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Abstract In this work, the full leading order results of the
form factors for �b → �c and �b → �c are obtained in
QCD sum rules. Contributions from up to dimension-5 have
been considered. For completeness, we also study the two-
point correlation function to obtain the pole residues of �Q

and �Q , and higher accuracy is achieved. For the three-point
correlation function, since stable Borel regions cannot be
found, about 20% uncertainties are introduced for the form
factors of �b → �c and �b → �c. Our results for the form
factors are consistent with those of the lattice QCD within
errors.

1 Introduction

The study of semi-leptonic decay �b → �c�ν is of great
phenomenological significance as it provides an ideal place
to constrain the CKM matrix element Vcb. Furthermore, this
process can also play an important role to test the lepton
universality. The measured branching ratio is given by [1]

B(�0
b → �+

c e
−ν̄e) = (6.2+1.4

−1.3) × 10−2. (1)

To extract Vcb or test the lepton universality, one must have
the knowledge of �b → �c transition form factors, which
are defined as

〈�c(p2, s2)|c̄γμ(1 − γ5)b|�b(p1, s1)〉
= ū�c (p2, s2)

[
γμ f1(q

2) + iσμν

qν

M1
f2(q

2)

+ qμ

M1
f3(q

2)

]
u�b (p1, s1)
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− ū�c(p2, s2)

[
γμg1(q

2) + iσμν

qν

M1
g2(q

2)

+ qμ

M1
g3(q

2)

]
γ5u�b(p1, s1). (2)

In the heavy quark limit, the form factors f1 and g1 reduce
to one unique Isgur–Wise function ζ(w) , where w = v · v′,
and f2 = f3 = g2 = g3 = 0. At zero recoil, we have
ζ(1) = 1. The heavy quark effective theory (HQET) provides
a systemical framework to study the power corrections to the
predictions in the heavy quark limit.

When the recoil energy is small, lattice QCD simula-
tion works well and there already exist predictions of the
�b → �c form factors [2], while one has to employ phe-
nomenological models to extrapolate the result to the whole
momentum region. It makes great sense to evaluate the form
factors in the large recoil region as the model dependence will
be effectively reduced. Some works based on various quark
models have been done [3–10], they being highly model
dependent. Perturbative QCD approach (PQCD) is adopted
in [11], but a relative small branching fraction of about 2%
is obtained for �b → �c�ν̄. In [12], HQET and PQCD are
adopted at small recoil and large recoil region, respectively,
and the diquark picture is used for u, d quarks.

The QCD sum rules method is a time-honored QCD-based
approach to dealing with hadronic parameters. It reveals a
direct connection between hadron phenomenology and QCD
vacuum structure via a few universal parameters such as
quark condensates and gluon condensates. The method has
been successfully applied to various problems relevant to the
hadron structures. The three-point QCD sum rules have been
widely used in the study on the transition form factors. For the
heavy-to-light form factors such as B → π form factors, the
light-cone sum rules is more appropriate because the light-
cone dominance of the correlation functions is proved at the
large recoil region. Meanwhile for the heavy-to-heavy case,
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the three-point QCD sum rules are applicable if the virtual-
ity of the momentum of the interpolating current is sufficient
large (LCSRs are also applicable at appropriate virtuality
region). In [13], we derived the form factors of doubly heavy
baryons to singly heavy baryons using QCD sum rules for the
first time, but so far our results are hard to test for the lack of
experimental data. For the singly heavy baryon decays more
data are accumulated which can help to check the theoretical
predictions. In this work we will calculate the �b → �c and
�b → �c transition form factors with three-point QCD sum
rules so that the validity of the three-point sum rules can be
checked.

Most studies on the heavy-to-heavy or heavy-to-light tran-
sition form factors are based on HQET (for the �b → �c

form factors, some of them can be found in [14–17], while
[18] is based on the light-cone QCD sum rules), thus the
power suppressed contributions are neglected. In this paper,
we will employ the heavy quark field in full QCD. In this
respect two studies have already been performed [19,20],
however, there are large discrepancies between these two
references. The form factors obtained in [20] seem not to be
reasonable because the form factors at the small recoil do
not meet the predictions of HQET. For [19], there are some
places to be improved, one is the two Borel parameters are
not taken as free parameters, and the other is the following
predictions for the form factors defined in Eq. (2),

f1 = g1, f2 = f3 = g2 = g3 = 0, (3)

is too rough. For the latter, the authors have only adopted the
coefficients of the Dirac structures with the highest dimen-
sion to extract the vector and axial-vector form factors. In
fact, at the next-to-leading power (NLP) of 1/mQ in HQET,
f2 and g3 are fairly large rather than zero. Therefore, a more
careful study on the �b → �c transition is required. In addi-
tion, when [19] was done, there was no mature lattice QCD
calculation available. In this work, we will make close com-
parisons with the predictions of lattice QCD.

