A.1)

that can be splitted in the following manner

S = SNMC + Sφ + SGB + SK , (A.2)

where

SNMC =
∫

d4x
√−g

(
1

2
F(φ)R

)

Sφ =
∫

d4x
√−g

(
−1

2
∂μφ∂μφ − V (φ)

)

SGB = −
∫

d4x
√−gF2(φ)G.

SK =
∫

d4x
√−gF1(φ)Gμν∂

μφ∂νφ

Then, the variation with respect to the metric gives the
field equation that can be expressed as

Tμ
ν = T (φ)

μν + T GB
μν + T K

μν + T NMC
μν = 0, (A.3)

where

T NMC
μν = − 2√−g

δSNMC

δgμν
T (φ)

μν

= − 2√−g

δSφ

δgμν
T GB

μν

= − 2√−g

δSGB

δgμν
T K

μν = − 2√−g

δSK
δgμν

,

with the explicit expressions for the energy-momentum ten-
sors given by:

T (φ)
μν = ∇μφ∇νφ − 1

2
gμν∇λφ∇λφ − gμνV (φ), (A.4)

T NMC
μν = −gμν

[∇σ ∇σ F(φ)
]+ [∇μ∇νF(φ)

]− F(φ)Gμν, (A.5)

TGB
μν = −4

(
[∇μ∇νF2(φ)]R − gμν [∇ρ∇ρF2(φ)]R

−2[∇ρ∇μF2(φ)]Rνρ − 2[∇ρ∇νF2(φ)]Rμρ

+2[∇ρ∇ρF2(φ)]Rμν + 2gμν [∇ρ∇σ F2(φ)]Rρσ

−2[∇ρ∇σ F2(φ)]Rμρνσ

)
, (A.6)

T K
μν =

(
Rμν − 1

2
Rgμν

)
F1(φ)∇λφ∇λφ

+gμν∇λ∇λ
(
F1(φ)∇γ φ∇γ φ

)
−∇ν∇μ

(
F1 (φ) ∇λφ∇λφ

)+ RF1 (φ) ∇μφ∇νφ

−2F1 (φ)
(
Rμλ∇λφ∇νφ + Rνλ∇λφ∇μφ

)
+gμν Rλγ F1 (φ)∇λφ∇γ φ

+∇λ∇μ

(
F1 (φ) ∇λφ∇νφ

)+ ∇λ∇ν

(
F1 (φ) ∇λφ∇μφ

)
−∇λ∇λ

(
F1 (φ)∇μφ∇νφ

)− gμν∇λ∇γ

(
F1 (φ)∇λφ∇γ φ

)
.

(A.7)

And the equation of motion for the scalar field is given by
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1

2
F ′(φ)R + ∇μ∇μφ − V ′(φ) − F1

′(φ)Gμν∇μφ∇νφ

− 2F1(φ)Gμν∇μ∇νφ − F2
′(φ)G = 0 (A.8)

Linear perturbations

To calculate the linear perturbations we use the metric in the
Newtonian Gauge:

ds2 = −(1 + 2�)dt2 + a2(t)
[
(1 − 2�)δi j

]
dxidx j . (A.9)

The perturbed first order field equation can be written as:

δTμ
ν = δTμ(φ)

ν + δTμ(NMC)
ν + δTμ(GB)

ν + δTμ(K )
ν = 0,

where the explicit expressions for each perturbation are
given by [89]:

1. For the minimally-coupled scalar field:

δT 0(φ)
0 = φ̇2� − φ̇δφ̇ − V ′δφ,

δT 0(φ)
i = ∂i

(−φ̇δφ
)
,

δT i(φ)
j − 1

3
δijδT

k(φ)
k = 0,

δT k(φ)
k − δT 0(φ)

0 = −4�φ̇2 + 4φ̇δφ̇ − 2V ′δφ.

(A.10)

2. For the non-minimal coupling:

δT 0(NM)
0 = −2F

(
H(3H� + 3�̇) − �

a2 �

)

−Ḟ(3�̇ + 6H�) + 3H2δF + 3Hδ Ḟ −
(

�

a2

)
δF,

δT 0(NM)
i = ∂i

(
2F(H� + �̇) + Ḟ� − δ Ḟ + HδF

)
,

δT i(NM)
j − 1

3
δijδT

k(NM)
k = 1

a2(
∂i∂ j − 1

3
δi j�

)
(F (−� + �) + δF) ,

δT k(NM)
k − δT 0(NM)

0 = −2F
(
(3H�̇ + 3�̈)

+2H(3H� + 3�̇) + 6Ḣ�

+ �

a2 �

)
− Ḟ(3�̇ + 6H�)

−3Ḟ�̇ − 6F̈� + 6(Ḣ + H2)δF + 3δ F̈

+3Hδ Ḟ −
(

�

a2

)
δF.

