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Abstract We present the features of a model which gener-
alizes Schwarzschild’s homogeneous star by adding a transi-
tion zone for the density near the surface. By numerically
integrating the modified TOV equations for the f (R) =
R+λR2 Palatini theory, it is shown that the ensuing config-
urations are everywhere finite. Depending on the values of
the relevant parameters, objects more, less or as compact as
those obtained in GR with the same density profile have been
shown to exist. In particular, in some region of the parameter
space the compactness is close to that set by the Buchdahl
limit.

1 Introduction

The idea that the endpoint of stellar evolution of sufficiently
massive and compact stars is a black hole can be tested by
exploring the consequences of the existence of very compact
objects, which would offer a window to extreme relativistic
effects, and point out to new physics (for a review see [1]).
In the realm of General Relativity, there are currently many
examples of such objects : boson stars [2], gravastars [3],
wormholes [4,5], quasi-black holes [6], and superspinars [7],
among others which, under reasonable assumptions, obey the
Buchdahl limit (M/R < 4/9) [8]. In the family of compact
objects, those that are ultra-compact (UCOs) are particularly
interesting. In the static and spherically symmetric case they
obey 2M < R < 3M [9]. Hence they have a photosphere,
and a second - stable - light ring [10,11], that give rise to a
trapping zone for particles with zero mass. Such a zone may
have important consequences for gravitational perturbations
[12],1 since some of their modes can decay very slowly [14],
and source nonlinear effects which may destabilize the sys-
tem [15].

1 See [13] for the case of weakly interacting massless particles.
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The simplest UCO in GR is the one described by the
Schwarzschild solution [16]. Several aspects of this model
have been studied, such as its stability under radial pertur-
bations [17], and its mode structure [12]. The constant den-
sity star has also been used to model the gravitational-wave
echoes of the remnant of neutron-star binary coalescences
[18], and to describe gravastars (by going beyond the Buch-
dahl limit) [19–22]. The slowly-rotating generalization of the
homogeneous star was obtained in [23], while the influence of
a nonzero cosmological constant was considered in [13,24–
27].2 The goal of the present work is to study the features of a
simple UCO, inspired in the constant density star, when a the-
ory different from GR is considered. In particular, we shall
concentrate here in f (R) theories of gravity in their Pala-
tini version (see [31,32] for reviews). Such theories offer an
alternative to GR, and their consequences have been widely
studied in compact objects (see for instance [33–35]).3

We shall consider a model described by a density that is
almost constant inside the object, and falls smoothly to zero
near the surface.4 It will be shown that the models built with
this density profile in the theory given by f (R) = R+ λR2

are everywhere regular.5 This type of f (R) has been fre-
quently employed both in the metric and the Palatini for-
malism. In the latter, among many examples we can cite the
following: charged black hole solutions with nonlinear elec-
trodynamics as a source have been analysed in [42] (and
their quasinormal modes in [43]), wormholes solutions in
[44], and nonsingular black holes in [45]. The ratio of crustal

2 A detailed investigation of the structure of compact objects in the
polytropic case was presented in [28–30].
3 For applications in a cosmological setting, see [36–40], among others.
4 Such a profile was used in [41] to study the structure of nonrelativistic
stars in Palatini f (R) theories.
5 We shall also show that the -inconsequential- discontinuities of the
constant density model at the surface of the star in GR (i.e. the discon-
tinuities in the derivatives of the pressure and of the rr component of
the metric tensor) are smoothed out.
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to the total moment of inertia of NSs in this theory was cal-
culated in [46]. The structure of neutron stars focusing in the
role of the derivatives of the equation of state was studied in
[33]. Polytropic stars in the Ehlers–Pirani–Schild approach
to Palatini R-squared gravity have been considered in [34].6

The paper is structured as follows. The modified TOV
equations for f (R) a la Palatini are presented in Sect. 2. The
results obtained by numerical integration of such equations,
paying special attention to the compactness and the central
pressure, and to the comparison with the model obtained with
the same density profile in GR, will be displayed in Sect. 3.
An examination of the trapping zones using the effective
potential will be given in Sect. 4. Our closing remarks are
presented in Sect. 5.

