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Abstract We construct a formal asymptotic series expan-
sion for a general solution of the Brans–Dicke equations with
a fluid source near a sudden singularity. This solution con-
tains 11 independent arbitrary functions of the spatial coor-
dinates as required by the Cauchy problem of the theory. We
show that the solution is geodesically complete and has the
character of a shock wave in the sudden asymptotic region.
This solution is weak in the senses of Tipler and Krolak as
in the corresponding case of general relativity.
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1 Introduction

Formal series expansions in powers of the proper time has
been a central technique associated with existence theorems
for the Einstein equations and the Cauchy problem since the
very beginning of mathematical relativity [1]. For most of
these studies, the relevant expansions where built around reg-
ular, as opposed to singular, spacetime points, and this was
particularly true for the local Cauchy problem. For global
problems of solutions of the Einstein equations one is faced
with the issue of singularities and the related problems of the
domain of validity of the solutions so constructed [2,3].

Directly related to the study of formal expansions is the
issue of function-countingwhich provides a count of the inde-
pendent equations and unknowns needed to have a determi-
nate problem. Most importantly, function counting is needed
in order to have a characterization of whether or not the stud-
ied solutions have the required number of arbitrary functions
to qualify as generic, that is to be general solutions of the
problem. So far as one restricts to formal expansions which
solve the field equations (in the sense of direct substitution
of these infinite series in the equations leading to all terms
cancelling), without further demanding that the series is con-
vergent or even asymptotic, does not strictly require that such
expansions be constructed around regular points in space-
time. This does not mean that formal expansions around sin-
gular points are necessarily divergent ones. In fact, one does
not even have to restrict to integer exponents in the expan-
sions, but may allow for fractional ones or even consider
more general Fuchsian formal series [4,5]. For example, the
original quasi-isotropic constructions of Refs. [6–8] have the
property that they describe asymptotic forms of special solu-
tions that do not contain the required number of arbitrary
functions to qualify as general solutions in vacuum, or con-
taining one or more fluids [9,10].
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This interplay between general and special solutions in
gravitation and cosmology is not new, and in fact this ‘gen-
erality problem’ is intimately connected not only with the
function-counting issue but also with other basic problems
such as the singularity, isotropization and cosmic no-hair
problems (cf. [11] and references therein). There are four
known applications of function-counting that lead to the con-
struction of generic solutions, and identify those that have the
necessary maximum number of free functions and are gen-
eral solutions of the equations. The first corresponds to the
problem of the Einstein equations with positive cosmological
constant or with a p = −ρ fluid, and builds solutions around
the de Sitter solution which comply with the expectations of
the no-hair theory [12–16]. The second result concerns the
behaviour of the Einstein equations with an ‘ultrastiff per-
fect fluid’ having p > ρ near quasi-isotropic singularities by
Heinzle and Sandin [17]. The third result is a generic solution
that describes the approach to a ‘sudden’ finite-time singu-
larity of Barrow, Cotsakis and Tsokaros in Ref. [18], which
has the property that the approaching solution is geodesically
complete and the discontinuities produce a weakly singular
solution cf. [19]. The fourth known result which leads to a
generic solution in terms of function counting is a vacuum
analytic solution of R+εR2 gravity constructed in [20] which
represents an asymptotic formal series expansion.

In this paper we develop and study a further application
of the function-counting method to Brans–Dicke theory, and
construct the first generic solution near a sudden singularity
in this context. By examining the behaviour of geodesics,
we show that the generic approach to the sudden region may
be given as a shock wave to both general relativity and the
Brans–Dicke theory, and also that solutions represent weak
singularities. These results add to the physical relevance
of sudden singularities. The latter have been widely stud-
ied since their introduction in Refs. [21–23] as asymptotic
regions in spacetime were matter satisfies the strong energy
condition, the scale factor and its first derivative are finite, but
discontinuities occur in its second derivative and fluid pres-
sure. The stability of these solutions to small perturbations
has been shown using a gauge invariant formalism in Ref.
[24], and have also been shown to be stable against quantum
particle production in [25]. Their description using fractional
formal series has been given in Refs. [26,27]. In the context
of Brans–Dicke theory which generalizes general relativity
by allowing for the possibility of the Newtonian gravitational
constant G, sudden singularities were first discovered in Ref.
[28] where it was shown that they possess a number of inter-
esting properties.

The plan of this paper is as follows. In the next section we
give a review of the most important properties of the simplest
solution with a sudden singularity discovered in [28]. From
the property of simultaneity of this solution with a sudden
singularity we estimate the end values of the scale factor and

the Brans–Dicke scalar field for large values of the coupling
parameter ω. In Sect. 3, we give the formal expansions near
the sudden singularity for the spatial metric and its inverse
and compare with similar expansions for non-sudden regions.
We also provide a discussion of the homogeneous vs. inho-
mogeneous scalar field expansions in the present context,
which as they turns out are closely related to the singularity
being simultaneous or not. A detailed derivation of the theory
for the case of a homogeneous scalar field expansion is given
in Appendix A. In Sect. 4, we provide the expansions for
the various curvatures, while in Sect. 5 we find the splittings
and develop the process of balancing of the various terms for
the field equations. These provide the necessary information
for the various unknowns of the problem and their functional
relations, so that a final counting of the arbitrary functions
present in the solution can be given in Sect. 6. Section 7
gives a further application of these results to the geodesic
behaviour at the sudden singularity, and the ensuing inter-
pretation of it as a shock wave. We also provide conditions
for the sudden singularity to be a weak one in Brans–Dicke
theory. We discuss our findings in Sect. 8. Our notation is
that of Ref. [6].