3. For the non-minimal kinetic coupling:

δT 0(K )
0 = −2φ̇

(
−F1φ̇

(
− �

a2 � + 18�H2 + 9H�̇)

)

−2F1H
�

a2 δφ + 9H2F1δφ̇ + 9

2
H2φ̇δF1

)
,

δT 0(K )
i = ∂i

[
−2φ̇

(
−2HF1δφ̇ + 3H2F1δφ − H φ̇δF1

+F1φ̇
(
�̇ + 3H�

))]
,

δT i(K )
j − 1

3
δij δT

k(K )
k = 1

a2

(
∂i ∂ j − 1

3
δi j�

)

[−φ̇2δF1 − 2(F1φ̈ + HF1φ̇)δφ + F1φ̇2(−� − �)],
δT k(K )

k − δT 0(K )
0 = −12H Ḟ1φ̇δφ̇ − 12Ḣ F1φ̇δφ̇ − 12HF1φ̇δφ̈

+2F1φ̇2 �

a2 � + 2φ̇2 �

a2 δF1 + 4F1φ̇2 �

a2 �

−6Ḣ φ̇2δF1 − 6H φ̇2δ Ḟ1 + 2Ḟ1φ̇2(12H� + 3�̇)

+2F1φ̇2(12Ḣ� + 9H�̇ + 3�̈)

+4F1φ̈
�

a2 δφ − 12F1H φ̈δφ̇ − 12H φ̇φ̈δF1

+4F1φ̇φ̈(12H� + 3�̇). (A.11)

4. For the Gauss–Bonnet coupling:

δT 0GB
0 = 24H3 ˙δF2(φ) − 96H3 ˙F2(φ)� − 72H2 ˙F2(φ)�̇

− 8

a2 H2∇2δF2(φ) + 16

a2 H ˙F2(φ)∇2�,

δT iGB
j = 8

a2 ∂i ∂ j

[
−
(
F ′′

2 (φ)φ̇2 + F ′
2(φ)φ̈

)
� + HF ′

2(φ)φ̇�

+
(
H2 + Ḣ

)
F ′

2(φ)δφ
]

+8
[
H2 ¨δF2(φ) − 1

a2 H2F ′
2(φ)∇2δφ

− 1

a2 Ḣ F ′
2(φ)∇2δφ + 2H3 ˙δF2(φ) + 2H Ḣ ˙δF2(φ)

− 1

a2 H ˙F2(φ)∇2� − 8H3 ˙F2(φ)� − 8H Ḣ ˙F2(φ)�

+ 1

a2
¨F2(φ)∇2� − 4H2 ¨F2(φ)�

−3H2 ˙F2(φ)�̇ − 6H2 ˙F2(φ)�̇ − 2Ḣ ˙F2(φ)�̇

−2H ¨F2(φ)�̇ − 2H ˙F2(φ)�̈
]
δi j ,

δT kGB
k = 16

a2
¨F2(φ)∇2�

− 16

a2 H ˙F2(φ)∇2� − 16

a2

(
H2 + Ḣ

)
∇2δF2(φ)

+24H2 ¨δF2(φ)

+48H3 ˙δF2(φ) + 48H Ḣ ˙δF2(φ) − 192H3 ˙F2(φ)�

−192H Ḣ ˙F2(φ)� − 96H2 ¨F2(φ)�

−72H2 ˙F2(φ)�̇ − 144H2 ˙F2(φ)�̇ − 48Ḣ ˙F2(φ)�̇

−48H ¨F2(φ)�̇ − 48H ˙F2(φ)�̈,

δT 0GB
i = 8∂i

[
H3δF2(φ) − H2 ˙δF2(φ) + 2H ˙F2(φ)�̇

+3H2 ˙F2(φ)�
]
,

δT iGB
0 = 8

a2 ∂i

[
H2 ˙δF2(φ) − H3δF2(φ) − 2H ˙F2(φ)�̇

−3H2 ˙F2(φ)�
]
. (A.12)

5. Linear perturbation of the equation of motion (A.8)

3Hδφ̇ + 18F1H
3δφ̇ + 12F1H Ḣδφ̇
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+δφ̈ + 6F1H
2δφ̈ − 6H φ̇� − 72F1H