2 Stellar structure in f (R) Palatini gravity

The modified Hilbert-Einstein action is given by

S[gμν, �,ψm] = 1

16π

∫
d4x

√−g f (R) + Sm[gμν, ψm],
(1)

where f (R) is a function of the Ricci scalar R ≡
gμνRμν(�), with Rμν(�) = −∂μ�λ

λν + ∂λ�
λ
μν +�λ

μρ�
ρ
νλ −

�λ
νρ�

ρ
μλ. In the Palatini formalism [50], both the metric and

the connection � are taken as independent fields. The matter
action Sm depends on the matter fields ψm and the metric
gμν . The field equations, obtained by varying the action with
respect to the metric and the connection [51], are given by

fR(R)Rμν(�) − 1

2
f (R)gμν = 8πTμν , (2)

∇ρ

[√−g

(
δ
ρ
λ fRgμν − 1

2
δ
μ
λ fRgρν − 1

2
δν
λ fRgμρ

)]
= 0,

(3)

where fR ≡ d f/dR and Tμν ≡ (2/
√−g)δSm/δgμν is the

energy-momentum tensor, which satisfies the conservation
equation

∇μT
μν = 0. (4)

The trace of Eq. (2) yields

fR(R)R − 2 f (R) = 8πT . (5)

6 In a cosmological setting, there are many works devoted toR-squared
gravity in the Palatini approach. Among them, bouncing cosmologies
have been studied in [47], limits imposed by the redshift drift were
presented in [39], the possible development of singularities has been
analyzed in [48], the sequence of cosmological eras using phase space
analysis was considered in [36], and inflation was studied in [49].

For a given f (R), this algebraic equation yields the scalar
curvature R as a function of the trace T of the energy-
momentum tensor.

The stellar structure is computed by assuming a spherically-
symmetric and static metric with line element

ds2 = −e A(r)dt2 + e B(r)dr2 + r2(dθ2 + sin2 θdφ2), (6)

and a perfect-fluid matter with energy-momentum tensor
Tμν = (ρ + p)uμuν + pgμν , where ρ(r) is the density and
p(r) is the pressure, and uμ the four-velocity of the fluid.
Under these assumptions, Eq. (4) yields

p′ = − A′

2
(ρ + p) , (7)

where the prime denotes derivative with respect to the radial
coordinate, r . The t t and rr components of the field equations
(2) are [52,53]

A′ = − 1

1 + γ0

(
1 − eB

r
− eB

fR
8πrp + α0

r

)
, (8)

B ′ = 1

1 + γ0

(
1 − eB

r
+ eB

fR
8πrρ + α0 + β0

r

)
, (9)

where

α0 ≡ r2

[
3

4

(
f ′
R
fR

)2

+ 2 f ′
R

r fR
+ eB

2

(
R − f

fR

)]
, (10)

β0 ≡ r2

[
f ′′
R
fR

− 3

2

(
f ′
R
fR

)2
]

, (11)

γ0 ≡ r f ′
R

2 fR
, (12)

are dimensionless. Using Eq. (8) in Eq.(7), and introducing
the mass parameter m(r) ≡ r(1 − e−B)/2, the generalised
TOV equations take the form [41,53]

p′ = − 1

1 + γ0

ρ + p

r(r − 2m)

[
m + 4πr3 p

fR
− α0

2
(r − 2m)

]
,

(13)

m′ = 1

1 + γ0

[
4πr2ρ

fR
+ α0 + β0

2
− m

r
(α0 + β0 − γ0)

]
.

(14)

For a given f (R), the functions A(r), B(r), ρ(r), and p(r)
determine the stellar structure of a model governed ultimately
by the field equations (2), (3), and obeying the conservation
equation (4). The boundary conditions are the usual ones (
p(0) = pc and m(0) = 0), and an equation that defines the
form of the energy density is to be added to the system for
the numerical integration (see below). Since Birkhoff’s theo-
rem is valid in f (R)-Palatini theories (see for instance [32]),
the exterior solution of our models is the Schwarzschild-de
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Sitter solution. Therefore, at the surface of the star, defined
by p(R) = 0, we have A(r = R) = ln(1 − 2M/R − �R2),
where � = R∗/4, and the mass of the configuration is given
by

M = m(R) − R∗R
3

,

where R∗ is the solution of Eq. (5) for T = 0, and R is the
radius of star.