In our method there are two points that need to be empha-
sized [13]. The first one is to obtain the spectral densities
of double dispersion relations using cutting rules. As can be
seen in Fig. 1, all the propagators perpendicular to p1 are to
be cut if we intend to take discontinuity with respect to p2

1,
and the same is true for the case of p2. This is readily jus-
tified using numerical integration for the situation of scalar
quarks, and it can be evidently proved with the approach pro-
vided in [21]. The other one is to deal with the superfluous
Dirac structures by taking into account the contributions from
the negative-parity baryons. Because we are interested in the
process of 1/2+ → 1/2+, once the other three processes
including 1/2− baryons are considered, all the coefficients
of Dirac structures will find their places in the final expres-
sions for the form factors. Cutting rules were also adopted

p1

k1

k2

k′
1

p2
k3

Fig. 1 Cutting rules for the spectral density of the double dispersion
relation in Eq. (20)

in [19], but only the coefficients of the Dirac structures with
the highest dimension were used to extract the form factors.

For the processes of �b → �c and �b → �c, the lead-
ing order contributions from dimension-3 and dimension-5
operators are, respectively, proportional to the mass of the
light quark and the mass of the strange quark. For the for-
mer, these contributions can be neglected. Therefore, we will
set the process �b → �c as default in the following analysis.
The corresponding results of �b → �c will also be shown
when appropriate. When performing the numerical analysis,
the Wilson coefficients are calculated with perturbative QCD,
thus we will employ the MS scheme for the quark masses.
If we take the heavy quark limit the HQET sum rules results
can be reproduced, as can be seen in [19,22,23].

The rest of this paper is arranged as follows. In Sect. 2,
we will discuss the two-point correlation functions to eval-
uate the pole residues of �Q and �Q for completeness. In
Sect. 3, we will investigate the three-point correlation func-
tions to arrive at the analytical results of the form factors.
Numerical results for the form factors and their phenomeno-
logical applications will be shown in Sect. 4. In this section,
we will also compare our results with other theoretical pre-
dictions and the experimental data to test the validity of our
calculation. We conclude this paper in the last section.

2 The two-point correlation functions and pole residues

The pole residues of heavy baryons have also been inves-
tigated in the literature [24,25]. For completeness, we still
briefly describe the calculation of the two-point correlation
functions in this section.

To construct the correlation function, one should choose
the appropriate interpolating currents for �Q and �Q . As
the isospin of the diquark [ud] in the baryon �(c,b) is 0, we
adopt the following interpolating currents in our calculation:

J�Q = εabc(u
T
a Cγ5db)Qc,

J�Q = εabc(q
T
a Cγ5sb)Qc, (4)

123



Eur. Phys. J. C (2020) 80 :1181 Page 3 of 11 1181

where Q = b or c, q = u or d, the color indices are denoted
bya, b, c andC is the charge conjugate matrix. The two-point
correlation function is defined by

�(p) = i
∫

d4x eip·x 〈0|T {J (x) J̄ (0)}|0〉. (5)

On the hadronic side, one can insert the complete set of
hadronic states to write the above correlation function as

�had(p) = λ2+
/p + M+
M2+ − p2

+ λ2−
/p − M−
M2− − p2

+ · · · , (6)

where we have also considered the contribution from the
negative-parity baryon, M± (λ±) stand for the masses (the
pole residues) of the positive- and negative-parity baryons.

On the QCD side, we evaluate the correlation function in
Eq. (5) following the OPE technique. Since the contributions
from gluon condensate are small [23], one can only con-
sider the contributions from dimension-0,3,5 operators and
the corresponding nonzero diagrams can be found in Fig. 2.
The result can be formally written as

�QCD(p) = A(p2)/p + B(p2), (7)

where the coefficients A and B can be written in terms of the
dispersion integrals,

A(p2) =
∫

ds
ρA(s)

s − p2 , B(p2) =
∫

ds
ρB(s)

s − p2 . (8)

Taking advantage of the quark–hadron duality assumption
and employing the Borel transform, the QCD sum rule for
the pole residue of 1/2+ baryon is given by

(M+ + M−)λ2+ exp(−M2+/T 2+)

=
∫ s+

m2
Q

ds (M−ρA + ρB) exp(−s/T 2+), (9)

where T 2+ is the Borel parameters and s+ is the continuum
threshold parameters. Differentiating Eq. (9) with respect to
−1/T 2+, one can arrive at the sum rule for the mass of 1/2+
baryon

M2+ =
∫ s+
m2

Q
ds (M−ρA + ρB) s exp(−s/T 2+)

∫ s+
m2

Q
ds (M−ρA + ρB) exp(−s/T 2+)

. (10)

In practice, Eq. (10) is used to test the sum rule in Eq. (9).