3φ̇�

−48F1H Ḣ φ̇� − 2φ̈�

−24F1H
2φ̈� − φ̇�̇ − 18F1H

2φ̇�̇

−3φ̇�̇ − 54F1H
2φ̇�̇ − 12F1 Ḣ φ̇�̇

−12F1H φ̈�̇ − 12F1H φ̇�̈

−�δφ

a2 − 6F1H
2�δφ

a2 − 4F1 Ḣ�δφ

a2

−4F1H φ̇��

a2 + 4F1H φ̇��

a2

+4F1φ̈��

a2 + 12H2�F ′

+6Ḣ�F ′ + 3H�̇F ′ + 12H�̇F ′ + 3�̈F ′

+��F ′
a2 − 2��F ′

a2 + 18H3φ̇δφF1
′

+12H Ḣ φ̇δφF1
′

+6H2φ̈δφF1
′ + 6H2φ̇δφ̇F1

′ − 12H2φ̇2�F1
′

−6H φ̇2�̇F1
′ + 2φ̇2��F1

′
a2 − 96H4�F2

′ − 96H2 Ḣ�F2
′

−24H3�̇F2
′ − 96H3�̇F2

′ − 48H Ḣ�̇F2
′ − 24H2�̈F2

′

−8H2��F2
′

a2 + 16H2��F2
′

a2 + 16Ḣ��F2
′

a2

−6H2δφF ′′ − 3ḢδφF ′′ + 3H2φ̇2δφF1
′′

+24H4δφF2
′′ + 24H2 ḢδφF2

′′ + δφV ′′ = 0

B Correspondence between the NMKC and generalized
Galileons

The action for the non-minimal kinetic term is given by

S =
∫

d4x
√−gF1(φ)Gμν∇μφ∇νφ (B.1)

It will be proven that this action is equivalent equivalent
(up to surface terms) to the following model of generalized
Galileons:

Sgal =
∫

d4x
√−g

[
K − G3�φ + G4R + G4,X

[
(�φ)2

−(∇μ∇νφ
)2]] (B.2)

where K y Gi are functions of φ y X = − 1
2∇μφ∇νφ

given by

K = 2F1
′′(φ)X2

G3 = 3F1
′(φ)X

G4 = F1(φ)X (B.3)

In fact, replacing the Einstein tensor, Gμν = Rμν − 1
2 Rgμν ,

in (B.1), it follows that

S =
∫

d4x
√−gF1(φ)

(
Rμν − 1

2
Rgμν

)
∇μφ∇νφ

=
∫

d4x
√−g

[
F1(φ)Rμν∇μφ∇νφ + RF1(φ)X

]

Taking into account the commutator of covariant deriva-
tives:

[∇λ,∇ν] ∇λφ = Rλ
μλν∇μφ = Rμν∇μφ,

the action (B.1) can be written as

S =
∫

d4x
√−g

[
F1(φ)∇νφ [∇λ, ∇ν ] ∇λφ + RF1(φ)X

]

=
∫

d4x
√−g

[
F1(φ)∇νφ∇λ∇ν∇λφ − F1(φ)∇νφ∇ν∇λ∇λφ

+RF1(φ)X

]

After integration by parts in the second term and omitting
surface integrals, it is found

S =
∫

d4x
√−g

[
F1(φ)∇νφ∇λ∇ν∇λφ

+F1
′(φ)∇νφ∇νφ∇λ∇λφ

+F1(φ)(�φ)2 + RF1(φ)X
]

where (�φ)2 = (∇λ∇λφ
)
(∇ν∇νφ). Integrating again by

parts in the first term and omitting surface integrals, gives

S =
∫

d4x
√−g

[
− F1

′(φ)∇λφ∇νφ∇ν∇λφ

− F1(φ)∇λ∇νφ∇ν∇λφ + F1
′(φ)∇νφ∇νφ∇λ∇λφ

+ F1(φ)(�φ)2 + RF1(φ)X
]

In order to simplify the expressions we use the nota-
tion
(∇μ∇νφ

)2 ≡ ∇μ∇νφ∇μ∇νφ = ∇λ∇νφ∇ν∇λφ, which
allows to write the action as follows

S =
∫

d4x
√−g

[
− F1

′(φ)∇λφ∇νφ∇ν∇λφ

+ F1
′(φ)∇νφ∇νφ∇λ∇λφ + RF1(φ)X

+ F1(φ)
(
(�φ)2 − (∇μ∇νφ

)2) ]