2 The simplest sudden singularity in Brans–Dicke

In this section, we give a brief review of the most important
properties of the first and simplest solution with a sudden
singularity discovered in Brans–Dicke theory in Ref. [28].
The Brans–Dicke equations in the standard form read,

Ri j − 1

2
gi j R = 8π

φ
Ti j + ω

φ2

(
∂iφ∂ jφ − 1

2
gi j∂

kφ∂kφ

)

+ 1

φ
(∇i∇ jφ − gi j�gφ), (1)

�gφ = 8π

3 + 2ω
T, (2)

∇i T
i
j = 0. (3)

2.1 Form of the solution

Following [28], we assume the spacetime metric to be homo-
geneous and isotropic with an FRW line element ds2 =
dt2 − a2(t)d�2, with d�2 denoting the metric of spatial
sections. Then ordering the terms in increasing powers of
the proper time t , the solution with a sudden singularity in
this context is given by,

a(t) =
(
t

ts

)q

(as − 1) + 1 −
(

1 − t

ts

)n

, (4)

φ(t) = φs

(
t

ts

)r

− 3

ωas

(
1 − t

ts

)n

. (5)
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This solution requires 0 < r < 1 < n < 2 and 0 < q ≤ 1,
as ≡ a(ts) and φs ≡ φ(ts) are the (finite) values of the scale
factor and scalar field at the sudden singularity, and the coeffi-
cient in the second term in Eq. (5) is required for consistency
in order to assure simultaneity at the sudden singularity. As
shown in [28], we can work with the flat FRW metric without
loss of generality because the curvature terms are finite at the
sudden singularity, hence subdominant with respect to other
terms which diverge there.

The solution exists on the interval 0 < t < ts . ‘Early’ in
this context means ‘as t approaches zero from above’, while
the sudden singularity time ts appears as a future singularity.
Another way to view the evolution of a universe with a future
sudden singularity is to measure the time as a fraction of the
‘sudden singularity duration’ ts up to the sudden singularity,
and after it as a multiple of ts . Since the sudden singularity
occurs at ts which is an arbitrary positive constant, we can
divide by it and measure the total time t in terms of ts . In
this sense, the interval of existence of the solution up to the
sudden singularity is (0, 1), and the solution has a simpler
appearance: a = (as − 1)tq + 1 − (1 − t)n, φ = φs tr −

3
ωas

(1 − t)n .

2.2 Properties of the FRW sudden singularity

As shown in Ref. [28], the sudden singularity solution (4),
(5) possesses a number of properties, and we focus below on
the most important ones for our current purposes.

• The sudden singularity is necessarily simultaneous,
occuring at proper time ts , for all diverging fields, namely,
ä, φ̈, ρ̇, p.

• The generality of non-Machian (scalar field dominates
over matter) over ‘special’ Machian solutions (matter
dominates over φ) as t ↓ 0, leads us to prefer initial
conditions of the form φ(0) �= 0.

• The previous two properties continue to hold for more
general scalar-tensor theories when certain restrictions on
the Brans–Dicke function ω(φ) and scalar field potential
V (φ) are imposed.

2.3 Estimate of the scale factor

In the remaining of this section, we provide an estimate of
the boundary values of the fields at the sudden singularity
of the Brans–Dicke theory for large values of the coupling
parameter ω. This estimate is a consequence of the property
of simultaneity of the sudden singularity discussed above.

The initial and final limiting values of the sudden singu-
larity solution read,

lim
t→0

a(t) = 0, lim
t→1

a(t) = as, (6)

lim
t→0

φ(t) = − 3

ωas
, lim

t→1
φ(t) = φs . (7)

In the case of non-Machian solutions, and assuming that the
sudden singularity is simultaneous, then since the constant
as is arbitrary, we can set,

as = 3

ω
, (8)

so that φ(0) = −1, as required. In this case, the size of the
scale factor at the sudden singularity, as , is related inversely
proportional to the Brans–Dicke coupling constant ω.

As ω becomes large and the limit to the theory of general
relativity is approached, the scale factor size becomes very
small at the sudden singularity. This is in accordance with
the asymptotic behaviour found in Ref. [28], Eq. (29).

This result may be interpreted as an upper bound estimate,
coming the Brans–Dicke theory, of the size of the scale fac-
tor appearing in the general relativistic sudden singularity
solution found in Ref. [22].

Using the isotropic and homogeneous solution (4), (5) as
a guide, in the next section we build a series expansion of
the metric in the neighbourhood of the sudden singularity, as
a first step of the program, set out in this work, to construct
the most general cosmological solution to the Brans–Dicke
equations having a sudden singularity. It will be of interest
to examine which of the properties of the simplest solution
of the Brans–Dicke equations with a sudden singularity con-
sidered in the present section, pass over to that more general
situation.

3 Metric series expansions

3.1 Formal expansions for the metric and its inverse

The general form of the metric in synchronous coordinates
is (Latin indices are for spacetime components, Greek for
spatial ones),

ds2 = dt2 − γαβdx
αdxβ. (9)

The future sudden singularity is approached as t → 1, and
the solutions (4), (5) have the asymptotic forms (6), (7),

a(t) → as, φ(t) → φs . (10)

So the expansion of the spatial metric in Eq. (9) and Brans–
Dicke scalar field φ near the sudden singularity must start
with constant terms, and have the next few terms in the form,

γαβ = aαβ + bαβ t + cαβ t
n + O(t2), (11)

φ = φ0 + φ1t + φnt
n + O(t2). (12)
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Here 1 < n < 2, and the coefficients in the formal series are
inhomogeneous functions of the space coordinates,

φi = φi (x), aαβ = aαβ(x), bαβ = bαβ(x), cαβ = cαβ(x).

(13)

The final form of the sudden singularity expansion of the
inverse metric tensor reads:

γ αβ = aαβ − bαβ t − cαβ tn + O(t2), (14)

where γαβγ βγ = δ
γ
α , and aαβaβγ = δ

γ
α . Also here the

indices of bαβ and cαβ are raised by aαβ .
It is very instructive to compare the difficulty of the calcu-

lations introduced by a sudden singularity to the non-sudden
ones, and so we shall include below some of the many proofs
of key results. To prove Eq. (14), we start by the spatial metric
expansion,

γαβ = aαβ + bαβ t + cαβ t
n + dαβ t

2 + · · · , (15)

where we include the term of order two so as to give explicitly
the corresponding term for the inverse metric expansion. The
problem here is to start with a general expansion of the form,

γ αβ = ãαβ t p+b̃αβ tq+c̃αβ tr+d̃αβ t s+· · · , p < q < r < s, (16)

and calculate the coefficients and exponents for each term.
By definition we have,

