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Abstract In this paper we propose an approach which
demonstrates the dependence of quarkonia production on the
multiplicity of the accompanying hadrons. Our approach is
based on the three gluon fusion mechanism, without assum-
ing the multiplicity dependence of the saturation scale. We
show, that we describe the experimental data, which has a
dependence that is much steeper than the multiplicity of the
hadrons.
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1 Introduction

The goal of this paper is to study the multiplicity dependence
of quarkonia (mainly J/�) production in the framework of
high energy QCD (see Ref. [1] for a general review). Effec-
tive QCD at high energies currently exists in two different
formulations: the CGC/saturation approach [2–18], and the
BFKL Pomeron calculus [19–46]. In this paper we restrict
ourself to the BFKL Pomeron calculus, which has a more
direct correspondence with the parton approach, and which
provides an approximation for estimates of hadron–hadron
collisions, that at present are out of the reach for the CGC
approach.

Fortunately, in Refs. [44,45] it was shown, that these two
approaches are equivalent for the description of the scattering
amplitude in the rapidity range :

Y ≤ 2

�BFKL
ln

(
1

�2
BFKL

)
(1)

where �BFKL denotes the intercept of the BFKL Pomeron.
In this paper it is also shown, that for Eq. (1) we can use the
Mueller, Patel, Salam and Iancu approximation(MPSI) [47–
51] for hadron–hadron scattering at high energies.

The recent experiments by ALICE [52–56] and STAR [57,
58], show that the cross sections for J/� production depends
strongly on the multiplicity of accompanying hadrons. These
data have stimulated theoretical discussions on the origin
of such dependence (see Refs. [59–63]). In this paper, we
develop an approach to this problem based on two ingredi-
ents. First, we assume, that the production of quarkonia stems
from triple gluon fusion [61,64,65] (see Fig. 1). For the inter-
action with nuclei this mechanism is dominant [66–71]; and
it has been demonstrated in Ref. [61], that this mechanism
gives a substantial contribution in hadron–hadron collisions.
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Fig. 1 a The three gluon fusion
mechanism of J/� production.
b The Mueller diagram [72] for
J/� production, which
illustrates the inter-relation
between three gluon fusion and
the triple BFKL Pomeron
interaction. The wavy lines
describe the BFKL Pomerons,
while the helical curves
represent gluons

(a) (b)

Second, we showed in Refs. [73,74], that in spite of the
fact that in different kinematic regions, the QCD cascade
leads to a different energy and dipole size dependence of the
mean multiplicity, the multiplicity distribution has a general
form:

σn

σin
= 1

N

(
N − 1

N

)n−1

(2)

where N denotes the average number of partons.
The paper is organized as follows: in the next section we

describe our approach to hadron–hadron collisions. In Sect. 3
we discuss quarkonia production in simplified Reggeon Field
Theory, defined in zero transverse dimensions. In Sect. 4
we generalize the result in this toy-model approach to high
energy QCD, and compare our estimates with the experimen-
tal data . We summarize our results in the Conclusions.

2 Hadron–hadron interaction in MPSI approach

This section does not contain new results, and we include it
in the paper for completeness of presentation, as well as a
kind of an introduction to the notation, and the main ideas.

2.1 QCD parton cascade

We start with the equation for the QCD parton cascade which
can be written in the following form [1,6,7,38–40]:

∂ Pn (Y, r, b; r1, b1, r2, b2 . . . r i , bi , . . . rn, bn)
∂ Y

= −
n∑

i=1

ωG(ri ) Pn (Y, r, b; r1, b1, r2, b2 . . . r i , bi , . . . rn, bn)

+ᾱS

n−1∑
i=1

(r i + rn)2

(2 π) r2
i r

2
n

×Pn−1 (Y, r, b; r1, b1, . . . (r i + rn), bin, . . . rn−1, bn) (3)

where Pn (Y ; {ri , bi }) denotes the probability to have n-
dipoles of size ri , at impact parameter bi , and at rapidity
Y .1 bin in Eq. (3) is given by bin = bi + 1

2 r i = bn − 1
2 r i .

Equation (3) is a typical cascade equation in which the first
term describes the depletion of the probability of n, due to
one dipole decaying into two dipoles of arbitrary sizes, while
the second term describes, the growth due to the splitting of
(n − 1) dipoles into n dipoles.

The initial condition for the DIS scattering is

P1 (Y = 0, r, b; r1, b1) = δ(2) (r − r1) δ(2) (b − b1) ;
Pn>1 (Y = 0; {ri }) = 0 (4)

which corresponds to the fact that we are discussing a dipole
of definite size which develops the parton cascade.

Since Pn (Y ; {ri }) is the probability to find dipoles {ri },
we have the following sum rule

∞∑
n=1

∫ n∏
i=1

d2ri d
2bi Pn (Y ; {r i bi }) = 1, (5)

i.e. the sum of all probabilities is equal to 1.
This QCD cascade leads to the Balitsky–Kovchegov (BK)

equation [1,8–10] for the amplitude, and gives the theoretical
description of DIS. To see this we introduce the generating
functional [6,7]

Z (Y, r, b; [ui ]) =
∞∑
n=1

∫
Pn (Y, r, b; {r i bi })

×
n∏

i=1

u (r i bi ) d2ri d
2bi (6)

where u (r i bi ) ≡= ui is an arbitrary function. The initial
conditions of Eq. (4) and the sum rules of Eq. (5) require the

1 In the lab. frame rapidity Y is equal to Y = ydipole r − ydipoles ri ,
where ydipole r is the rapidity of the incoming fast dipole and ydipole ri is
the rapidity of dipoles ri .