3 Three-point correlation functions and form factors

For the �b → �c and �b → �c transition form factors, we
take advantage of the following simpler parametrization in
this section:

〈B2(p2, s2)|c̄γμ(1 − γ5)b|B1(p1, s1)〉

= ūB2(p2, s2)

[
p1μ

M1
F1(q

2) + p2μ

M2
F2(q

2)

+γμF3(q
2)

]
uB1(p1, s1)

− ūB2(p2, s2)

[
p1μ

M1
G1(q

2) + p2μ

M2
G2(q

2)

+ γμG3(q
2)

]
γ5uB1(p1, s1), (11)

where B1,2 are for (�,�)b,c. The form factors Fi ,Gi are
related to fi , gi defined in (2) through

F1 = f2 + f3, F2 = M2

M1
( f2 − f3),

F3 = f1 − M1 + M2

M1
f2;

G1 = g2 + g3, G2 = M2

M1
(g2 − g3),

G3 = g1 + M1 − M2

M1
g2. (12)

Thus at the leading power of 1/mQ in HQET, the form factors
defined in Eq. (11) satisfy [26]

F1 = F2 = G1 = G2 = 0, F3 = G3 = ζ(ω),

(13)

with

ζ(ω = 1) = 1, (14)

where ω ≡ v1 · v2 = (p1 · p2)/(M1M2).
As mentioned before, we will take the �b → �c transition

as the default process to illustrate our method. The correlation
function for �b → �c transition is defined as

�V,A
μ (p2

1, p
2
2, q2)

= i2
∫

d4xd4y e−i p1·x+i p2·y

×〈0|T {J�c (y)(Vμ, Aμ)(0) J̄�b (x)}|0〉, (15)

where Vμ(Aμ) = c̄γμ(γμγ5)b is the vector (axial-vector)
current for b → c weak decay. The interpolating currents for
initial and final states can be found in Eqs. (4).

Following the standard steps of QCD sum rules, the corre-
lation function will be calculated at hadronic level and QCD
level. At the hadronic level, after inserting the complete set of
initial and final states, the vector current correlation function
can be written as

�V,had
μ (p2

1, p2
2, q2)

= λ f λi

(/p2 + M2)
(

p1μ

M1
F1 + p2μ

M2
F2 + γμF3

)
(/p1 + M1)

(p2
2 − M2

2 )(p2
1 − M2

1 )

+ · · · , (16)
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Q

s

q

Fig. 2 Only three nonzero diagrams survive for the two-point correlation function of �Q , if we consider the contributions up to dimension-5 and
neglect those from dimension-4. The double lines denote the heavy quarks and the dots stand for the condensates

where λi( f ) = λ�b(c) , Fi are form factors defined in Eq. (11),
M1,2 are the masses of initial and final states and the ellipsis
stands for the contribution from higher resonances and con-
tinuum spectra. It is clear that there are 12 Dirac structures,
but only three form factors to be determined in Eq. (16).
For each form factor, there are four Dirac structures avail-
able. Furthermore, it is very likely that these different Dirac
structures give rise to very different results since only the
LO results are considered. To eliminate these ambiguities,
we consider again the contributions from the negative-parity
baryons, which have been swept into the ellipsis in Eq. (16).
After that, the vector current correlation function can be
rewritten as

�V,had
μ (p2

1, p2
2, q2)

= λ+
f λ

+
i

(/p2 + M+
2 )

(
p1μ

M+
1
F++

1 + p2μ

M+
2
F++

2 + γμF
++
3

)
(/p1 + M+

1 )

(p2
2 − M+2

2 )(p2
1 − M+2

1 )

+λ+
f λ

−
i

(/p2 + M+
2 )

(
p1μ

M−
1
F+−

1 + p2μ

M+
2
F+−

2 + γμF
+−
3

)
(/p1 − M−

1 )

(p2
2 − M+2

2 )(p2
1 − M−2

1 )

+λ−
f λ

+
i

(/p2 − M−
2 )

(
p1μ

M+
1
F−+

1 + p2μ

M−
2
F−+

2 + γμF
−+
3

)
(/p1 + M+

1 )

(p2
2 − M−2

2 )(p2
1 − M+2

1 )

+λ−
f λ

−
i

(/p2 − M−
2 )

(
p1μ

M−
1
F−−

1 + p2μ

M−
2
F−−

2 + γμF
−−
3

)
(/p1 − M−

1 )

(p2
2 − M−2

2 )(p2
1 − M−2

1 )

+ · · · . (17)

In Eq. (17), M+(−)
1(2) denotes the masses of initial (final) pos-

itive (negative) parity baryons, and F−+
1 is the form factor

F1 with the negative-parity final state and the positive-parity
initial state, and so forth. To arrive at Eq. (17), we have also
adopted the definitions of the pole residues for positive- and
negative-parity baryons,