γ αμγμβ = δα
β , (17)

and so substituting the expansions,

(̃aαμt p + b̃αμtq + c̃αμtr + d̃αμt s + · · · )
×(aμβ + bμβ t + cμβ t

n + dμβ t
2 + · · · ) = δα

β , (18)

we arrive at the balancing conditions,

ãαμaμβ t
p + ãαμbμβ t

p+1 + ãαμcμβ t
p+n + ãαμdμβ t

p+2 +
b̃αμaμβ t

q + b̃αμbμβ t
q+1 + b̃αμcμβ t

q+n + b̃αμdμβ t
q+2 +

c̃αμaμβ t
r + c̃αμbμβ t

r+1 + c̃αμcμβ t
r+n + c̃αμdμβ t

r+2 +
d̃αμaμβ t

s + d̃αμbμβ t
s+1 + d̃αμcμβ t

s+n + d̃αμdμβ t
s+2 + · · ·

= δα
β . (19)

These are the necessary equations from which to infer the
forms of the various unknowns. The lowest exponent in the
series is p, so balancing this term first we find p = 0, and,

ãαμaμβ = δα
β , (20)

which means that the coefficient is simply,

ãαβ = aαβ. (21)

Next lowest order is t p+1 = t or tq . If q �= 1, then ãαμbμβ =
aαμbμβ = bα

β = 0. So q = 1, and hence,

0 = ãαμbμβ +b̃αμaμβ = aαμbμβ +b̃αμaμβ = bα
β +b̃αμaμβ.

(22)

Then,

0 = bα
βa

βε + b̃αμaμβa
βε = bαε + b̃αμδε

μ = bαε + b̃αε, (23)

namely that,

b̃αβ = −bαβ. (24)

Next lowest order is tn or tr . If r �= n, then ãαμcμβ =
aαμcμβ = cα

β = 0. So r = n, thus,

0 = ãαμcμβ + c̃αμaμβ = aαμcμβ + c̃αμaμβ = cα
β + c̃αμaμβ.

(25)

Then,

0 = cα
βa

βε + c̃αμaμβa
βε = cαε + c̃αμδε

μ = cαε + c̃αε, (26)

so that,

c̃αβ = −cαβ. (27)

Proceeding in a similar fashion, calculations become some-
what more complicated for the higher-order terms. The next
lowest order is t s or t2. If s �= 2, then ãαμdμβ = aαμdμβ =
dα
β = 0. So s = 2, thus,

0 = ãαμdμβ + b̃αμbμβ + d̃αμaμβ = aαμdμβ − bαμbμβ

+d̃αμaμβ = dα
β − bαμbμβ + d̃αμaμβ. (28)

Then,

d̃αμaμβ = bαμbμβ − dα
β . (29)

So,

d̃αμaμβa
βε = bαμbμβa

βε − dα
β aμβa

βε, (30)

thus,

d̃αμδε
μ = bαμbε

μ − dαε. (31)
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Finally, we find that,

d̃αβ = bαγ bβ
γ − dαβ. (32)

Therefore,

γ αβ = aαβ − bαβ t − cαβ tn + (bαγ bβ
γ − dαβ)t2 + · · · , (33)

and the proof of the inverse metric expansion is now com-
plete.

The order of the field equations introduced later will be
equal to two, and we further need only be concerned with spa-
tial metric expansions up to order n for the present problem.
Including terms of second and higher orders in the metric and
scalar field formal expansions is equivalent to extra constant
or vanishing terms appearing in the various curvatures at the
sudden singularity in addition to other terms which involve
n and are already diverging. Such terms are subdominant
near the sudden singularity with respect to terms of order
involving n. This is a new feature that is only present in sud-
den singularity expansions, absent in the more conventional
problem of Taylor-like expansions in non-sudden types.

3.2 Homogeneous vs. inhomogeneous expansions

It is an interesting question whether we can proceed with-
out loss of generality by considering a simpler type of for-
mal expansion for the metric and the scalar field. This could
be like the above expansions (11), (12) but the scalar field
coefficients be only constants, not purely spatial functions.
Although there is no reason for restricting the expansions to
such ‘homogeneous’ ones, this special case is treated fully in
the Appendix. As it turns out, the final result is of the same
generality as that obtained by the general inhomogeneous
expansions treated in the main body of this paper.

However, there is an important difference in the interpreta-
tion of the two cases: when non-Machian solutions are sought
for (non-zero constant first term in the formal series for the
metric), the simpler case containing constant coefficients for
the scalar field leads to the generic sudden singularity being
necessarily a simultaneous one, in distinction to the general
inhomogeneous case where the diverging terms are generi-
cally non-simultaneous at the sudden singularity.

We believe this effect has to do with the fact that in this
problem the inhomogeneous solution having a sudden sin-
gularity in the context of the Brans–Dicke equations (1)–(3)
turns out to be a general one in the sense of function counting,
as we prove below.

4 Curvature expansions

In this section, we build the necessary formal expansions for
the connection and for the various curvatures near the sud-
den singularity. These synchronous system calculations are
sometimes very lengthy due to the form of the unperturbed
solution, but also (later) due to the inclusion of the Brans–
Dicke scalar field.

4.1 Extrinsic curvature

We assume a non-null hypersurface  with normal vector nα .
The covariant extrinsic curvature expansions as we approach
the sudden singularity are straightforward to give,

Kαβ = ∂tγαβ = bαβ + ncαβ tn−1 + 2dαβ t + · · · . (34)

Then the mixed tensor is calculated as follows,

K β
α = γ βμKμα

= [aβμ − bβμt − cβμtn + (bβγ bμ
γ − dβμ)t2 + · · · ]

×[bμα + ncμαt
n−1 + 2dμαt + · · · ]

= bβ
α + ncβ

α tn−1 + (2dβ
α − bβ

γ b
γ
α )t + (−nbβ

γ c
γ
α

−bγ
α c

β
γ )tn

+(−2cβ
γ d

γ
α − ncγ

αd
β
γ + nbβγ bμ

γ cμα)tn+1 + · · · .

(35)

Tracing, we find,

K = K α
α = b + nc tn−1 + (2d − bβ

αb
α
β)t − (n + 1)bβ

αc
α
β t

n

+ (−(n + 2)cβ
αd

α
β + nbβ

αb
α
γ c

γ
β )tn+1 + · · · .