123



Eur. Phys. J. C (2021) 81 :99 Page 3 of 14 99

following form for the functional Z :

Z (Y = 0, r, b; [ui ]) = u (r, b) ; (7a)

Z (Y, r, [ui = 1]) = 1; (7b)

Multiplying both terms of Eq. (3) by
∏n

i=1 u (r i bi ) and
integrating over ri and bi , we obtain the following linear
functional equation [39,40];

∂Z (Y, r, b; [ui ])
∂ Y

=
∫

d2r ′ K
(
r ′, r − r ′|r) (

− u (r, b)

+u

(
r ′, b + 1

2
(r − r ′)

)
u

(
r − r ′, b − 1

2
r ′

))
δ Z

δ u (r, b)
;

(8a)

K
(
r ′, r − r ′|r) = ᾱS

2 π

r2

r ′2 (r − r ′)2 ;

ωG (r) =
∫

d2r ′K
(
r ′, r − r ′|r) ; (8b)

Searching for a solution of the form Z ([u(ri , bi ,Y )]) for
the initial conditions of Eq. (7a), Eq. (8a) can be re-written
as the non-linear equation [6,7]:
∂Z (Y, r, b; [ui ])

∂ Y
=

∫
d2r ′K

(
r ′, r − r ′|r)

×
{
Z

(
r ′, b + 1

2
(r − r ′); [ui ]

)

×Z

(
r − r ′, b − 1

2
r ′; [ui ]

)
− Z (Y, r, b; [ui ])

}
(9)

Therefore, the QCD parton cascade of Eq. (3) takes into
account non-linear evolution. Generally speaking the scat-
tering amplitude can be written in the form [10,39,40]:

N (Y, r, b) = −
∞∑
n=1

(−1)n ρ
p
n (r1, b1, . . . rn, bn ; Y − Y0)

×
n∏

i=1

N (Y0, ri , bi ) d
2 ri d

2 bi . (10)

where N (Y0, ri , bi ) is the amplitude of the interaction of
dipole ri with the target at low energy Y = Y0, and the n-
dipole densities in the projectile ρ

p
n (r1, b1, . . . , rn, bn) are

defined as follows:

ρ
p
n (r1, b1 . . . , rn, bn; Y − Y0) = 1

n!
×

n∏
i=1

δ

δui
Z (Y − Y0; [u]) |u=1 (11)

For ρn we obtain [39,40] :
∂ ρ

p
n (r1, b1 . . . , rn, bn)

ᾱs ∂ Y

= −
n∑

i=1

ω(ri ) ρ
p
n (r1, b1 . . . , rn, bn)

+2
n∑

i=1

∫
d2 r ′

2 π

r ′2

r2
i (r i − r ′)2

ρ
p
n (. . . r ′, bi − r ′/2 . . . )

+
n−1∑
i=1

(r i + rn)2

(2 π) r2
i r

2
n

ρ
p
n−1(. . . (r i + rn), bin . . . ).

(12)

For ρ1 we have the linear BFKL equation [19–21]:

∂ ρ
p
1 (Y ; r1, b)

ᾱS ∂ Y
= −ωG (r1) ρ

p
1 (Y ; r1, b)

+2
∫

d2 r ′

2 π

r ′2

r2
1 (r1 − r ′)2

ρ̄
p
1

(
Y, r ′, b

)
(13)

However, to obtain the BK equation for the scattering ampli-
tude we need to use Eq. (10), in which we introduce the
amplitude of interaction of the dipole with the target at low
energies. Using Eqs. (8a), (10) and (11) , we can obtain
the non-linear BK equation from Eq. (9) in the following
form [10]

∂

∂Y
N (r, b,Y )

=
∫

d2r ′ K
(
r ′, r − r ′|r) {

N

(
r ′, b − 1

2

(
r − r ′) , Y

)

+N

(
r − r ′, b − 1

2
r ′,Y

)
− N (r, b,Y )

−N

(
r−r ′, b − 1

2
r ′,Y

)
N

(
r ′, b−1

2

(
r−r ′) , Y

) }
(14)

2.2 The interaction of two dipoles at high energies

We first consider the simplest case of scattering, the high
energy interactions of two dipoles with sizes r and R and
with r ∼ R. In Refs. [44,45] it is shown that in the limited
range of rapidities, given by Eq. (1), we can safely apply the
Mueller, Patel, Salam and Iancu approach for this scatter-
ing [47–51] (see Fig. 2a).

The scattering amplitude in this approach can be written
in the following form [39,40]:

N (Y, r, R, b)

= −
∞∑
n=1

(−1)n
∫

ρt
n

(
r1, b′

1, . . . , rn, b′
n;

1

2
Y

)

×ρ
p
n

(
r ′

1, b − b′
1 − b′′

1 , . . . , rn, b − b′
n − b′′

n; −1

2
Y

)

×
n∏

i=1

d2 ri

n∏
j=1

d2 r ′
j d

2b′
j d

2b′′
j N

BA (
ri , r

′
i , b

′′
i

)
(15)
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(a) (b) (c)

Fig. 2 Scattering amplitude for the interaction of two dipoles with
sizes: r and R at high energy in the MPSI approach (see a and b). The
amplitudes of interaction of two dipoles in the Born approximation of

perturbative QCD ( N
(
ri , r ′

i , b
′′
i

)
in Eq. (15)) are shown as white cir-

cles. The wavy lines denote the BFKL Pomerons. c Shows the Mueller
diagram [72] for inclusive production of gluons

where ρt
n and ρ

p
n denote the parton densities in the target

and projectile, respectively. These densities can be calculated
from Pn using Eq. (11). NBA is the scattering amplitude of
two dipoles in the Born approximation of perturbative QCD
(see Fig. 2). Equation (15) simply states that we can consider
the QCD parton cascade of Eq. (3) generated by the dipole
of size r for the c.m.f. rapidities from 0 to 1

2Y , and the same
cascade for the dipole of the size R, for the rapidities from 0
to − 1

2Y . One can see that Eq. (15) is the t-channel unitarity
re-written in a form, convenient for applying the evolution
of the parton cascade in the form of Eq. (12).