〈0|J+|B+(p, s)〉 = λ+u(p, s),

〈0|J+|B−(p, s)〉 = (iγ5)λ−u(p, s), (18)

and the following conventions for the form factors F±±
i :

〈B+
f (p2, s2)|Vμ|B+

i (p1, s1)〉

= ūB+
f
(p2, s2)

[
p1μ

M+
1

F++
1 + p2μ

M+
2

F++
2 + γμF

++
3

]

× uB+
i
(p1, s1),

〈B+
f (p2, s2)|Vμ|B−

i (p1, s1)〉

= ūB+
f
(p2, s2)

[
p1μ

M−
1

F+−
1 + p2μ

M+
2

F+−
2 + γμF

+−
3

]

× (iγ5)uB−
i
(p1, s1),

〈B−
f (p2, s2)|Vμ|B+

i (p1, s1)〉

= ūB−
f
(p2, s2)(iγ5)

[
p1μ

M+
1

F−+
1 + p2μ

M−
2

F−+
2 + γμF

−+
3

]

× uB+
i
(p1, s1),

〈B−
f (p2, s2)|Vμ|B−

i (p1, s1)〉

= ūB−
f
(p2, s2)(iγ5)

[
p1μ

M−
1

F−−
1 + p2μ

M−
2

F−−
2 + γμF

−−
3

]

× (iγ5)uB−
i
(p1, s1). (19)

In Eq. (18), J+ can be found in Eqs. (4), and λ+(−) is the
pole residue for the positive- (negative-) parity baryon.

At the QCD level, there are three diagrams to be con-
sidered up to dimension-5, as can be seen in Fig. 3.1 For
practical purpose, the correlation function is expressed as a
double dispersion relation

�V,QCD
μ (p2

1, p
2
2, q2)

=
∫ ∞

ds1

∫ ∞
ds2

ρ
V,QCD
μ (s1, s2, q2)

(s1 − p2
1)(s2 − p2

2)
, (20)

with ρ
V,QCD
μ (s1, s2, q2) being the spectral function, which

can be obtained by applying Cutkosky cutting rules. Based
on the assumption of quark–hadron duality, the sum of the
four pole terms in Eq. (17) should be equal to

∫ s0
1

ds1

∫ s0
2

ds2
ρ
V,QCD
μ (s1, s2, q2)

(s1 − p2
1)(s2 − p2

2)
≡ �

V,pole
μ , (21)

1 As can be seen in [13], the contributions from the gluon condensate
are small, therefore we do not consider them in this work.
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b

s

q

c

Fig. 3 Only three nonzero diagrams survive for the three-point corre-
lation function of �b decaying into �c, if we consider the contributions
up to dimension-5 and neglect those from dimension-4. The double

lines denote the heavy quarks, the dots stand for the condensates, and
the cross marks are vertices of weak interaction

where s0
1(2) is the continuum threshold parameter for the ini-

tial (final) baryon. �
V,pole
μ can be formally written as

�
V,pole
μ =

12∑
i=1

Aieiμ, (22)

where we have defined

(e1,2,3,4)μ = {/p2, 1} × {p1μ} × {/p1, 1},
(e5,6,7,8)μ = {/p2, 1} × {p2μ} × {/p1, 1},

(e9,10,11,12)μ = {/p2, 1} × {γμ} × {/p1, 1}. (23)

By equating Eq. (17) with Eq. (22), one can obtain 12 equa-
tions. Solving these equations, one can obtain these 12 form
factors F±,±

i , including the following three expressions for
F++
i :

λ+
i λ+

f (F
++
1 /M+

1 )

(p2
1 − M+2

1 )(p2
2 − M+2

2 )

= {M−
1 M−

2 , M−
2 , M−

1 , 1} · {A1, A2, A3, A4}
(M+

1 + M−
1 )(M+

2 + M−
2 )

,

λ+
i λ+

f (F
++
2 /M+

2 )

(p2
1 − M+2

1 )(p2
2 − M+2

2 )

= {M−
1 M−

2 , M−
2 , M−

1 , 1} · {A5, A6, A7, A8}
(M+

1 + M−
1 )(M+

2 + M−
2 )

,

λ+
i λ+

f F
++
3

(p2
1 − M+2

1 )(p2
2 − M+2

2 )

= {M−
1 M−

2 , M−
2 , M−

1 , 1} · {A9, A10, A11, A12}
(M+

1 + M−
1 )(M+

2 + M−
2 )

. (24)

Borel transforming the above equations to suppress the con-
tributions from higher resonances and continuum spectra we
arrive at

λ+
i λ+

f (F
++
1 /M+

1 ) exp

(
−M+2

1

T 2
1

− M+2
2

T 2
2

)

= {M−
1 M−

2 , M−
2 , M−

1 , 1} · {BA1,BA2,BA3,BA4}
(M+

1 + M−
1 )(M+

2 + M−
2 )