This expression can be rewritten in the following form

S =
∫

d4x
√−g

[
− 1

2
F1

′(φ)∇λφ∇νφ∇ν∇λφ

− 1

2
F1

′(φ)∇λφ∇νφ∇ν∇λφ − 1

2
F1

′(φ)∇νφ∇νφ∇λ∇λφ

+ 3

2
F1

′(φ)∇νφ∇νφ∇λ∇λφ

+ F1(φ)
[
(�φ)2 − (∇μ∇νφ

)2]+ RF1(φ)X

]
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After integrating by parts in the first term and simplifying it
is found

S =
∫

d4x
√−g

[
1

2
F1

′′(φ)∇νφ∇λφ∇νφ∇λφ

+ 3

2
F1

′(φ)∇νφ∇νφ∇λ∇λφ + RF1(φ)X

+ F1(φ)
(
(�φ)2 − (∇μ∇νφ

)2) ]

Using the notation X = − 1
2∇μφ∇νφ y � = ∇λ∇λ, this

expression can be rewritten as

S =
∫

d4x
√−g

[
2F1

′′(φ)X2 − 3F1
′(φ)X�φ

+F1(φ)
[
(�φ)2 − (∇μ∇νφ

)2]+ RF1(φ)X

]

Taking into account the functions defined in (B.3) it can be
seen that the action takes the final form

S =
∫

d4x
√−g

[
K − G3�φ + G4R

+G4,X

[
(�φ)2 − (∇μ∇νφ

)2]] (B.4)

which is the same action (B.2) and demonstrates the equiva-
lence of the actions (B.1) and (B.2).

C Correspondence between the GB coupling and
generalized Galileons

We start with the action for the GB coupling

S =
∫

d4x
√−g f (φ)G =

∫
d4x

√−g f (φ)

[
R2 − 4Rμν R

μν

+Rμνρσ Rμνρσ

]
(C.1)

whose corresponding energy-momentum tensor is the fol-
lowing (A.6)

Tμν
( f ) = 4

(
[∇ν∇μ f ]R − gμν [∇ρ∇ρ f ]R − 2[∇ρ∇μ f ]Rρν

+ 2gμν [∇ρ∇σ f ]Rρσ

+ 2[∇ρ∇ρ f ]Rμν − 2[∇ρ∇ν f ]Rρμ − 2[∇ρ∇σ f ]Rμρνσ
)

(C.2)

Next we evaluate the divergence of this tensor, namely
∇μT

μν

( f ). This calculation is tedious and we present here some
steeps that allow to reproduce the results. It should be taken
into account that for an arbitrary vector Vμ and scalar ϕ, it
follows

(∇α∇β − ∇β∇α)Vμ = Rμ
λαβV

λ,

(∇λ∇ν∇λ − ∇ν∇λ∇λ)ϕ = Rμν∇μϕ

After some algebraic manipulations it is obtained

∇μT
μν

( f ) = 4(RRμν − 2RσνRμ
σ + 2Rρσ R

μρσν)∇μ f

− 8
(∇μ∇ρ∇σ f

)
Rμρνσ . (C.3)

From

∇μ∇ρ∇σ f − ∇ρ∇μ∇σ f = −Rλ
σμρ∇λ f,

follows

Rμρνσ
(∇μ∇ρ∇σ f − ∇ρ∇μ∇σ f

) = −Rλ
σμρR

μρνσ ∇λ f,

which imply

2Rμρνσ
(∇μ∇ρ∇σ f

) = −Rλ
σμρR

μρνσ ∇λ f.

Substituting this expression in (C.3) it is found

∇μT
μν
( f ) = 4(RRμν−2Rσν Rμ

σ +2Rρσ Rμρσν+Rμ
σλρ R

λρνσ )∇μ f

(C.4)

This expression can be written in more compact form if using
the Banch-Lanczos identity in 4 dimensions:

gμνG = 4(RRμν − 2RσνRμ
σ + 2Rρσ R

μρσν + Rμ
σλρR

νσλρ)

In this way, it is obtained that

∇μT
μν

( f ) = G∇ν f (C.5)

Notice that this expression is an identity, which is also consis-
tent with the field equations. Solving for G from this identity
we find

G = 1

∇α f ∇α f
∇ν f ∇μT

μν

( f )