Generally speaking, for a dense system of partons at
Y = 0 n-dipoles from upper cascade could interact with
m dipoles from the lower cascade, with the amplitude

Nm
n

(
{ri }, {r ′

j }
)

[39,40]. In Eq. (15) we assume that the sys-

tem of dipoles that has been created at Y = 0 is not very
dense, at least for the range of rapidities given by Eq. (1). In
this case

Nm
n

(
{ri }, {r ′

j }
)

= δn,m

n∏
j=1

(−1)n−1 NBA (
ri , r

′
i , b

′′
i

)
(16)

and after integration over {r1} and {r ′
j }, the scattering ampli-

tude can be reduced to a system of enhanced BFKL Pomeron
diagrams, which are shown in Fig. 2b.

The average number of dipoles at Y = 0 is determined by
the inclusive cross section, which is given by the diagram of
Fig. 2c and which can be written at y → 0 as follows [75]:

dσ

dy d2 pT
= 2CF

αs(2π)4

1

p2
T

∫
d2rT ei pT ·rT

×
∫
d2b∇2

T NBFKL
(

1

2
Y ; r, rT ; b

)

×
∫
d2B ∇2

T NBFKL
(
y2 = −1

2
Y ; R, rT ; B

)
(17)

The average number of dipoles that enters the multi-
plicity distribution of Eq. (27), is equal n̄ = N =∫ d2 pT

(2π)2
dσ

dy d2 pT

/
σin ∝ exp (�BFKL Y )2 only if we assume

that σin ∼ Const. Indeed, the enhanced diagrams of Fig. 2b
lead to the inelastic cross section which is constant at high
energy.

2.3 Hadron–hadron collisions

In this paper we view a hadron as a dilute system of dipoles
and use Eq. (17) for the average multiplicity, together with the
multiplicity distribution of Eq. (1). In particular, we assume
that Eq. (16) is correct, and the system of partons that is pro-
duced at c.m. rapidity y∗=0 is a dilute system. However, we
are aware that Eq. (17) does not describe the experimental
increase of the average multiplicity, which from Eq. (17) is
n̄ ∝ exp (�BFKL Y ). The experimental data can be described
in the framework of the CGC/saturation approach in which
NBFKL were replaced by NBK [76]. Hence, we cannot view
hadrons as a dilute system of dipoles, but rather have to con-
sider them as a dense system of dipoles. For such a situation
we expect that n̄ ∝ Q2

s (Y )/ᾱS (see Refs. [1,76–82].

3 Reggeon field theory in zero transverse dimensions

3.1 Multiplicity distribution: a recap

In the parton model [83–86] all partons have average trans-
verse momentum which does not depend on energy. There-
fore, we can obtain the parton model from the QCD cascade
assuming that the unknown confinement of gluons leads to
the QCD cascade for a dipole of fixed size. In this case the
cascade equation (see Eq. (3)) takes the following simple

2 �BFKL denotes the intercept of the BFKL Pomeron.
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form:

dPn (Y )

dY
= −� n Pn (Y ) + (n − 1) �Pn−1 (Y.) (18)

where Pn (Y ) denotes the probability to find n dipoles (of
a fixed size in our model) at rapidity Y , and � denotes the
intercept of the BFKL Pomeron.

Instead of the generating functional of Eq. (6), we can
introduce the generating function:

Z (Y, u) =
∑
n

Pn (Y ) un (19)

where u are numbers.
At the initial rapidity Y = 0, we have only one dipole,

so P1 (Y = 0) = 1 and Pn>1 = 0 (so the state is only one
dipole); at u = 1, Z (Y, u = 1) = ∑

n P (y) = 1. These
two properties determine the initial and the boundary con-
ditions for the generating function which simplify Eqs. (7a)
and (7b)

Z (Y = 0, u) = u; Z (Y, u = 1) = 1. (20)

Equation (18) takes the following form for the generating
function:

∂Z (Y, u)

∂Y
= −� u (1 − u)

∂Z (Y, u)

∂u
. (21)

The general solution to Eq. (21) is an arbitrary function
(Z (z)) of the new variable: z = � Y + f (u), with f(u)
from the following equation:

1 = −u (1 − u) f ′
u (u) f (u) = ln

(
u − 1

u

)
+ C1 (22)

The form of arbitrary function stems from the initial condi-
tion of Eq. (20)

Z (z (Y = 0)) = u; (23)

Since u = 1
/

(1 − ez) we obtain that

Z (Y, u) = u e−� Y

1 + u
(
e−� Y − 1

)
= u e−� Y

∞∑
n=1

un
(

1 − e−� Y
)n−1

. (24)

Note, that Z (Y, u = 1) = 1, as it should be from Eq. (20).
On the other hand, we can re-write Eq. (21) in the form of

the non-linear equation using Eq. (22): viz.