,

λ+
i λ+

f (F
++
2 /M+

2 ) exp

(
−M+2

1

T 2
1

− M+2
2

T 2
2

)

= {M−
1 M−

2 , M−
2 , M−

1 , 1} · {BA5,BA6,BA7,BA8}
(M+

1 + M−
1 )(M+

2 + M−
2 )

,

λ+
i λ+

f F
++
3 exp

(
−M+2

1

T 2
1

− M+2
2

T 2
2

)

= {M−
1 M−

2 , M−
2 , M−

1 , 1} · {BA9,BA10,BA11,BA12}
(M+

1 + M−
1 )(M+

2 + M−
2 )

,

(25)

where BAi ≡ BT 2
1 ,T 2

2
Ai are doubly Borel transformed coef-

ficients, and T 2
1,2 are the Borel mass parameters.

To obtain the coefficients Ai in Eq. (22), one can project
Eq. (22) onto 12 Dirac structures. Specifically, multiplying
by eμ

j and then taking traces on both sides of Eq. (22), one
can arrive at the following 12 linear equations:

Bj ≡ Tr[�V,pole
μ eμ

j ]

= Tr

[(
12∑
i=1

Aieiμ

)
eμ
j

]
, j = 1, . . . , 12. (26)

Solving these equations, one can obtain the expressions of
Ai given that it is easy to write down �

V,pole
μ .

4 Numerical results and phenomenological applications

In our numerical calculations, the condensate parameters are
taken as [27] 〈q̄q〉 = −(0.24 ± 0.01 GeV)3, 〈q̄gsσGq〉 =
m2

0〈q̄q〉, m2
0 = (0.8±0.2) GeV2, where the renormalization

scale is taken at μ = 1 GeV. In this work, we will use MS
masses for quarks unless otherwise stated. When dealing with
the two-point correction functions for bottom baryons, we
take the renormalization scale at μ = mb, while for charmed
baryons, μ = mc. For the three-point correction functions
of a bottom baryon decaying into a charmed baryon, we take
μ = mb. The following quark masses are used [1]:

mb(mb) = 4.18 ± 0.03 GeV, mc(mb) = 1.02 ± 0.02 GeV,

123
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ms(mb) = (0.082 ± 0.010) GeV,

mc(mc) = 1.27 ± 0.02 GeV, ms(mc) = 0.103 ± 0.012 GeV.

(27)

Since we are considering the LO calculation of QCDSR,
when arriving at the above masses, it would be enough to
adopt the following one-loop evolution equation:

mq(μ0)

⎛
⎝ log(μ0/�

(n f )

QCD)

log(μ/�
(n f )

QCD)

⎞
⎠

4/β0

(28)

for mc(mb), ms(mb) and ms(mc). In the above equation,
β0 = 11 − (2/3)n f with n f the number of active flavors,

and �
(4)
QCD = 170 MeV has been used in Eqs. (27). In the

following, �
(3)
QCD = 223 MeV will also be used. These two

values for �QCD are obtained by requiring the results for αs

at the LO to reproduce the corresponding results at the NLO
[28].2

4.1 The two-point correlation function

In this work, we will also consider the leading logarithm (LL)
approximation for the pole residues and masses of baryons.
According to [29], the Wilson coefficients of the local oper-
ators that we derived in Sect. 2 should be multiplied by an
evolution factor,⎛
⎝ log(μ0/�

(n f )

QCD)

log(μ/�
(n f )

QCD)

⎞
⎠

2γJ−γO

, (29)

where γJ is the anomalous dimension of the current J in
Eq. (4), and γO is that of the local operator in the OPE.
Following [29], we will also only consider the LL corrections
for the perturbative and quark condensate contributions. μ0 is
the renormalization scale of the low-energy limit [29], which
is roughly at 1 GeV, and μ ∼ mQ is the renormalization scale
that we choose for the physical quantities of interest. For
the interpolating current given in Eq. (4), the corresponding
anomalous dimension is γJ = −1/β0 [30]. The anomalous
dimension for ψ̄ψ is given by γψ̄ψ = 4/β0.

Using the sum rule in Eq. (9), we can determine the pole
residues for (�,�)b,c. The pole residues as functions of
the Borel parameter T 2+ are given in Fig. 4, from which we
arrive at our predictions of the pole residues and masses for
(�,�)b,c in Table 1. Some comments are in order.

• It can be seen that our predictions for the masses of
(�,�)b,c are in very good agreement with the experi-

2 In fact, �
(4)
QCD = 147 MeV and �

(4)
QCD = 194 MeV are, respectively,

obtained at μ = mb and μ = mc, while �
(3)
QCD = 223 MeV is obtained

at μ = mc. A mean value is adopted for �
(4)
QCD in our QCDSR calcula-

tion.

mental results. Presumably it is due to the overwhelming
contribution from perturbative diagram, since the second
and third diagrams in Fig. 2 are proportional to the mass
of light quark.