(36)

The trace K = ∇αnα of the extrinsic curvature has of course
the standard interpretation as the expansion of a congruence
of (non-null) geodesics that intersect the hypersurface 

orthogonally (with tangent vector nα at ). However, these
expansions for the extrinsic curvature are in addition of an
asymptotic nature in the present case, and that any state-
ment involving K becomes automatically an asymptotic one.
For instance, a diverging (resp. converging) congruence of
geodesics orthogonal to  having K > 0 (resp. K < 0) are
examples of such asymptotic statements. This asymptotic
interpretation will play an important role below.

From (35), we find by taking the (proper) time derivative,

∂t K
β
α = n(n − 1)cβ

α tn−2 + (2dβ
α − bβ

γ b
γ
α ) + n(−nbβ

γ c
γ
α

−bγ
α c

β
γ )tn−1 + (n + 1)(−2cβ

γ d
γ
α − ncγ

αd
β
γ

+nbβγ bμ
γ cμα)tn + · · · , (37)

whereas the time derivative for the evolution of the expansion
K from Eq. (36) is given by,
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∂t K = n(n − 1)c tn−2 + (2d − bβ
αb

α
β) − n(n + 1)bβ

αc
α
β t

n−1

+(n + 1)[−(n + 2)cβ
αd

α
β + nbβ

αb
α
γ c

γ
β ]tn + · · · . (38)

An important conclusion follows directly from these results.
As we approach the sudden singularity at zero proper time,
we have from Eqs. (36), (38),

lim
t→0

K = b, lim
t→0

∂t K = sign(c) × ∞. (39)

This will be used later.
Below we shall also make use of the products, found by

direct use of the relations above:

K β
α K

α
β = bβ

αb
α
β + 2nbβ

αc
α
β tn−1 + (4bβ

αd
α
β

−2bβ
αb

α
γ b

γ
β )t + · · · , (40)

KK β
α = bbβ

α + n(cbβ
α + bcβ

α) tn−1 + (2bdβ
α + 2dbβ

α

−bbβ
γ b

γ
α − bβ

αb
γ
δ b

δ
γ )t + · · · . (41)

4.2 Ricci curvature

In a synchronous reference system, the four-dimensional
Christoffel symbols, namely,

�i
jk = 1

2
gil(∂kgl j + ∂ j glk − ∂l g jk), (42)

have components, as defined below, which satisfy,

�0
00 = �α

00 = �0
0α = 0, (43)

�0
αβ = 1

2
Kαβ = 1

2
bαβ + 1

2
ncαβ t

n−1 + O(t), (44)

�α
0β = 1

2
K α

β = 1

2
bα
β + 1

2
ncα

β t
n−1 + O(t), (45)

�α
βγ = λα

βγ = 1

2
γ αδ(∂γ γδβ + ∂βγδγ − ∂δγβγ ), (46)

where λα
βγ are the three-dimensional Christoffel symbols

formed using the metric γαβ . The three-dimensional Ricci
tensor Pαβ associated with γαβ is then,

Pαβ = ∂μ�
μ
αβ − ∂β�μ

αμ + �
μ
αβ�ε

με − �μ
αε�

ε
βμ. (47)

It is very useful to obtain asymptotic expansions for the spa-
tial Ricci tensor Pαβ and its trace valid near the sudden sin-
gularity. This is done below in several steps, and should be
thought of as a necessary step to highlight the behaviour of the
various components of the four-dimensional Ricci curvature
introduced consequently. First, we introduce the symbols,

Aαβε = ∂βaαε + ∂αaβε − ∂εaαβ, (48)

Bαβε = ∂βbαε + ∂αbβε − ∂εbαβ, (49)

Cαβε = ∂βcαε + ∂αcβε − ∂εcαβ, (50)

and using the basic metric expansion around the sudden sin-
gularity, Eq. (11), we find that,

�
μ
αβ = λ

μ
αβ = 1

2
aμε Aαβε + 1

2
(aμεBαβε − bμε Aαβε)t

+1

2
(aμεCαβε − cμε Aαβε)t

n + O(t2)

= (λ
μ
αβ)0 + (λ

μ
αβ)1t + (λ

μ
αβ)nt

n + O(t2), (51)

with the coefficients (λ
μ
αβ)i obviously defined. Then Eq. (47)

implies,

Pαβ = (Pαβ)0 + (Pαβ)1t + (Pαβ)nt
n + O(t2), (52)

where the corresponding coefficients of the first few orders
for the spatial Ricci 3-curvature are expressed using the
(λ

μ
αβ)i ’s as follows,

(Pαβ)0 = ∂μ(λ
μ
αβ)0 − ∂β(λμ

αμ)0 + (λ
μ
αβ)0(λ

ε
με)0

− (λμ
αε)0(λ

ε
βμ)0, (53)

(Pαβ)1 = ∂μ(λ
μ
αβ)1 − ∂β(λμ

αμ)1 + (λ
μ
αβ)0(λ

ε
με)1

+(λε
με)0(λ

μ
αβ)1 − (λμ

αε)0(λ
ε
βμ)1 − (λε

βμ)0(λ
μ
αε)1,

(54)

(Pαβ)n = ∂μ(λ
μ
αβ)n − ∂β(λμ

αμ)n + (λ
μ
αβ)0(λ

ε
με)n

+(λε
με)0(λ

μ
αβ)n − (λμ

αε)0(λ
ε
βμ)n − (λε

βμ)0(λ
μ
αε)n .

(55)

Then the mixed components of the Ricci 3-curvature are
given by,

Pβ
α = γ βμPμα

= aβμ(Pμα)0 + [aβμ(Pμα)1 − bβμ(Pμα)0]t + [aβμ(Pμα)n

−cβμ(Pμα)0]tn + O(t2)

= (Pβ
α )0 + (Pβ

α )1t + (Pβ
α )nt

n + O(t2), (56)

which implies that the trace expansion for the TrPα
β is given

by,

P = Pα
α = δα

β P
β
α

= aαμ(Pμα)0 + [aαμ(Pμα)1 − bαμ(Pμα)0]t + [aαμ(Pμα)n

−cαμ(Pμα)0]tn + O(t2)

= P0 + P1t + Pnt
n + O(t2). (57)

The zeroth-order term is then given explicitly by the expan-
sion,

P0 = aαβ(Pαβ)0

= aαβ

[
∂μ�̃

μ
αβ − ∂β�̃μ

αμ + �̃
μ
αβ�̃ε

με − �̃μ
αε�̃

ε
βμ

]