∂ Z

∂ Y
= −�

(
Z − Z2

)
. (25)

Comparing Eq. (24) with Eq. (19) one can see that

Pn (Y ) = e−� Y
(

1 − e−� Y
)n−1

. (26)

(a) (b)

Fig. 3 Mueller diagrams [72] for inclusive J/� production in the
hadron–hadron collisions. The wavy lines denote the Pomeron Green’s
functions

Since from Eq. (26) it follows that the average n = N
is equal to N = exp (� Y ) Eq. (26) can be re-written in the
form of Eq. (2):

Pn (N ) = 1

N

(
1 − 1

N

)n−1
(27)

3.2 Quarkonia production

As we have discussed in the introduction, we assume the
production of heavy quakonia stems from three gluon fusion
(see Fig. 1), and it is intimately related to the triple Pomeron
interaction. The Mueller diagrams for inclusive J/� pro-
duction are shown in Fig. 3, where the wavy lines denote the
Pomeron Green’s function (GIP ) which is equal to

GIP (Y ) = e� Y . (28)

The MPSI approach for inclusive production with fixed
multiplicity of produced hadrons is shown in Fig. 4.

Therefore, from this figure we see that the structure of the
parton cascade for the quarkonia production is quite different.
In particular, for the part of the events whose weight is deter-
mined by the contribution of Fig. 3b, the initial conditions
for the parton cascade is not the ones of Eq. (20) however,
they have the form:

Z (Y = 0, u) = u2; Z (Y, u = 1) = 1. (29)

This means, that for this cascade we need to find the arbi-
trary function Z (z) from the following equation

Z (z (Y = 0)) = u2; (30)

The solution is

Z (Y, u) = u2 e−2 � Y(
1 + u

(
e−� Y − 1

))2

= u2 e−2 � Y
∞∑
n=1

(n − 1) un
(

1 − e−� Y
)n−2

(31)
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(a) (b)

Fig. 4 The example of Mueller diagrams [72] for inclusive J/� pro-
duction in hadron–hadron collisions with fixed multiplicity of produced
hadrons and the parton cascade, which they describe. The exchange of
Pomerons do not cancel each other due to AGK cutting rules [87],
since we fixed the multiplicity in the final state. The wavy lines denote

the Pomeron Green’s functions. The black circles indicate the triple
Pomeron vertices. The solid lines correspond to partons. �y is the
rapidity window in which the multiplicity of the soft hadron is mea-
sured. This window is situated in central rapidity region with rapidity
about 1

2Y

Equation (31) leads to a different multiplicity distribution
in comparison with Eq. (27): viz.

P(2)
n = 1

N 2 (n − 1)

(
1 − 1

N

)n−2

(32)

Finally, the cross section for quarkonia production with
given multiplicity (n) of produced hadrons in the rapidity
window �y (see Fig. 4), is equal to

dσ
J/�
n

dy
= dσ

J/�
incl

dy
(Fig. 3a)

n

〈n(1)〉 P(1)
n (N )

+dσ
J/�
incl

dy
(Fig. 3b)

n

〈n(2)〉 P(2)
n (N ) (33)

where 〈n(1)〉 and 〈n(2)〉 are average multiplicities of the pro-
duced hadrons in the parton cascades which are shown in
Fig. 4a and in Fig. 4b, respectively.

In Eq. (33) the first and the second terms correspond to
parton cascades that are shown in Fig. 4a and in Fig. 4b,
respectively. The appearance of the factor n/〈n(i)〉 , which is
the number of parton ladders, stems from the fact that J/�

can be produced from every parton ladder (cut Pomeron) [60,
62,63]. It should be stressed that the number of ladders at
rapidity y from which the J/� is produced, is the same
as the number of ladders from which the soft hadrons are
produced in the MPSI approach [47–51]. It follows from the
fact that integration over rapidities (y′) of the triple Pomeron
vertices in Fig. 4 leads to Y − y′ ∝ 1/� for Pomerons in
upper part of the diagram, and to y′ ∝ 1/� in the lower part
of the diagram. � denotes the Pomeron intercept.

Summing Eq. (33) we obtain that

∑
n

dσ
J/�
n

dy
= dσ

J/�
incl

dy
(Fig. 3a)

+ dσ
J/�
incl

dy
(Fig. 3b) = dσ

J/�
incl

dy
(34)

which coincide with the Mueller diagram approach, shown in

Fig. 3. Introducing κ = dσ
J/�
incl
dy (Fig. 3b)

/
dσ

J/�
incl
dy (Fig. 3a)

we re-write Eq. (33) in the following form:

dσ
J/�
n
dy

dσ
J/�
incl
dy

= 1

1 + κ

(
n

〈n(1)〉 P(1)
n (N )

+ κ
n

〈n(2)〉 P(2)
n (N )

)
(35)

where κ is equal to [61]

κ = e
2 �

(
1
2Y − y

)
(36)

In Eq. (33) P(1)
n (N ) ≡ Pn (N ) of Eq. (27).

The cross section of produced gluons (hadrons) is propor-
tional to

dσ
prod.gl.
n

dy
= dσ

prod.gl.
incl

dy
P(1)
n (N ) (37)

From Fig. 5, one can see that P(2)
n (N ) and P(1)

n (N ) have
different dependance on z = n/N . The average number of
gluons is chosen to be the mean multiplicity of hadrons in
the rapidity window |η| ≤ 0.9 measured at W=13TeV.