• It turns out that the LL corrections for dimension-0,3
are, respectively, 16, 54% for the bottom baryons, and 3,
10% for the charmed baryons. Although the corrections
for dimension-3 are large, they do not play an important
role because of the fact stated in the last item.

4.2 The three-point correlation function

To access the numerical results for the form factors of
�b → �c, firstly we need to find the optimal choices for
the threshold parameters s0

1,2 and the Borel masses T 2
1,2. For

the former, we just borrow them from the corresponding two-
point correlation functions. The optimal values for s0

1 and s0
2

are, respectively, (6.20 GeV)2 and (2.85 GeV)2, as can be
seen from Table 1. Then we scan the T 2

1 –T 2
2 plane to deter-

mine the optimal Borel region.
Note that we also consider the LL resummation for the

form factors. Since the anomalous dimensions for the vector
current and axial-vector current vanish, the Wilson coeffi-
cients of the local operators that we derived in Sect. 3 should
be multiplied by the same evolution factor as in Eq. (29). One
more thing should be addressed: the pole residue for �c (�c)
in Table 1, which is evaluated at μ = mc, should be evolved
to the scale of μ = mb.

However, we fail to find stable regions like the cases of
the two-point correlation functions. To find relatively opti-
mal regions on T 2

1 –T 2
2 plane, the following criteria are to be

employed:

• Pole dominance. We require

r1 ≡
∫ s0

1 ds1
∫ s0

2 ds2∫ ∞ ds1
∫ s0

2 ds2

� 0.5,

r2 ≡
∫ s0

1 ds1
∫ s0

2 ds2∫ s0
1 ds1

∫ ∞ ds2

� 0.5, (30)

which can be viewed as the pole dominance criteria for
the �b (�b) channel and the �c (�c) channel, respec-
tively.

• OPE convergence. It can be achieved by requiring that
the ratio dimension-5/Total should be small enough.

Complying with the above criteria, we arrive at the rel-
atively optimal regions on the T 2

1 –T 2
2 plane for �b → �c,

which are enclosed by the dashed contours, as plotted in
Fig. 5. The specific values of r1,2 and dimension-5/Total in
these regions can be found in Table 2. Since F1,2 is small,
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Fig. 4 The pole residues of �b (top left), �b (top right), �c (bottom
left) and �c (bottom right) as functions of the Borel parameters T 2+.
The blue and red curves correspond to optimal and suboptimal choices
for s+. The extreme points of these curves correspond to the optimal
choices of T 2+ on these curves. The explicit values for these s+ and

T 2+ can be found in Table 1. In practice, T 2+ is taken in the range of
[1, 16] GeV2 with step length 1 GeV2 for Bb, and [0.5, 5] GeV2 with
step length 0.5 GeV2 for Bc. It can be seen that our predictions for pole
residues depend little on such sampling

Table 1 The predictions of the pole residues and masses. For compari-
son, the experimental values of heavy baryons are also shown. Optimal
and suboptimal s+ and T 2+ are given simultaneously. The central values
for the pole residues and masses are taken at optimal s+ and T 2+, and

the values at suboptimal s+ and T 2+ provide the error estimates. The
results of bottom and charmed baryons are, respectively, obtained at the
renormalization scale μ = mb and μ = mc, respectively

(s+/GeV2, T 2+/GeV2) λ+/GeV3 M+/GeV Mexp
+ /GeV

�b (6.202, 11), (6.252, 9) 0.0631 ± 0.0028 5.791 ± 0.009 5.793

�c (2.852, 4.0), (2.902, 3.0) 0.0229 ± 0.0011 2.471 ± 0.007 2.468

�b (5.952, 9) (6.002, 6) 0.0432 ± 0.0022 5.622 ± 0.010 5.620

�c (2.502, 3.5), (2.552, 2.0) 0.0114 ± 0.0009 2.286 ± 0.005 2.286

the definitions in Eqs. (30) may be ill-defined, so we only
give the selected regions for F3, and just assume that the
same regions are also applied to F1,2. Similar regions can be
obtained for G3 and same assumption is applied to G1,2.

For �b → �c, the contributions from dimension-3,5 are
neglected because they are proportional to the mass of the
light quark, thereby the second criterion does not work. How-
ever, one can see that in the selected regions for �b → �c,
T 2

1 ∼ O(m2
b) and T 2

2 ∼ O(m2
c), so it is plausible that simi-

lar pattern should also hold for �b → �c. By constraining

T 2
1 ∈ [15, 25] GeV2, T 2

2 ∈ [2, 4] GeV2 and also considering
the first criterion above, the Borel region for �b → �c can
also be determined, as can be seen in Fig. 5.