Particularly, if f = φ, it gives

G = 1

∇αφ∇αφ
∇νφ∇μT

μν

(φ) = − 1

2X
∇νφ∇μT

μν

(φ) (C.6)

where X = − 1
2∇αφ∇αφ. Substituting (C.6) in the initial

action gives

S =
∫

d4x
√−g

(
− f

2X
∇νφ∇μT

μν

(φ)

)

To better visualise, we expand explicitly this action

S =
∫

d4x
√−g

[
− 2 f

X
∇μ

([∇ν∇μφ]R)∇νφ

+ 2 f

X
∇μ

([∇ρ∇ρφ]R)∇μφ

+ 4 f

X
∇μ

([∇ρ∇μφ]Rρν
)∇νφ
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− 4 f

X
∇μ

([∇ρ∇σ φ]Rρσ

)∇μφ

− 4 f

X
∇μ

([∇ρ∇ρφ]Rμν
)∇νφ

+ 4 f

X
∇μ

([∇ρ∇νφ]Rρμ
)∇νφ

+ 4 f

X
∇μ

([∇ρ∇σ φ]Rμρνσ
)∇νφ] (C.7)

Integrating by parts in the first four terms, we obtain

S =
∫

d4x
√−g

[
2 f ′

X
∇μφ∇νφ[∇ν∇μφ]R

+ 2 f ∇νφ∇μ

(
1

X

)
[∇ν∇μφ]R

+ 2 f

X
[∇μ∇νφ][∇ν∇μφ]R

− 2 f ′

X
∇μφ∇μφ[∇ρ∇ρφ]R

− 2 f ∇μφ∇μ

(
1

X

)
[∇ρ∇ρφ]R

− 2 f

X
[∇μ∇μφ][∇ρ∇ρφ]R

− 4 f ′

X
∇μφ∇νφ[∇ρ∇μφ]Rρν

− 4 f ∇νφ∇μ

(
1

X

)
[∇ρ∇μφ]Rρν

− 4 f

X
[∇μ∇νφ][∇ρ∇μφ]Rρν

+ 4 f ′

X
∇μφ∇μφ[∇ρ∇σ φ]Rρσ

+ 4 f ∇μφ∇μ

(
1

X

)
[∇ρ∇σ φ]Rρσ

+ 4 f

X
[∇μ∇μφ][∇ρ∇σ φ]Rρσ

− 4 f

X
∇μ([∇ρ∇ρφ]Rμν)∇νφ

+ 4 f

X
∇μ([∇ρ∇νφ]Rρμ)∇νφ

+ 4 f

X
∇μ([∇ρ∇σ φ]Rμρνσ )∇νφ

]
(C.8)

In order to rewrite some terms, it is useful to take into account
the following relations

1

X
∇μφ∇μφ = −2

∇ν (ln X) = − 1

X

[∇ν∇μφ
]∇μφ

Using these equations, the action (C.8) takes the form

S =
∫

d4x
√−g

[
− 2 f ′∇νφ∇ν (ln X) R

+ 2 f ∇νφ∇μ

(
1

X

)
[∇ν∇μφ]R

+ 2 f

X
[∇μ∇νφ][∇ν∇μφ]R

+ 4 f ′[∇ρ∇ρφ]R − 2 f ∇μφ∇μ

(
1

X

)
[∇ρ∇ρφ]R

− 2 f

X
[∇μ∇μφ][∇ρ∇ρφ]R

+ 4 f ′∇νφ∇ρ (ln X) Rρν − 4 f ∇νφ∇μ

(
1

X

)
[∇ρ∇μφ]Rρν

− 4 f

X
[∇μ∇νφ][∇ρ∇μφ]Rρν

− 8 f ′[∇ρ∇σ φ]Rρσ + 4 f ∇μφ∇μ

(
1

X

)
[∇ρ∇σ φ]Rρσ

+ 4 f

X
[∇μ∇μφ][∇ρ∇σ φ]Rρσ

− 4 f

X
∇μ([∇ρ∇ρφ]Rμν)∇νφ + 4 f

X
∇μ([∇ρ∇νφ]Rρμ)∇νφ

+ 4 f

X
∇μ([∇ρ∇σ φ]Rμρνσ )∇νφ

]
(C.9)

To continue, notice that

− 2 f ′∇νφ∇ν (ln X) R = −4 f ′′X ln XR + 2 f ′ ln X�φR

+2 f ′ ln X∇νφ∇νR + t.d

(C.10)

4 f ′[∇ρ∇ρφ]R = 8 f ′′XR − 4 f ′∇ρφ∇ρR + t.d

(C.11)