= 1

2
aαβ [∂μ(aμε Aαβε) − ∂β(aμε Aαμε)
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+1

2
aμγ aεδAαβγ Aμεδ − 1

2
aμγ aεδAαεγ Aβμδ]

= 1

2
aαβ

{
∂μ[(aμε(∂βaαε + ∂αaβε − ∂εaαβ)]

−∂β [(aμε(∂μaαε + ∂αaμε − ∂εaαμ)]
+1

2
aμγ aεδ(∂βaαγ + ∂αaβγ − ∂γ aαβ)(∂εaμδ

+∂μaεδ − ∂δaμε)

−1

2
aμγ aεδ(∂εaαγ + ∂αaεγ − ∂γ aαε)(∂μaβδ

+∂βaμδ − ∂δaβμ)

}
. (58)

We can now compute the various expansions of the Ricci
tensor near the sudden singularity using the above results and
the standard formulae for the Ricci tensor decomposition in
a synchronous frame [6].

R0
0 = −1

2
∂t K − 1

4
K β

α K
α
β (59)

= −1

2
n(n − 1)c tn−2 +

(
1

4
bβ
αb

α
β − d

)

+1

2
n2bβ

αc
α
β t

n−1 + · · · , (60)

R0
α = 1

2
(∇βK

β
α − ∇αK ) (61)

= 1

2
(∇βb

β
α − ∇αb) + 1

2
n(∇βc

β
α − ∇αc) t

n−1 (62)

+
[
(∇βd

β
α − ∇αd) − 1

2
∇β(bβ

γ b
γ
α )

+1

2
∇α(bβ

γ b
γ
β )

]
t + · · · , (63)

Rβ
α = −Pβ

α − 1

2
∂t K

β
α − 1

4
KK β

α (64)

= −1

2
n(n − 1)cβ

α tn−2 +
[

− aβγ (Pγα)0

−1

4
bbβ

α + 1

2
bβ
γ b

γ
α − dβ

α

]
(65)

−1

4
n(bcβ

α + cbβ
α − 2nbβ

γ c
γ
α

−2bγ
α c

β
γ )tn−1 + · · · . (66)

Consequently, for the scalar curvature we obtain the expan-
sion,

R = −n(n − 1)ctn−2 +
(

−P0 − 1

4
b2 + 3

4
bβ
αb

α
β − 2d

)

+1

2
n[(2n + 1)bβ

αc
α
β − bc]tn−1 + · · · . (67)

5 The Brans–Dicke equations at the sudden singularity

In this section we find the asymptotic nature of the various
components of the Brans–Dicke system of Eqs. (1)–(3) as
we approach the sudden future singularity. For this purpose,
we shall first split the various terms in the equations in the
synchronous system and then in the second subsection find
the balancing conditions to the corresponding leading orders.
As a result, we shall discover the asymptotic expansions for
ρ, p and uα near the sudden singularity, and set asymptotic
constraints as functional relations for the consistency of the
whole scheme.

5.1 Splittings

We assume that the stress energy tensor has the form of a
perfect fluid,

T i
j = (ρ + p)uiu j − pδij , (68)

with the unit 4-velocity ui = (u0, uα) with u0 = u0, and
uiui = 1, so that,

u2
0 = 1 + uαu

α, (69)

which means that the three arbitrary components uα of the
velocity vector field determine u0. It follows that near the
sudden singularity,

u2
0 = 1 + (aαβ + bαβ t + cαβ tn + · · · )uαuβ. (70)

Since the simplest choice for the for the velocity vector field
ui tangent to the streamlines and for the vector field ni normal
to the hypersurface  is to set ([6], Section 97),

ui = ni = (1, 0), (71)

we assume that in the general case of an arbitrary unit velocity
vector field, to leading order we have,

u0 ∼ 1, uα ∼ 0. (72)

Hence, to leading order we find,

T 0
0 = (ρ + p)u0u0 − p ∼ ρ, (73)

T 0
α = (ρ + p)u0uα ∼ (ρ + p)uα, (74)

T β
α = (ρ + p)uβuα − pδβ

α ∼ −pδβ
α . (75)

The conservation laws ∇i T i
j = 0 for the matter content split

into temporal and spatial components as follows:

∂tρ + ∂α[(ρ + p)uα] + 1

2
K (ρ + p)

+λα
αβ(ρ + p)uβ = 0, (76)
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∂t [(ρ + p)uα] − ∂α p + 1

2
K (ρ + p)uα = 0, (77)

and we are faced with the problem of finding the leading
orders of the various terms in these equations, and similarly
in the equation of motion of the scalar field, and also in the
full Brans–Dicke equations (see below).

For the various derivatives of the scalar field φ = φ(t, xα),
we find the results:

∂tφ = φ1 + nφnt
n−1 + O(t) (78)

∂t
2φ = n(n − 1)φnt

n−2 + O(1) (79)

∂αφ = (∂αφ0) + (∂αφ1)t + (∂αφn)t
n + O(t2) (80)

∂βφ∂αφ = −γ βγ ∂γ φ∂αφ = −αβγ (∂γ φ0)(∂αφ0)

+[−αβγ (∂γ φ0)(∂αφ1) − αβγ (∂γ φ1)(∂αφ0)

+bβγ (∂γ φ0)(∂αφ0)]t
+[−αβγ (∂γ φ0)(∂αφn) − αβγ (∂γ φn)(∂αφ0)

−cβγ (∂γ φ0)(∂αφ0)]tn + O(t2) (81)

∇0∇0φ = ∂t
2φ = n(n − 1)φnt

n−2 + O(1) (82)

∇0∇αφ = ∂t (∂αφ) − 1

2
K β

α ∂βφ

=
[
(∂αφ1) − 1

2
bβ
α(∂βφ0)

]
+ n

[
(∂αφn)

−1

2
cβ
α(∂βφ0)

]
tn−1 + O(t) (83)

∇β∇αφ = −γ βγ ∂γ (∂αφ) + 1

2
K β

α ∂tφ + γ βγ λδ
γα∂δφ

=
[

− αβγ ∂γ (∂αφ0) + 1

2
φ1b

β
α

+αβγ (λδ
γα)0(∂δφ0)

]

+1

2
n(φnb

β
α + φ1c

β
α)tn−1 + O(t) (84)