Therefore, dσ J/�

dy is not proportional to dσ prod. gl.i

dy , but shows
non-linear dependance, which we will discuss below. It
should be stressed that such dependance stems from triple
Pomeron mechanism of quarkonia production, as noted in
Refs. [61,63]. At large N we have

P(2)
n

N 
 1−−−→ 1

N
z e−z;

P(1)
n

N 
 1−−−→ 1

N
e−z; (38)

leading to

P(2)
n

P(1)
n

N 
 1−−−→ z; (39)
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(a) (b)

Fig. 5 a P(2)
n (N ) and P(1)

n (N ) versus z = n
N . N is taken to be equal 10. b The ratio of P(2)

n (N ) /P(1)
n (N ) for N = 10 and for large N (see

Eq. (39))

It is worth mentioning that the average multiplicity of P(2)

distribution is equal to

< n(2) > =
∞∑
n=2

n P(2)
n (N ) = 2 N (40)

Hence, for the multiplicity distribution P(2) the average num-
ber of accompanying gluons(hadrons) is twice larger than in
the distribution P(1) . Equation (40) means that the ratio
n(2)

<n(2)>
= n

2 N .

4 Structure of QCD parton cascade

4.1 Multiplicity distribution

In QCD, to find the multiplicity distribution for hadron–
hadron scattering in QCD using MPSI approach [47–51],
we need to evaluate (see Eq. (6))

P̃n (Y, r) =
∫

Pn (Y, r, b; {r i bi })
n∏

i=1

d2ri d
2bi (41)

However, in the MPSI approach it is more natural to intro-
duce moments (see Eq. (12)):

Mp
n (Y, r) =

∫
r

n∏
i=1

d2ri d
2b ρ

p
n (Y, {ri }, b)

=
∫
r

n∏
i=1

d2ri
r2
i

d2b ρ̄
p
n (Y, {ri }, b) (42)

The integration over ri depends on the size of the initial
dipole, which generates the cascade. In DIS the natural inte-
gration stems from ri > r .

4.1.1 Several first iterations.

We start from the first several iteration of Eq. (12), which can
be re-written for ρ̄

p
n (r1, b1 . . . , rn, bn) in the form

∂ ρ̄
p
n (r1, b1 . . . , rn, bn)

ᾱs ∂ Y

= −
n∑

i=1

ω(ri ) ρ̄
p
n (r1, b1 . . . , rn, bn)

+2
n∑

i=1

∫
d2 r ′

2 π

1

(r i − r ′)2 ρ̄
p
n (. . . r ′, bi − r ′/2 . . . )

+
n−1∑
i=1

ρ̄
p
n−1(. . . (r i + rn), bin . . . ). (43)

For the first iteration ρ̄1 (Y ; r1, b1), we obtain the BFKL
equation:

∂ ρ̄
p
1 (Y ; r1, b)

ᾱS ∂ Y
= −ωG (r1) ρ̄

p
1 (Y ; r1, b)

+ 2
∫

d2 r ′

2 π

1

(r1 − r ′)2 ρ̄
p
1

(
Y, r ′, b

)
=

∫
d2 r ′K

(
r1, r

′) ρ̄
p
1

(
Y, r ′, b

)
(44)

with the solution

ρ̄
p
1 (Y ; r1, b) =

∫ ε + i ∞

ε−i ∞
dω

2 π i

∫ ε + i ∞

ε−i ∞
dγ

2 π i
eω Y + γ ξ1

1

ω − ᾱSχ (γ )
ρ̃
p
in,1(γ, b) (45)

where ξ1 = ln
(
r2

1 �2
QCD

)
and

ω (γ ) = ᾱS χ (γ ) = ᾱS (2ψ (1) −ψ (γ ) − ψ (1 − γ ))
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d.a
γ→ 1

2−−−→ ω0 + D

(
γ − 1

2

)2

+ O
((

γ − 1

2

)3
)

= ᾱS4 ln 2 + ᾱS14ζ (3)

(
γ − 1

2

)2

+ O
((

γ − 1

2

)3
)

(46)

where d.a denotes ‘diffusion approximation’ and ψ(z) is
Euler gamma function (see [88] formula 8.36). ρ̃

p
in,1(γ, b)

has to be found from the initial conditions. From Eq. (45) we
can obtain Mp

1 (Y, r, b) (see Eq. (42)) which has the follow-
ing form:

Mp
1 (Y, r) =

∫ ε + i ∞

ε−i ∞
dω

2 π i

∫ ε + i ∞

ε−i ∞
dγ

2 π i

×eω Y + γ ξ 1

ω − ᾱSχ (γ )
Mp

in,1(γ ) (47)

which satisfies the following equation:

∂ Mp
1 (Y, r)

∂ ᾱS Y
=

∫
d2 r ′K

(
r, r ′) Mp

1

(
Y, r ′)

r ′ 
 r−−−→
∫
r

d r ′2

r ′2 Mp
1

(
Y, r ′) (48)

The equation for the next iteration: ρ̄2, takes the form: equa-
tion for ρ

p
2 can be re-written in the following form for ρ̄

p
2 :

∂ ρ̄
p
2 (Y ; r1, r2, b)

ᾱS ∂ Y

=
∫

d2 r ′ K
(
r1, r

′) ρ̄
p
2

(
Y, r ′, b, r2, b

)
+

∫
d2 r ′ K

(
r2, r

′) ρ̄
p
2

(
Y, r1, r

′, b
)

+ ρ̄
p
1 (Y ; r1 + r2, b) (49a)

r ′ 
 ri−−−→
∫
r1

dr ′2

r ′2 ρ̄
p
2

(
Y, r ′, b, r2, b

)

+
∫
r2

dr ′2

r ′2 ρ̄
p
2

(
Y, r1, b, r

′, b
) + ρ̄

p
1 (Y ; r1 + r2, b)

(49b)

For simplicity we re-write Eq. (49a) in the log approxima-
tion following Ref. [73] (see Eq. (49b)). Rewriting Eq. (49b)
for Mp

2 we obtain:

∂ Mp
2 (Y ; r)