4 f ′∇νφ∇ρ (ln X) Rρν = −4 f ′′ ln X∇ρφ∇νφRρν

−4 f ′ ln X [∇ρ∇νφ]Rρν − 2 f ′ ln X∇νφ∇νR + t.d

(C.12)

−8 f ′[∇ρ∇σ φ]Rρσ = −8 f ′′′∇λφ∇σ φ[∇σ ∇λφ]
−8 f ′′[∇λ∇σ φ][∇σ ∇λφ] − 16 f ′′′X�φ + 8 f ′′(�φ)2

+4 f ′∇σ φ∇σ R + t.d (C.13)

where t.d. indicates terms associated to total derivatives. It
is convenient to expand some terms in (C.12) and (C.13) as
follows

−4 f ′′ ln X∇ρφ∇νφR
ρν = 4 f ′′′ ln X∇λφ[∇ρ∇λφ]∇ρφ

+ 4 f ′′∇λ (ln X) [∇ρ∇λφ]∇ρφ

+ 4 f ′′ ln X [∇ρ∇λφ][∇λ∇ρφ]
+ 8 f ′′′X ln X�φ

− 4 f ′′∇ρ (ln X) ∇ρφ�φ

− 4 f ′′ ln X(�φ)2 + t.d (C.14)

−8 f ′′′∇λφ∇σ φ[∇σ ∇λφ] =16 f ′′′′X2 ln X − 8 f ′′′X ln X�φ

123
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+ 8 f ′′′ ln X [∇λ∇αφ]∇λφ∇αφ + t.d
(C.15)

−16 f ′′′X�φ = − 28 f ′′′X�φ + 24 f ′′′′X2

− 24 f ′′′′X2 ln X + 12 f ′′′X ln X�φ

− 12 f ′′′ ln X [∇λ∇αφ]∇λφ∇αφ + t.d
(C.16)

Replacing (C.14), (C.15) and (C.16) in (C.10), (C.11), (C.12)
and (C.13), and substituting in the action, we obtain

S =
∫

d4x
√−g

[
K − G3�φ + G4R + G4X

[
(�φ)2

−(∇μ∇νφ
)2]+ G5Gμν [∇μ∇νφ]

+ 4 f ′′ [(�φ)2 − (∇μ∇νφ
)2]+ 2 f ∇νφ∇μ

×
(

1

X

)
[∇ν∇μφ]R + 2 f

X
[∇μ∇νφ][∇ν∇μφ]R

− 2 f ∇μφ∇μ

(
1

X

)
[∇ρ∇ρφ]R − 2 f

X
[∇μ∇μφ][∇ρ∇ρφ]R

+ 4 f ′′∇λ (ln X) [∇ρ∇λφ]∇ρφ

− 4 f ′′∇ρ (ln X) ∇ρφ�φ − 4 f ∇νφ∇μ

×
(

1

X

)
[∇ρ∇μφ]Rρν − 4 f

X
[∇μ∇νφ][∇ρ∇μφ]Rρν

+ 4 f ∇μφ∇μ

(
1

X

)
[∇ρ∇σ φ]Rρσ

+ 4 f

X
[∇μ∇μφ][∇ρ∇σ φ]Rρσ

− 4 f

X
∇μ([∇ρ∇ρφ]Rμν)∇νφ

+ 4 f

X
∇μ([∇ρ∇νφ]Rρμ)∇νφ

+ 4 f

X
∇μ([∇ρ∇σ φ]Rμρνσ )∇νφ

]
(C.17)

where the notation
(∇μ∇νφ

)2 ≡ [∇μ∇νφ][∇μ∇νφ] has
been used and the functions K , G3, G4 y G5 have been
defined in the following way

K = 8 f ′′′′X2(3 − ln X)

G3 = 4 f ′′′X (7 − 3 ln X)

G4 = 4 f ′′X (2 − ln X)

G5 = −4 f ′ ln X

where GiX = ∂Gi/∂X . After multiple integration by parts
in the action (C.17) and tedious algebraic manipulations, it is
possible to cancel all counter terms in (C.17) and reproduce
the action in terms of generalized Galileons, given by

S =
∫

d4x
√−g

[
K − G3�φ + G4R

+ G4X

[
(�φ)2 − (∇μ∇νφ

)2]+ G5Gμν[∇μ∇νφ]

− G5X

6

[
(�φ)3 − 3 (�φ)

(∇μ∇νφ
)2 + 2

(∇μ∇νφ
)3] ]

(C.18)
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