�gφ = ∂t
2φ + 1

2
K∂tφ − γ αβ∂β(∂αφ) + γ αβλ

γ
βα∂γ φ

= n(n − 1)φnt
n−2 + O(1). (85)

We have the equation of motion for the scalar field, Eq. (2),
namely,

(3 + 2ω)�φ = 8π(ρ − 3p), (86)

Lastly, using the Brans–Dicke equations (1),

φ2(Ri
j − 1

2
δij R) = 8πφT i

j + ω

(
∂ iφ∂ jφ − 1

2
δij∂

kφ∂kφ

)

+φ(∇ i∇ jφ − δij�gφ), (87)

split into the
(0

0

)
component,

φ2(R0
0 − 1

2
R) = 8πφρ+ 1

2
ω[(∂tφ)2−∂αφ∂αφ]−φ∇α∇αφ,

(88)

the
(0
α

)
components,

φ2R0
α = 8πφ(ρ + p)uα + ω∂tφ∂αφ + φ∇0∇αφ, (89)

and the
(
β
α

)
components,

φ2(Rβ
α − 1

2
δβ
α R) = −8πφpδβ

α + ω

[
∂βφ∂αφ

−1

2
δβ
α (∂tφ)2 − 1

2
δβ
α ∂γ φ∂γ φ

]
+ φ(∇β∇αφ − δβ

α�φ).

(90)

5.2 Balancing

We start with the
(0

0

)
component in order to evaluate the

energy density and then the trace of the
(
β
α

)
equations to cal-

culate the pressure. Based on the resulting equations of the the
energy density and the pressure, the 4-velocity can be found
from the

(0
α

)
components. We further take into account the(

β
α

)
components to get restrictions on the arbitrary functions

of aαβ, bαβ, and cαβ .
From the

(0
0

)
component, given by (88), we obtain the

relation of the energy density, which is,

8πρ = φ0

(
1

2
P0 + 1

8
b2 − 1

8
bβ
αb

α
β

)

−1

2
ω

[
(φ1)

2

φ0
+ aαβ (∂αφ0)(∂βφ0)

φ0

]

+
[
−aαβ∂β(∂αφ0) + 1

2
φ1b + aαβ(λ

γ
αβ)0(∂γ φ0)

]

+
[

1

4
nφ0(bc − bβ

αc
α
β) − ωn

φ1φn

φ0
+ 1

2
n(φnb + φ1c)

]
tn−1

+O(t), (91)

where P0 is the zeroth-order term of the Ricci scalar associ-
ated with aαβ . This is an expansion of the form,

ρ = ρ0 + ρn−1t
n−1 + ρ1t + · · · , (92)

with the coefficients ρi representing the shown functions
which are independent of the time.

The trace of the
(
β
α

)
component, given by (90), implies,

φ2(Rα
α − 3

2
R) = −24πφp − 1

2
ω[3(∂tφ)2 + ∂αφ∂αφ]

−φ(3∇0∇0φ + 2∇α∇αφ), (93)
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from which, for the terms of O(tn−2), we find,

(φ0)
2
[
−1

2
n(n − 1)c + 3

2
n(n − 1)c

]

= −24πφ0 pn−2 − 3n(n − 1)φ0φn . (94)

Thus we end up with the expansion of the pressure, namely,

8πp = −1

3
n(n − 1)(φ0c + 3φn)t

n−2 + O(1), (95)

which we write generally as,

p = pn−2t
n−2 + p0 + pn−1t

n−1 + · · · , (96)

where again the coefficients are time-independent functions.
We note, however, that the

(
α
β

)
components of the Brans–

Dicke equations for α �= β, give for the (n − 2)-order terms,

−1

2
n(n − 1)(φ0)

2(cβ
α − cδβ

α ) = 1

3
n(n − 1)φ0(φ0c + 3φn)δ

β
α

−n(n − 1)φ0φnδ
β
α (97)

which after simplifying gives,

cβ
α = c

3
δβ
α . (98)

Equations (98) represent six functional constraining relations
between the initial data cαβ from which leave only one out
of the six components of cαβ arbitrary.

Additionally, based on the dominant term of the
(0
α

)
com-

ponents given by (89), we find,

8πφ0 pn−2u
2−n
α = 1

2
(φ0)

2(∇βb
β
α − ∇αb)

−ωφ1(∂αφ0) − φ0(∂αφ1) + 1

2
φ0b

β
α(∂βφ0), (99)

that is the three relations for the arbitrary spatial components
of velocity vector field are,

uα = 3

n(n − 1)(φ0c + 3φn)

[
−1

2
(φ0)

2(∇βb
β
α − ∇αb)

+ωφ1(∂αφ0) + φ0(∂αφ1) − 1

2
φ0b

β
α(∂βφ0)

]
t2−n .

(100)

This is an expansion of the form,

uα = (uα)2−nt
2−n + (uα)1t + · · · . (101)

We note that the combination φ0c + 3φn that appears in the
denominator of the Eq. (100) is not zero due to the equation
for the pressure (95).

Using the results for the energy density and the pressure,
the equation of motion of the scalar field, Eq. (86), gives,

(3+2ω)n(n−1)φn = −3

[
−1

3
n(n − 1)φ0c − n(n − 1)φn

]
, (102)

namely, we arrive at the functional relation,

φn = φ0c

2ω
, (103)

which represents one connection between the data in the φ

expansion.
Further, from the analysis of the asymptotics of the conser-

vation equations, no new constraining relation can be found.
This is seen as follows. From the (n − 2)-order term of the
time component of the conservations equations, Eq. (76), we
find,

(n − 1)

[
1

4
nφ0(bc − bβ

αc
α
β) − ωn

φ1φn

φ0
+ 1

2
n(φnb + φ1c)

]

−1

2
b

[
1

3
n(n − 1)φ0c + n(n − 1)φn

]
= 0, (104)

from which we obtain,

φ1φn = φ0φ1c

2ω
. (105)

However this last equation is not a new one as it follows
directly from Eq. (103).