ᾱS ∂ Y

=
∫
r

dr ′2

r ′2

{
2 Mp

2

(
Y, r ′) + Mp

1

(
Y, r ′) }

= 2
∫
r

dr ′2

r ′2 Mp
2

(
Y, r ′) + ∂

∂ ᾱS Y
M p

1 (Y, r) (50)

In the last term of Eq. (50) we used Eq. (48). The solution to
Eq. (50) takes the form:

Mp
2 (Y, r) =

∫ ε + i ∞

ε−i ∞
dω

2 π i

∫ ε + i ∞

ε−i ∞
dγ

2 π i
eω Y + γ ξ

× ᾱSχ (γ )

(ω − 2 ᾱSχ (γ )) (ω − ᾱSχ (γ ))
(51)

with χ (γ ) = 1/γ . One can check that Mp
2 (Y, r)

Y → 0−−−→ 0,
which is the correct initial condition for one dipole of size
r at Y = 0 , which generates the parton cascade. Actu-
ally, Eq. (50) describes Mp

2 (Y, r) for the full BFKL kernel.
Indeed, considering Eq. (49a) we can integrate this equation
over r1 and r2, to obtain the equation for Mp

2 . The last term
has the following form∫

r

d2r1

2 π

1

r2
1

d2r2

2 π

∫
d2b

1

r2
2

ρ̄(Y, r12, b)

=
∫
r

d2r1

2 π

1

r2
1

d2r2

2 π

∫
d2b

1

(r1 − r12)
2 ρ̄(Y, r12, b) (52)

Note that r2
2 = (r1 − r12)

2 can never approach zero, since
r2 > r . Removing this restriction, we can re-write∫

r

d2r2

2 π

1

(r1 − r12)
2 ρ̄(Y, r12, b)

=
∫

0

d2r2

2 π

1

(r1 − r12)
2 ρ̄(Y, r12, b) − ln r2

1 ρ̄(Y, r1, b)

(53)

The reggeization term in Eq. (53) describes the contribution
of r2 → 0. Plugging Eq. (53) in the last term of Eq. (49a)
integrated over r1 and r2, one can see that we reproduce
Eq. (50) for the full BFKL kernel. Hence Eq. (51) is the
solution with χ (γ ) which is given by Eq. (46).

4.1.2 General solution

The equation for Mp
n (Y, r) has the following general form:

∂ Mp
n (Y ; r)

ᾱS ∂ Y

=
∫

d2 r ′ K
(
r, r ′) {

n M p
2

(
Y, r ′) + (n − 1)Mp

1

(
Y, r ′) }

= n
∫

d2 r ′ K
(
r, r ′) Mp

2

(
Y, r ′) + (n − 1)

∂

∂ ᾱS Y
M p

1 (Y, r)

(54)

The solution to this equation [73], which gives Mp
1 (Y = 0, r)

= 1, but all other Mp
n with n ≥ 2=0, are equal to

Mp
n (Y, r) =

∫ ε + i ∞

ε−i ∞
dγ

2 π i
eᾱSχ(γ ) Y

(
eᾱSχ(γ ) Y − 1

)n−1

(55)
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which leads to the multiplicity distribution, which takes the
form (see Eq. (41) and Ref. [73]):

P̃n (Y, r) =
∫ ε + i ∞

ε−i ∞
dγ

2 π i
e− ᾱSχ(γ ) Y

×
(

1 − e− ᾱSχ(γ ) Y
)n−1

(56)

For N = eᾱSχ(γ ) Y 
 1 we have

P̃n (Y, r)

=
∫ ε + i ∞

ε−i ∞
dγ

2 π i
exp (−z(γ ) + γ ξ)

wherez = n

eᾱSχ(γ ) Y
(57)

Taking the integral over γ using the method of steepest
descent, using the diffusion approximation for the BFKL
kernel (see Eq. (46)). The equation for γSP has the following
form:

2 D Y z

(
1

2

) (
γSP − 1

2

)
+ ξ = 0

with

(
γSP − 1

2

)
= − ξ

2 D Y z
( 1

2

) (58)

and the integral over γ is

P̃n (Y, r) =
√

π

2 D z
( 1

2

)
Y

1

N (Y )
e
−z

(
1
2

)
with z

= n

N (Y )
and N (Y ) = eω0 Y (59)

considering ξ2
/

2 D z
( 1

2

)
Y � 1. After normalization, we

obtain that

< n > σn

σin
= �KNO (z) =

√
1

π z
e
−z

(
1
2

)

with z = n

N (Y )
and N (Y ) = eω0 Y (60)

where �KNO denotes the KNO function (see Ref. [89]).
It is worthwhile mentioning that the multiplicity distribu-

tion of Eq. (60) is different from Eq. (27) and

R = PQCD
n (Eq. (60))

Pn (Eq. (27))
=

√
1

π z
(61)

In Fig. 6 we compare the ALICE data [90] on multiplicity
distribution with Eq. (59) and with Eq. (27). On can see that
the agreement is good, and the difference between the above
equations can be seen at large n. In describing the experi-
mental data we use Eq. (59), which is derived at large z, for
z ≥ 3. It worthwhile mentioning that the data of CMS [91]
we have discussed in our paper [73].

Fig. 6 Multiplicity distribution of the charged hadrons in the central
rapidity region. The solid line is the distribution of Eq. (59), while the
dotted curve corresponds to Eq. (27). The data and the value of N = 12
are taken from Ref. [90]

4.2 P(2)
n distribution for quarkonia production

The P(1)
n distribution , which we have discussed in the previ-

ous section, can be derived, using the double Laplace trans-
form representation, both for P(1)

n (Y ; r) and for M (1)
n (Y ; r):

M (1)
n (Y ; r) =

∫ ε + i∞

ε−i ∞
dω

2 π i∫ ε + i∞

ε−i ∞
dγ

2 π i
eω Y + γ ξ m(1)

n (ω, γ )

(62)

where ξ = ln
(
r2�2

QCD

)
.