Let us point out that Eqs. (13) and (14) are very different
from those corresponding to the GR case (i.e. for α0 = β0 =
γ0 = 0). Leaving aside both the overall 1/(1 + γ0) factor on
the rhs of both equations and the important changes brought
by the explicit form of α0, β0, and γ0 (to be discussed below),
the rhs of Eq. 14 depends on both ρ and m.

To solve the system numerically, the dependence of α0,
β0, and γ0 with R and its derivatives is written in terms of ρ,
p, and their derivatives using Eq. (5).7 From now on, we will
work with the so-called R-squared gravity, characterised by
the function f (R) = R + λR2, where [λ] = L2. It follows
from Eq. (5) that8 R = −8πT = −8π(−ρ + 3p) Hence,
the energy density and the pressure appear on the r.h.s. of
Eqs. (13) and (14), as well as their first and second deriva-
tives. Although, under some assumptions, the dependence on
such derivatives leads to the appearance of singularities at the
surface of stars built with the equations presented above [52],
we shall see in the next section that the model introduced here
is everywhere regular.

3 Results

The results of the numerical integration of the system (13)-
(14) will be presented next, assuming the following form of
the matter density:

ρ(r) = ρ0

1 + exp
[ r−q

�

] , (15)

where ρ0, q and � are parameters. Such a form improves the
case ρ = constant by replacing the abrupt fall to zero of the
latter at the surface of the star with a transition zone, which
can be considered as a first approach to an atmosphere. In fact,
this form of the density smooths out discontinuities of the
constant density model at the surface of the star both for GR
(where the density as well as the first derivative of the metric
component grr and of the pressure are -inconsequentially-
discontinuous, see the Appendix), and for the model consid-
ered here, as will be shown below.

7 For reviews of relativistic stellar structure in modified theories of
gravity, see [54,55].
8 Notice that R∗ = 0 for f (R) = R + λR2.

Fig. 1 The plot shows an example of the radial dependence of the
density and the pressure of the models considered here

In the following we shall present the results of the inte-
gration of the modified TOV system with the density profile
given above, for different values of the parameters (the results
for GR are presented in the Appendix).9 Let us recall that to
integrate the system of first order differential equations we
need to specify p(0) ≡ pc, and m(0) = 0, as well as the
value of the parameters λ, and ρ0 . Numerical integration
then provides M = M(pc, ρ0, λ) and R = R(pc, ρ0, λ).
In the following, we shall choose to render the parameters
dimensionless using R, the radius of each configuration. Such
a choice reduces the number of parameters and yields, upon
integration, directly the compactness M̄ = M/R, at the price
of disposing of the values of the radius and the mass of each
configuration, a fact that does not have any impact on our
results, see next section.10 It also entails that p̄(r̄ = 1) = 0
in all cases, and permits the construction of point plots of the
form p̄c = p̄c(ρ̄0, λ̄) and M̄ = M̄(ρ̄0, λ̄), among others.

Before presenting the results, it is important to point out
that we shall only consider sets of parameters such that the
surface of the star is located after the region in which the
density falls exponentially to zero, as shown in Fig. 1. Note
that at the zero of the pressure (located at r̄ = 1), the energy
density is extremely small.

There is a limited range of values of λ̄ and ρ̄0 that allow
for this type of configuration. This in turn leads to limits on
p̄c and M̄ .11 Other configurations are possible, for instance
those in which the pressure decays slower than the density,
and approaches zero from above the latter. Since these models
lead to configurations with a very small M̄ , we shall not study
them here.