Finally, for the (n−2)-order, the spatial part of the stress-
energy conservation (77) is expressed as,

1

2
n(n − 1)(φ0)

2(∇βc
β
α − ∇αc) − ωn(n − 1)φn(∂αφ0)

−n(n − 1)φ0

[
(∂αφn) − 1

2
cβ
α(∂βφ0)

]

= −φ0

[
1

3
n(n − 1)(∂αφ0)c + 1

3
n(n − 1)φ0(∂αc)

+n(n − 1)(∂αφn)

]
. (106)

Using (103), we find,

1

2
(φ0)

2∇βc
β
α − 1

6
(φ0)

2∇αc = 0, (107)

which follows from the constraint relation (98), and so is not
new.

6 Counting

In general, we expect there will be 6×gαβ and 6× ġαβ , plus 3
free velocity components uα, plus 2 from the pressure p and
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the density ρ, and 2 additional from φ and φ̇ giving a total
of 19 independent functions. We can remove four of these
by using the G0

0 and G0
a constraints and four more by using

the general coordinate covariances. This leaves a total of 11
free functions expected in the general solution for the metric
locally. If an equation of state had been assumed to relate the
pressure to the density this number would have been reduced
by 1–10.

Hence taking into account relations (91), (95), (98), (100)
and (103), we have 6 + 6 + 1 = 13 independent functions
from the initial data (aαβ, bαβ, cαβ), plus 1 + 1 + 0 = 2
independent functions from (φ0, φ1, φn). Therefore, in total
we have found 15 independent functions. Subtracting the 4
coordinate covariances which may still be used to remove
four functions, leaves 11 independent arbitrary functions of
the three space coordinates on a surface of constant t time.

This is the maximal number of independent arbitrary spa-
tial functions expected in a local representation of part of the
general solution of Brans–Dicke’s equations near a sudden
singularity.

7 Sudden singularities as shock waves

The main result in this work that the asymptotic approach to
the sudden singularity in Brans–Dicke theory is part of the
general solution of the theory allows us to make some com-
ments as to the general character of the sudden singularity in
the present context. This problem was addressed for general
relativity in Ref. [19], where it was shown that the general
approach to the inhomogeneous and anisotropic sudden sin-
gularity is geodesically complete. The proof was based on
an analysis of the solutions of the geodesic equations hav-
ing a C2 character near the sudden singularity. Here we shall
present a new proof of the completeness of geodesics, and
also extend it to the context of Brans–Dicke theory.

Before we proceed, we note that in both general relativity
and Brans–Dicke theories the asymptotic behaviours of the
various components of the Ricci tensor on approach to the
sudden singularity are identical, namely, R00 ∼ tn−2, R0α ∼
t0, Rαγ ∼ tn−2, while u0 ∼ t0, uα ∼ t2. Hence, following
the same analysis as in Ref. [19], we arrive at the conclusion
that the Brans–Dicke sudden singularity is also weak in the
senses of Tipler [29] and Krolak [30].

We now need to estimate the combination Ri j ui u j asymp-
totically on approach to the sudden singularity. We start with
general relativity. Using Eq. (98), to express the symbol cα

β

in the leading term of Rα
β in Eq. (66), we find that to leading

order,

Ri j u
i u j ∼ −c tn−2. (108)

Therefore, the strong energy condition, which for the Einstein
equations implies that Ri j ui u j ≥ 0, gives,

c < 0. (109)

Therefore Ri j ui u j does not change sign and remains positive
during the approach to the sudden singularity if we assume
that c < 0 initially. If we imagine a geodesic congruence
starting at some earlier time and approaching the sudden
future singularity, then asymptotically the expansion of the
congruence is given by Eq. (36), namely,

K ∼ b + nctn−1, (110)

and the change in K is given by Eq. (38), that is to leading
order,

K̇ ∼ n(n − 1)ctn−2. (111)

Therefore even if we assume that initially (that is before the
sudden singularity) the congruence is converging, that is,

b < 0, (112)

so that the right hand side in (110) is negative, and further
that the strong energy condition is satisfied, namely c < 0,
then we find,

K → b, K̇ → −∞, as t → 0. (113)

Here K tends to the constant b in the finite proper time
remaining to the sudden singularity, instead of −∞ as one
would expect from the focussing theorem of the standard
singularity theorems. The fact that K cannot diverge to −∞
there means that the sudden singularity can never be a point
conjugate to any earlier point in spacetime.

The reason for this difference can be seen most clearly by
looking at the balancing of the various terms in the Landau–
Raychaudhuri equation,

K̇ = −1

3
K 2 − σ i jσi j − Ri j u

i u j . (114)

Because of the fact that the sudden singularity metric contains
the crucial term tn, n ∈ (1, 2), the term K̇ does not balance
with the term K 2 [which is subdominant from Eq. (110)] as in
the case of the singularity theorems, but here it balances with
the last term. Therefore the evolution of K and K̇ is separate
in the sudden singularity case presently, because these two
quantities are not of the same asymptotic order.

This result has an interesting interpretation if we take into
account the fact that the expansion K represents the fractional
rate of change of the cross-sectional volume of the geodesic
congruence. At the sudden singularity there is a minimum
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volume, given by b, for geodesics to pass without intersect-
ing each other, and they cannot converge further to a region
smaller than this there. Therefore they escape to the future
leaving behind, at the sudden singularity, a hypersurface of
finite volume which has some discontinuity in the second
derivatives of the metric, much like a shock wave.

Let us finally take the above argument to see how it
changes in the present context of Brans–Dicke theory. The
whole argument above basically remains the same for the
Brans–Dicke case, because the last term in the Landau–
Raychaudhuri equation is of the same leading order as in
the case of general relativity. The only difference is in the
strong energy condition for the matter present in the Brans–
Dicke equations, from which we get an extra condition. The
strong energy condition dictates that,

(
Ti j − 1

2
δij T

)
uiu j ≥ 0, (115)

which is our case translates to the condition,

(
1 + 3

2ω

)
φ0c ≤ 0, (116)

taking into account the asymptotic functional relation (103).
When the term in the brackets is positive, then for the previous
argument to continue to be valid here, we need only to further
assume thatφ0 > 0. Then the strong energy condition implies
that c < 0, and the timelike convergence condition follows
from the asymptotic relation (108).

8 Discussion

Our foregoing results indicate that near the sudden singular-
ity the Brans–Dicke equations with a fluid source admit a
solution with 11 arbitrary functions as it is necessary for a
general solution in that theory. This result compares with the
corresponding one in general relativity, where the solution
there has 9 arbitrary functions and was also a general one
[18].