Equation (54) in the ω-representation, has the following
form:

ωm(1)
n (ω, γ ) = n ᾱSχ (γ ) m(1)

n (ω, γ )

+ (n − 1) ᾱSχ (γ ) m(1)
n−1 (ω, γ ) (63)

with the solution:

m(1)
n (ω, γ ) = (n − 1)!

n∏
m=1

ᾱSχ (γ )

ω − m ᾱSχ (γ )
(64)

This solution gives Mp
1 (Y = 0, r) �= 0, while Mp

n (Y=0,

r) = 0 for n ≥ 2. The inverse Laplace transform leads to
Eq. (55) for Mp

n (Y, r) and Eq. (56) for P(1)
n (Y, r).

To find P(2)
n distribution we need to take into account that

at Y = 0:

Mp
2 (Y = 0, r) = 1; Mp

1 (Y = 0, r) = 0;

123
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Mp
n (Y = 0, r) = 0 for n ≥ 3 (65)

One can see that the following: m(1)
1 (ω, γ ) satisfies these

conditions:

m(2)
n (ω, γ ) = (n − 1)!

n∏
m=2

ᾱSχ (γ )

ω − m ᾱSχ (γ )
(66)

The inverse Laplace transform with respect to ω leads to

M (1)
n (Y ; r) =

∫ ε + i∞

ε−i ∞
dγ

2 π i
eγ ξ 1

γ
(n − 1) e2 ᾱS χ(γ ) Y

×
(
e2 ᾱS χ(γ ) Y − 1

)n−2
(67)

which gives the initial conditions of Eq. (65).
For P(2)

n we obtain

P(2)
n (Y ; r) =

∫ ε + i∞

ε−i ∞
dγ

2 π i

×eγ ξ 1

γ
(n − 1) e− 2 ᾱS χ(γ ) Y

(
1 − e−2 ᾱS χ(γ ) Y

)n−2

(68)

with P(2)
2 (Y = 0, r) = 1 and P(2)

n (Y = 0, r) = 0 for
n �= 2 at Y = 0.

Repeating the same estimates as in Eq. (57), we obtain the
KNO function,

�K NO (z) = 2

√
z

π
e− z (69)

with the normalization
∫
dz �K NO (z) = 1.

Note that the ratio P(2)
n (Y,r)

P(1)
n (Y,r)

= z for large z, as in Eq. (39).

5 Comparison with experimental data

In both ALICE [52–56] and STAR [57,58] experiments the
following ratio is measured:

nJ/�

〈nJ/�〉 = F
( n

N

)
(70)

where N = 〈n〉 is the average number of charged hadrons in
the fixed rapidity window, and 〈nJ/�〉 the average number
of J/� which are measured generally speaking in a dif-
ferent rapidity window. It turns out that F

( n
N

) �= n
N , but

it is close to this when the rapidity windows are different.
When both rapidity windows are the same, F

( n
N

)
shows

much steeper dependence than n
N . In Ref. [60] the J/� pro-

duction is considered as being proportional to the number
of collisions, since it comes from short distances, while the
production of hadrons is proportional to the number of par-
ticipants (see Refs. [77–80]). However, in the framework of
the CGC approach, the J/� production at high energies is

proportional to the number of participants [61,66–69] as it
can be seen from Fig. 1.

The main ingredients for describing the experimental data
are Eqs. (56)–(60) and Eqs. (68)–(69), as well as Eq. (37).
Using these equation we can re-write Eq. (35) in the form:

dσ
J/�
n
dy

dσ
prod.gl.
n
dy

=
dσ

J/�
incl
dy

dσ
prod.gl.
incl
dy

1

1 + κ

(
n

〈n(1)〉 + κ
n

〈n(2)〉
P(2)
n (N )

P(1)
n (N )

)

=
dσ

J/�
incl
dy

dσ
prod.gl.
incl
dy

1

1 + κ

(
n

N
+ κ

n

2 N

P(2)
n (N )

P(1)
n (N )

)
(71)

Using Eq. (71) we can find the experimental observable
(see Refs. [53,63])

dNJ/ψ/dy

〈dNJ/ψ/dy〉 = w
(
NJ/ψ

)
〈
w

(
NJ/ψ

)〉 〈w (Nch)〉
w (Nch)

= dσJ/ψ
(
y, η,

√
s, n

)
/dy

dσJ/ψ
(
y, η,

√
s, n = N

)
/dy

/
dσch

(
η,

√
s, n

)
/dη

dσch
(
η,

√
s, n = N

)
/dη

=

(
n
N + κ n

2 N
P(2)
n (N )

P(1)
n (N )

)
(

1 + 1
2κ

P(2)
N (N )

P(1)
N (N )

) z= n
N 
1−−−−−→ z + κ

4 z2

1 + κ
4

(72)

In Fig. 7 we compare the experimental data with Eq. (72).
One can see that this simple formula provides a fairly

good description of the experimental data, for central pro-
duction where κ = 1. However, the experimental data for
forward production of J/� [52–58] show almost a linear
dependance:

nJ/�

〈nJ/� 〉 = z. Indeed, in Eq. (72) the quadratic
term is suppressed, since it is proportional to the value of κ ,
which is equal to (see Fig. 4 and Ref. [61] for the estimates).