9 We shall keep q = 0.95 and � = 0.01 fixed, since they do not
qualitatively influence the results.
10 Dimensionless quantities will be distinguished from dimensional
ones by a bar.
11 The adoption of the exponential profile for the density also leads to
limits on the parameters in models based in GR, see Appendix.
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Fig. 2 p̄c as a function of ρ̄0, for various values of λ̄ > 0 (upper panel)
and λ̄ < 0 (lower panel)

Let us begin by showing the values of the central pressure
as a function of ρ̄0 for fixed λ̄, see Fig. 2.

Note that, contrary to what the plots seem to indicate,
the central pressure is finite for all values of λ̄, since for
each of them there is a maximum value of ρ̄0 which, along
with the corresponding value of p̄c, is such that the pressure
decays faster than the density, as in Fig. 1. By incrementing
λ̄ beyond that value, the model changes to the non-compact
type alluded to above. The plots in Fig. 2 show that for ρ̄0 up
to approximately 0.095, there are no appreciable differences
between the values of p̄c with λ̄ �= 0 and those of GR. For
higher densities, the behaviour is strongly dependent of the
sign of λ̄. For a given ρ̄0, the values of p̄c for positive λ̄ are
larger than those corresponding to GR.

In the case of λ̄ < 0, for a given value of p̄c larger than
approximately 0.20 , there are configurations with a higher
(sometimes much higher) value of ρ̄0. Also, for densities
higher than ≈ 0.15, the central pressure can be substantially
larger than that of GR, and for a given ρ̄0 in that region the
pressure is higher for smaller |λ̄|. It is important to point out
that, as in the case of GR with density profiles of the form
ρ = ρ0χ(r), where χ is dimensionless, it follows from the
modified TOV equations that pc must have the form pc =
ρ0g(ρ̄0, λ̄), where g is dimensionless. Hence, the curves pc×
ρ0 for any fixed λ and R will look like the ones displayed in
Fig. 2.

Fig. 3 Central pressure as a function of λ̄ for different values of ρ̄0

Fig. 4 M̄ as a function of λ̄, for different values of ρ̄0

The variation of p̄c with λ̄, for several values of ρ̄0 is
displayed in Fig. 3. The interval of values for ρ̄0 was chosen
in the figure to analyze the behaviour of the configurations
with high p̄c in the case of λ̄ > 0 (see Fig. 2).

The plots show that, in the interval of ρ0
12 considered here,

pc is always higher (lower) than the GR case for λ > 0 (< 0).
Also, for a given ρ0 the central pressure of the configurations
grows with λ. The models that have central pressure much
larger than that of the GR case are those with smaller λ and
higher ρ0.

Figure 4 exhibits the compactness M̄ = M/R in terms
of λ̄ for fixed ρ̄0.13 It is seen that M̄ as a function of λ̄, for
fixed ρ̄0, behaves as the central pressure does, for values of
ρ̄0 chosen as in Fig. 3. In particular, objects with λ̄ > 0
are more compact than those with λ̄ ≤ 0, for any ρ̄0, and the
latter are less compact than those of GR. These configurations
would be in agreement with the idea that the R-squared term
strengthens or weakens gravity according to the sign of λ̄.14

12 The remarks concerning the previous figure are also valid here.
13 Since M̄ is dimensionless by definition, this plot does not actually
depend on the use of R to render quantities dimensionless.
14 An analogous behaviour has been also observed in the Newtonian
hydrostatic equilibrium equation with Palatini corrections used to study
the minimum main sequence mass in [56].
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Fig. 5 M̄ as a function of ρ̄0, for varios values of λ̄ > 0 (upper panel)
and λ̄ < 0 (lower panel)

However, we shall see below that there are configurations
they do not behave like this.

Figure 5 show the dependence of M̄ with ρ̄0 for different
values of λ̄.

It is seen that for any λ̄ �= 0, the compactness starts to
depart from the GR case at low densities, yielding slightly
higher (lower) values of M̄ than those of the GR case for
λ̄ < 0 (> 0). At densities of approximately 0.095, M̄ is
very close to that of GR for any λ̄. The behaviour for higher
ρ̄0 depends on the sign of λ̄. For positive, the maximum
M̄ attained in the model was approximately 0.42, while for
λ̄ < 0, M̄ can be close to the Buchdahl limit in GR. The fact
that there are configurations with M̄ higher than that of GR
in the model explored here is also displayed in the plot of p̄c
against M̄ , see Fig. 6.15

The variation of the pressure as a function of r̄ for fixed
ρ̄0 is shown in Fig. 7 (for λ̄ > 0) and Fig. 8 (λ̄ < 0). The
pressure and its derivatives go smoothly to zero at the surface
of the star.