In general relativity, near a non-sudden region containing
a spacetime singularity, a similar situation arises in the non-
singular approach to a quasi-isotropic de Sitter spacetime in
the presence of a positive cosmological constant as in Refs.
[12–16], or with an ultrastiff fluid with p > ρ as in [17]. The
only other result known with comparable simplicity is the
vacuum, non-singular solution in R+εR2 gravity constructed
in [20] and containing 16 arbitrary data.

As we showed, the generic sudden singularity region in
Brans–Dicke theory contains no geodesic incompleteness
and has the character of a shock wave. We would expect that
these results will continue to hold in general f (R) theory

near a sudden singularity region and other modified gravity
models.
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Appendix: The homogeneous scalar field

We now consider the function counting problem in the special
case where the metric expansion is as before,

γαβ = aαβ + bαβ t + cαβ t
n + O(t2), (A1)

but the scalar field expansion near the sudden singularity is
‘homogeneous’, meaning,

φ = φ0 + φ1t + φnt
n + O(t2), (A2)

with 1 < n < 2, but the coefficients φi are constants. The
reason we need to demonstrate this special case in full is that
when one drops the spatial gradients of the scalar field com-
pletely from all equations, one cannot be sure that no func-
tional constraint is lost or changed in the process, especially
those constraints associated with the conservation laws. Of
course, if one first works out the problem in the homoge-
neous scalar field case, it is not possible to guess the results
that hold for the inhomogeneous case as in the main body of
this paper.

The inverse metric tensor is given as before,

γ αβ = aαβ − bαβ t − cαβ tn + O(t2), (A3)

and the series related with the extrinsic curvature, its deriva-
tives, and its contractions are the same. The components of
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the Ricci tensor have also the same forms (60)–(67). How-
ever, for the derivatives of the scalar field with φ = φ(t), we
find,

∂tφ = φ1 + nφnt
n−1 + O(t) (A4)

∂t
2φ = n(n − 1)φnt

n−2 + O(1) (A5)

∇β∇αφ = 1

2
K β

α ∂tφ

= 1

2
φ1b

β
α + 1

2
n(φnb

β
α + φ1c

β
α)tn−1 + O(t) (A6)

�gφ = ∂t
2φ + 1

2
K∂tφ

= n(n − 1)φnt
n−2 + O(1). (A7)

From the Brans–Dicke equations

φ2(Ri
j − 1

2
δij R) = 8πφT i

j + ω

(
∂ iφ∂ jφ − 1

2
δij∂

kφ∂kφ

)

+φ(∇ i∇ jφ − δij�gφ), (A8)

we use the
(0

0

)
component as before to calculate the energy

density and the trace of the
(
β
α

)
equations to calculate the

pressure. The 4-velocity can be calculated then from the
(0
α

)
components. Also we use the

(
β
α

)
components to get restric-

tions on the arbitrary functions of aαβ, bαβ, and cαβ .
From the

(0
0

)
component, we obtain,

φ2
(
R0

0 − 1

2
R

)
= 8πφρ + 1

2
ω(∂tφ)2 − 1

2
φK∂tφ, (A9)

hence, the energy density satisfies,

8πρ =
[
φ0

(
1

2
P0 + 1

8
b2 − 1

8
bβ
αb

α
β

)
− 1

2
ω

(φ1)
2

φ0

+1

2
φ1b

]
+ O(tn−1). (A10)

From the trace of the
(
α
β

)
component we have,

φ2
(
Rα

α − 3

2
R

)
= 8πφT α

α + ω(∂α∂αφ

−3

2
∂k∂kφ) + φ(∇α∇αφ − 3�gφ), (A11)

which gives the relation for the pressure,

8πp =
[
− 1

3
n(n−1)φ0c−n(n−1)φn

]
tn−2 +O(1). (A12)

The
(
α
β

)
components of the Brans–Dicke equations give,

φ2
(
Rβ

α − 1

2
δβ
α R

)
= −8πφpδβ

α − 1

2
ω(∂tφ)2δβ

α

+φ

(
1

2
K β

α ∂tφ − δβ
α ∂t

2φ − 1

2
δβ
α K∂tφ

)
, (A13)

and for the (n − 2)− order terms we find,

−1

2
n(n − 1)(φ0)

2(cβ
α − cδβ

α ) =
[

1

3
n(n − 1)(φ0)

2c

+n(n − 1)φ0φn

]
δβ
α − n(n − 1)φ0φnδ

β
α , (A14)

and therefore we have the constraints,

cβ
α = c

3
δβ
α . (A15)

Equations (A15) represent six relations between the initial
data cαβ from which only one, out of the six, components of
cαβ is arbitrary. Additionally, from the

(0
α

)
components,

φR0
α = 8π(ρ + p)uα, (A16)

we find three more relations for the velocities,

uα = − 3φ0

2n(n − 1)(φ0c + 3φn)
(∇βb

β
α − ∇αb)t

2−n . (A17)

Moreover, using the relation (2), we find that,

∂t
2φ + 1

2
K∂tφ = 8π

3 + 2ω
(ρ − 3p). (A18)

Taking into consideration relations (91) and (95) the follow-
ing equation,

φn = φ0c

2ω
. (A19)

Taking now into account the conservation laws ∇i T i
j = 0,

the (n − 2)-order term of the time component gives,

2ωφ1φn − φ0φ1c = 0, (A20)

which is implied by (A19). For the same order, the spatial
part of the stress-energy conservation is expressed as,

1

2
n(n− 1)φ0(∇βc

β
α −∇αc)+ 1

3
n(n− 1)φ0∇αc = 0, (A21)

namely that,

1

6
φ0

(
∇βc

β
α − 1

3
∇αc

)
= 0, (A22)

which is also implied by Eq. (A15).
Thus relations (A10), (A12), (A15), (A17) and (A19) give

6 + 6 + 1 = 13 independent functions from the initial data
(aαβ, bαβ, cαβ), plus 1 + 1 + 0 = 2 independent functions
from (φ0, φ1, φn). Therefore, in total we have found 15 inde-
pendent functions. Subtracting the 4 coordinate covariances
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we find 11 independent arbitrary functions of the three space
coordinates on a surface of constant t time.
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