κ =
(
Q2

s (Y − y)

Q2
s (y)

)γ̄

= e− 2 γ̄ λ y∗
(73)

where y∗ is the rapidity of the produced quarkonia in c.m.f.
In leading order of perturbative QCD , in which we made all
our previous estimates [1], γ̄ = 0.63 and λ = ᾱS

χ(γ̄ )
γ̄

≈
4.8 ᾱS . As is shown in Fig. 7b, the estimate in leading order
describes the data quite well. However, we need to remember
that the NLO corrections both to γ̄ and to λ are large.
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Fig. 7 Comparison Eq. (72) with the experimental data of the ALICE
collaboration [52–56]. The solid line is the estimate of Eq. (72), and the
dotted line is the linear dependence which stems from the contribution

of a. a Shows the production of J/� in central rapidity region, while
in b the estimates are shown for Eq. (72) with κ calculated in leading
order of perturbative QCD, and with ᾱS = 0.15

(a) (b)

Fig. 8 The production of quarkonia from n parton cascades

6 Conclusions

In this paper we re-visited the problem of multiplicity dis-
tributions in high energy QCD, which we have discussed in
Ref. [73] and found the distribution of Eq. (59). This distri-
bution provides a better description of the experimental data
at large multiplicities n, than Eq. (27), which has been dis-
cussed previously. We also suggest a different approach to the
multiplicity dependence of quarkonia production. It should
be stressed that our approach is based on the three gluons
fusion mechanism of Fig. 1, and it differs from the descrip-
tion of Refs. [62,63], since we did not assume the multiplic-
ity dependence of the saturation scale. In our approach we
assume, that the production of J/�, which occurs at rapidity
y, and the central production of charged hadrons, stem from
the production of the same n-parton cascades, which are pic-
tured in Fig. 8 as the production of n-gluon ladders. Solving
the QCD cascade equation, we found the multiplicity distri-
bution both for the cascade of Fig. 8a (see Eq. (68)–(69)) and
for the cascade of Fig. 8b (see Eq. (56)–(60)) .

In Fig. 8 one can see that J/� can be produced from each
of n-ladders, leading to the cross section, which is propor-
tional to n (see Fig. 8a). This mechanism is shown in Fig. 3a.
However, J/� can be created from merging of two ladders
(see Fig. 8b) , which gives a cross section ∝ n2, and corre-

sponds to Fig. 3b. Note, that the production of the hadrons in
both cases can be found from Eq. (37). Taking into account
that the average number of gluons (hadrons) for the mecha-
nism of Fig. 8b is two time larger than for Fig. 8a, we infer
that Fig. 8 leads to the simple Eq. (72).

It should be stressed that this equation is heavily dependent
on the three gluon fusion mechanism, but does not depend
on the details of the cross section of quakonia production. In
particular, as we have mentioned above, we do not use the
dependence of the saturation scale on the multiplicity of the
produced gluons. This means that the non-linear dependence
of J/�-production on multiplicity of charged hadrons, can
stem from sources other than the dependence of the cross sec-
tion on the saturation scale. Actually, this statement follows
directly from the fact that 1 + 1 RFT generates the non-linear
dependence on n.

It should be noted that if we assume, that in addition to
the three gluon fusion mechanism we have the production
of J/� from color-singlet model, we will not obtain agree-
ment with the description of the experimental data in Fig. 7.
In particular, in the colour-singlet model(CSM), which is able
to describe the experimental data on J/� inclusive produc-
tion [92] we expect that

dNJ/ψ/dy
〈dNJ/ψ/dy〉 ∝ n. In our approach,

any non-linear dependence in the CSM is an indication that
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we have to develop a different approach to QCD cascade or
suggest another model for production of soft hadrons.

As an aside, we note in [62,63,93] it was assumed that
the J/�-production results from the inclusive diagrams of
Fig. 3a and b. This is erroneous, as at arbitrary n it is neces-
sary to include the production of many partonic showers as
illustrated in Fig. 4a and b. The difference to the percolation
approach [60], lies in our hypothesis that both the production
of J/� and the charged pion stem from short distances of the
order of r ∝ 1/Qs , and are determined by physics controlled
by the CGC effective theory. The gluon jets with transverse
momentum Qs , decay into charged pions (see Ref. [63] for
details). The non-linear dependence of production of J/� is
due to the three Pomeron fusion mechanism.

Following the advice of our referee, we add two com-
ments. First, the open charm production is enhanced at large
multiplicities [94]. In spite of the fact, that three gluon fusion
gives a sizable contribution to inclusive production [93], the
two gluon fusion leads to main contribution to this process.
We are planning to discuss the multiplicity distribution in this
process in our future publication. The discussion in Ref. [93]
cannot be trusted since it does take into account the produc-
tion of all n ladders in Fig. 8. The failure of our approach to
explain the experimental data will indicate, that we need to
introduce the dependence of the saturation scale on the mul-
tiplicity of produces hadrons (see Refs. [63,82,93]). Second,
the production of ϒ-meson stems from the short distances,
much shorter than 1/Qs . The three gluon fusion gives the
main contribution to ϒ inclusive at high energies, but the
corrections due to CSM at the LHC could be sizable. We
plan to consider this process in our future papers.

In spite of the good description of the experimental data
for the quarkonia production integrated over the transverse
momenta (pT ), we cannot explain at present, why the data
at fixed pT [52], shows a steeper dependence on n than
the integrated data. Certainly, this problem will be the main
subject of our further attempts to understand the multiplicity
dependence of quarkonia production.

Concluding, we wish to stress that we are only in the begin-
ning of the theoretical understanding of multiplicity distri-
butions, and this paper is the first attempt to give the self
consistent description of this distribution in the framework of
perturbative QCD with the simplified assumption about con-
finement quarks and gluons: the local hadron–parton duality.
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