Figures 9 and 10 show m̄ as a function of r̄ for several
values of λ̄ and ρ̄0. The presence of extrema in the transition
zone is to be expected, following the discussion in [33].

15 Note that, while the plots in Fig. 6 undeniably show that high values
of M̄ can be attained, the values of pc could only be retrieved using the
value of the radius of each configuration. This remark is also valid for
the plots of m̄(r̄) and V̄eff (r̄).

Fig. 6 Central pressure as a function of M̄

Fig. 7 Dependence of p̄ with r̄ , for ρ̄0 = 0.100 (upper panel), and
ρ̄0 = 0.113 (lower panel)

Notice that, from the plots, m̄ is finite and continuous at
r = R, while m̄′ is finite but has an inconsequential dis-
continuity there. Since A and its derivatives are finite and
continuous at the surface (see next section), tidal forces are
finite at the surface of the star. Hence, the models presented
here are everywhere regular, and free of the problems pointed
out in [52].16

In the next section we shall examine the trapping regions
associated to the compact configurations presented above.

16 We have also examined the effective EOS near the surface in a few
examples, finding that it is of the type p ∝ ρ. Hence, the barotropic
index is outside the potentially problematic range found in [52] and
[57].
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Fig. 8 Pressure as a function of r for different values of λ̄ and ρ̄0 =
0.110 (upper panel), and ρ̄0 = 0.116 (lower panel)

Fig. 9 m̄ as a function of r̄ , for ρ̄0 = 0.100 (upper panel), and ρ̄0 =
0.110 (lower panel)

Fig. 10 m̄(r) as a function of r̄ for different values of λ̄ < 0 and
ρ̄0 = 0.110 (upper panel), and ρ̄0 = 0.116 (lower panel)

4 Effective potential and trapping regions

As shown next, the models under consideration display
regions in which zero mass particles are trapped. Such trap-
ping regions are of importance because they may accom-
modate long-lived axial gravitational perturbations, which
in turn may lead to nonlinear effects that destabilize the sys-
tem [12]. Following [27], the trapping zones will be studied
using the effective potential. The motion of zero mass par-
ticles is determined by pμ pμ = 0, with pμ ≡ dxμ

ds . Due to
spherical symmetry, it is confined to a plane, which can be
chosen as θ = π/2. The corresponding constants of motion
are E = −pt , L = pφ . The radial component of the null
geodesics equation is

(pr )2 = E2 e−(A(r)+B(r))
(

1 − e A(r) �
2

r2

)
, (16)

where � ≡ L/E is the impact parameter. The regions where
the motion is possible are determined by the condition

�2 ≤ Veff(r) ≡ r2

eA(r)
. (17)
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Fig. 11 V̄eff as a function of r̄ , for ρ̄0 = 0.100 (upper panel), ρ̄0 =
0.110 (center panel), and ρ̄0 = 0.113 (lower panel)

Veff smoothly matches the effective potential for null geodesics
of the external Schwarzschild solution at r̄ = 1, as seen in
Fig. 11 for the case λ̄ > 0.17

The effective potential, plotted there for several values of
λ̄ and different values of ρ̄0, has a maximum and a minimum,
corresponding to stable and unstable null circular geodesics,
respectively. The extension of the trapping zone can be visu-
alized by a horizontal line parallel to the r̄ axis and tangent
to the minimum of the potential. The figures show that, for
λ̄ > 0 and at fixed ρ̄0, the trapping zone is always larger than
that of GR, its extension grows with λ̄, and its inner boundary
moves closer to the center of the star. The maximum of the
effective potential (hence the height of the trapping zone in
terms of �) grows with λ̄, and moves inward for larger λ̄.

17 Such plots also show that the metric coefficient A and its derivatives
are finite and continuous on the surface of the star.