After all the parameters are fixed, central values and uncer-
tainties of the form factors Fi and Gi at q2 = 0 for the pro-
cesses of �b → �c and �b → �c are then given in Table 3.
In this table, central values of the Borel parameters (T 2

1 , T 2
2 )

are, respectively, taken as (25, 3) GeV2 and (20, 3) GeV2

for �b → �c and �b → �c. The three uncertainties are
from the Borel region, and the threshold parameters s0

1 and
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Fig. 5 F�b→�c
3 and F�b→�c

3
at q2 = 0 as functions of the
Borel parameters T 2

1 and T 2
2 ,

where T 2
1 and T 2

2 are taken as
free parameters. The larger the
form factors, the darker the
color. The preferred Borel
regions are enclosed by the
dashed contours

Table 2 The quantitative
criteria of the pole dominance
and OPE convergence

�b → �c F3(0) (%) �b → �c F3(0) (%)

r1 > 59 r1 > 56

r2 > 50 r2 > 39

Dimension-5/total < 10 Dimension-5/total –

s0
2 , respectively. When determining the uncertainties from

the threshold parameters, the suboptimal values in Table 1
are used as references.

To access the q2 dependence of the form factors, we calcu-
late the form factors in a small interval q2 ∈ [0.0, 0.5] GeV2,
and fit the values with the following simplified z-expansion
[2]:

f (q2) = a + b z(q2)

1 − q2/m2
pole

, (31)

where mpole = mBc ,

z(q2) =
√
t+ − q2 − √

t+ − q2
max√

t+ − q2 + √
t+ − q2

max

(32)

with t+ = m2
pole and q2

max = (M1−M2)
2, M1 = m�b (m�b ),

M2 = m�c (m�c ). The fitted results of (a, b) for the form
factors of �b → �c and �b → �c are given in Table 4. In
Table 5, our results are compared with those of lattice QCD
[2] and those of HQET at the next-to-leading power (NLP)
of 1/mQ [26]. Some comments are in order.

• For the results of HQET at the NLP in Table 5, we have
used

ζ(1) = 1, �̄� = 0.9 GeV, mc = 1.4 GeV,

mb = 4.8 GeV. (33)

The evaluation of nonperturbative constant �̄� can be
found in [23].

• As can be seen in Table 3 about 10–20% uncertainties are
introduced for the form factors of �b → �c at q2 = 0,
and about 20% for �b → �c. As a rough estimate, we
assume that similar uncertainties are implicit in our pre-
dictions for the form factors atq2 = q2

max in Table 5. Con-
sidering these uncertainties, one can see that our results
are very close to those of the Lattice QCD and HQET at
NLP, especially for F3 and G3.

• As stated above, the form factors of �b → �c at the LP
of HQET is

F1 = F2 = G1 = G2 = 0, F3 = G3 = 1. (34)

To be compared with this, about 10–40% corrections are
introduced for the NLP results. Since the mass of the
charm quark is not high enough, both HQET and HQET
sum rules may receive sizable power corrections.

The predictions for the form factors are then applied to
the semi-leptonic processes. The polarized decay widths for
B1 → B2lν are given as

d�L

dq2 = G2
F |VCKM|2q2 p (1 − m̂2

l )
2

384π3M2
1

×
(
(2 + m̂2

l )(|H− 1
2 ,0|2 + |H 1

2 ,0|2)
+3m̂2

l (|H− 1
2 ,t |2 + |H 1

2 ,t |2)
)

, (35)
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Table 3 Central values and
uncertainties of the form factors
Fi and Gi at q2 = 0

Transition F Central value Err from T 2
1,2 Err from s0

1 Err from s0
2

�b → �c F1(0) −0.125 0.020 0.000 0.010

F2(0) −0.067 0.005 0.004 0.002

F3(0) 0.701 0.043 0.022 0.032

G1(0) −0.156 0.021 0.002 0.014

G2(0) 0.096 0.004 0.005 0.004

G3(0) 0.518 0.036 0.023 0.025

�b → �c F1(0) −0.101 0.010 0.001 0.016

F2(0) −0.059 0.009 0.004 0.004

F3(0) 0.604 0.098 0.023 0.056

G1(0) −0.124 0.012 0.002 0.019

G2(0) 0.080 0.011 0.005 0.007

G3(0) 0.456 0.079 0.019 0.036

Table 4 The fitted results of
(a, b) for the form factors

Transition F (a, b) Transition F (a, b)

�b → �c F1 (−0.198, 0.891) �b → �c F1 (−0.195, 1.134)

F2 (−0.127, 0.735) F2 (−0.121, 0.752)

F3 (1.053,−4.282) F3 (1.064,−5.561)

G1 (−0.283, 1.546) G1 (−0.248, 1.509)

G2 (0.197,−1.225) G2 (0.183,−1.243)

G3 (0.847,−3.961) G3 (0.762,−3.685)

Table 5 Our predictions for the
form factors at q2 = 0 and
q2 = q2

max are compared with
those from the Lattice QCD and
the next-to-leading power of
1/mQ in HQET [26]. For the
latter, only F(q2

max) are shown,
the choices for the parameter
values can be found in the text.
As can be seen in Table 3, about
10–20% uncertainties can be
introduced in our results for
�b → �c and �b → �c

Transition F This work LQCD [2] HQET@NLP [26]

�b → �c F1 (−0.125,−0.276) – −0.321

F2 (−0.067,−0.177) – −0.094

F3 (0.701, 1.464) – 1.415

G1 (−0.156,−0.394) – −0.321

G2 (0.096, 0.274) – 0.094

G3 (0.518, 1.178) – 1

�b → �c F1 (−0.101,−0.271) (−0.174,−0.419) −0.321

F2 (−0.059,−0.168) (−0.010,−0.086) −0.094

F3 (0.604, 1.482) (0.558, 1.492) 1.415

G1 (−0.124,−0.346) (−0.210,−0.493) −0.321

G2 (0.080, 0.255) (0.082, 0.196) 0.094

G3 (0.456, 1.061) (0.388, 0.907) 1

d�T

dq2 = G2
F |VCKM|2q2 p (1 − m̂2

l )
2(2 + m̂2

l )

384π3M2
1

×
(
|H 1

2 ,1|2 + |H− 1
2 ,−1|2

)
, (36)

where m̂l ≡ ml/
√
q2, and p = √

Q+Q−/(2M1) with Q± =
(M1 ± M2)

2 − q2 is the magnitude of the three-momentum
of B2 in the rest frame of B1. The helicity amplitudes Hλ2,λW

in Eqs. (35) and (36), which are written in terms of the form
factors, can be found in [13]. Integrating out the momentum

transfer q2, one can obtain the total decay width:

� =
∫ (M1−M2)

2

m2
l

dq2 d�

dq2 , (37)

where

d�

dq2 = d�L

dq2 + d�T

dq2 . (38)

We arrive at

� = (3.80 ± 0.33) × 10−14 GeV,
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Table 6 Our predictions for the semi-leptonic branching fractions (in
units of %) are compared with those from lattice QCD [2] and experi-
mental data [1]

Channel This work Lattice QCD [2] Experimental data [1]

�b → �ce−ν̄e 9.02 ± 0.79 – –

�b → �ce−ν̄e 6.61 ± 1.08 5.32 ± 0.35 6.2+1.4
−1.3

B = (9.02 ± 0.79)%,

�L/�T = 1.29 ± 0.06 (39)

for �b → �ce−ν̄e, and

� = (2.96 ± 0.48) × 10−14 GeV,

B = (6.61 ± 1.08)%,

�L/�T = 1.28 ± 0.12 (40)

for �b → �ce−ν̄e. The uncertainties come from those of
the form factors. Our predictions for the branching fractions
are compared with those from lattice QCD [2] and experi-
mental data [1], as can be seen in Table 6. It can be seen that
our prediction for �b → �ce−ν̄e is consistent with that of
lattice QCD and experiment. In addition, the SU(3) symme-
try breaking between �b → �ce−ν̄e and �b → �ce−ν̄e is
about 30%.

5 Conclusions

In this work, the full LO results of the form factors for the
processes �b → �c and �b → �c are obtained in QCD
sum rules. For completeness, we also study the two-point
correlation functions to obtain the pole residues of �Q and
�Q . Contributions from up to dimension-5 operators have
been considered. We have also included the leading logarithm
approximation. For the two-point correlation function, since
the perturbative contribution dominates and a stable Borel
window for the pole residue can be found, higher accuracy
is achieved both for the pole residue and the mass. How-
ever, although the perturbative contribution also dominates
for the three-point correlation function, a stable Borel region
can hardly be found. Somewhat artificial criteria have to be
adopted to select the relatively optimal region, and about 20%
uncertainties are introduced for the form factors of �b → �c

and �b → �c. Our results of the form factors are consistent
with those of lattice QCD within errors. It is worth noting
that, starting from our full LO results, one can arrive at the
results of HQET sum rules, whenmb,c are taken to be infinity
[22,23]. Similar arguments have been performed in [19].

In [13], we derived the form factors of doubly heavy
baryons to singly heavy baryons using QCD sum rules for

the first time, but so far our results are hard to be tested for
the lack of experimental data. For the singly heavy baryon
decays more data are accumulated which can help to check
the theoretical predictions. In this work reliable results are
obtained for the form factors of �b → �c and �b → �c so
that the validity of the three-point sum rules is checked. A
potential application is to calculate the matrix elements for
the lifetimes of weakly-decay heavy baryons. Our forthcom-
ing works will focus on this problem.
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