Fig. 12 Veff (r) for different values of ρ̄0 and λ̄ = 0.10 (upper panel),
λ̄ = 0.025 (center panel), λ̄ = 0.013 (lower panel)

Figure 12 show that, for fixed λ̄ the trapping regions grow
and the maximum of the effective potential grows and moves
inward for larger values of ρ̄0

For negative values of λ̄ the curves change in exactly the
opposite way to the changes in the λ > 0 case. We show
some examples in Fig. 13.

These features of the effective potential will most likely
influence the behaviour of the metric perturbations.18

5 Concluding remarks

We have shown that Schwarzschild’s homogeneous star can
be ameliorated by the addition of a transition zone near the

18 In the GR case, the potential for the metric perturbations reduces to
the geodesic potential in the eikonal limit [12].
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Fig. 13 V̄eff as a function of r̄ for different values of λ̄ < 0, and
ρ̄0 = 0.110 (upper panel), ρ̄0 = 0.115 (center panel), and for different
values of ρ̄0 and λ̄ = −0.12 (lower panel)

surface of the star. Such a zone smooths out the discontinuity
in the density at the surface of the constant density model.
By numerically integrating the modified TOV equations in
the f (R) = R+ λR2 theory in Palatini for a density profile
with the abovementioned features, we have shown that the
resultant models are everywhere regular. .

The values of the relevant parameters were chosen in most
cases in such a way that the resultant objects are compact.
Depending on the choice of the relevant parameters, they can
be less, more, or as compact as those in GR with the same
profile. UCOs are obtained both for negative and positive
values of λ̄. Objects more compact than those in GR with
the same density profile and fixed ρ̄0 were obtained with
positive values of λ̄. Objects with compactness larger than
the maximum M̄ of the model in GR were obtained for λ̄ < 0
and high values of ρ0. Such configurations are close to that
corresponding to the Buchdahl limit in GR.

The features of the trapping zones depend on ρ̄0 and the
sign of λ̄, and may be crucial for the stability of the models.
The latter may be studied using the scalar-tensor representa-
tion of the Palatini theories [31], along the lines presented in
[58].19 Also of great importance is the possible degeneracy
of the solution, best displayed in mass-radius diagrams. We
hope to return to these issues in a future publication.
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Appendix

We present here some results of the integration of the TOV
equations in GR for the density profile given in Eq. (15), and
compare them with the case of constant density. Since we
are interested here in qualitative differences only, we shall
set ρ0 = 0.10, q = 0.95, and � = 0.01. Figure 14 shows the
metric coefficient grr as a function of r̄ , both for the homoge-
neous star, and the exponential profile for the density. While
the first derivative of grr is discontinuous at the surface of
the star for the constant density case (due to the discontinuity
of ρ there), the discontinuity is smoothed out for the profile
given in Eq. (15).

Figure 15 shows an example of the variation of p̄ with r̄
for the constant density case, and for the exponential profile,
as well as the result of the integration of the TOV equations
in the Palatini formalism, with λ̄ = 10−14, to check if the
correct limit is recovered in the numerical integration. While
the pressure for the constant density case does not go to zero
smoothly at the surface, it does so for the exponential profile.

Finally, we show in Fig. 16 the variation of the compact-
ness M̄ with the central pressure for the exponential profile

19 See also [59].
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Fig. 14 grr as a function of r̄ in RG, for the constant density case
(upper curve), and for the exponential profile, with ρ̄0 = 0.10

Fig. 15 Pressure as a function of r̄ in RG, for the constant density case
(upper curve), and for the exponential profile (dashed lower curve), with
ρ̄0 = 0.10. The curve in grey was obtained by the integration of the
Palatini equations with λ̄ = 10−14

Fig. 16 The plot shows the dependence of M̄ with the central pressure
in GR with the exponential profile (ρ̄0 = 0.10). The maximum value
of M̄ is approx. 0.42, and corresponds to p̄c ≈ 3

in GR. Due to the requirement that the pressure behaves as
in Fig. 1, there is a maximum value both for p̄c and M̄ , given
by approx. 3 and 0.42, respectively.
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