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Abstract We computed the pole masses and decay con-
stants of π and ρ meson at finite temperature in the frame-
work of Dyson–Schwinger equations and Bethe–Salpeter
equations approach. Below transition temperature, pion pole
mass increases monotonously, while ρ meson seems to be
temperature independent. Above transition temperature, pion
mass approaches the free field limit of screening mass ∼
2πT , whereas ρ meson is about twice as large as that limit.
Pion and the longitudinal projection of ρ meson decay con-
stants have similar behaviour as the order parameter of chi-
ral symmetry, whereas the transverse projection of ρ meson
decay constant rises monotonously as temperature increases.
The inflection point of decay constant and the chiral suscep-
tibility get the same phase transition temperature. Though
there is no access to the thermal width of mesons within this
scheme, it is discussed by analyzing the Gell-Mann-Oakes-
Renner (GMOR) relation in medium. These thermal proper-
ties of hadron observables will help us understand the QCD
phases at finite temperature and can be employed to improve
the experimental data analysis and heavy ion collision sim-
ulations.

1 Introduction

QCD phase structure at finite temperature is with great inter-
est of investigation both theoretically and experimentally.
The investigations will lead to a thorough understanding of
the matter formation and the universe evolution. The studies
have suggested that the QCD matter experiences a crossover
at zero chemical potential as the temperature increases. At
low temperature, the QCD matter could be well described by
the hadron resonance gas, while it gradually becomes quark
gluon plasma at high temperature [1–15]. As the temperature
changes, the thermal mass of hadrons will shift, the thermal
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width will usually get larger and the decay of hadrons will
then change. In heavy quark sector, the production and dis-
sociation of quarkonium can be regarded as the signal of the
existence of quark gluon plasma, and thus settling down the
thermal mass and decay of quarkonium is important for heavy
ion collisions simulations [16]. On the other hand, the chi-
ral symmetry breaking or restoration in hot medium can be
described by the thermal mass of the light meson and its rele-
vant properties. The appearance of a turning point in the tem-
perature dependence of thermal mass will give explanation to
the occurrence of the chiral symmetry transition. Addition-
ally, the deviation of the light scalar resonance thermal mass
from the mass in vacuum is relevant to the location of freeze
out temperature [17]. Therefore, it is with desires to illustrate
the thermal properties directly within hadron observables.

The thermal hadron mass could be separated into the
screening mass and pole mass owing to the O(4) symmetry
breaking at finite temperature. Screening mass, defined by
the large distance behavior of hadron correlation function, is
relatively easy to compute. Studies on the light meson screen-
ing mass have been carried out with lattice QCD [18–21] (see
e.g. [22] for an overview) and the functional approach [23–
26]. It has been predicted that the high temperature limit of
meson screening mass is Mscr ∼ 2πT , as it expected to be
the propagation of the thermal quark [27,28]. Nevertheless,
the relation between the screening mass and phenomeno-
logically relevant observables is not clear, and hence, it is
important to study the temperature dependence of the pole
mass of hadrons. Though the computation of pole mass in
lattice QCD simulation usually encounters the complicated
temperature connection between the spectral function and
the kernel in temporal correlation functions, there are some
pioneering results for pole masses of baryons [29–31].

In the present work we employ the Dyson–Schwinger
equations (DSEs) and Bethe-Salpeter equations (BSEs) in
imaginary time formalism with Matsubara frequency to study
the in medium properties of π and ρ meson, which essentially
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characterize the dynamical chiral symmetry breaking mech-
anism nonperturbatively. Even though the meson is not on
shell on the Matsubara frequency, the eigenvalues of BSEs
on the Matsubara frequency could be employed to extract
the pole mass and decay constants. In employing the DSEs
approach herein, we apply the quark gluon interaction which
can reproduce hadronic static properties at zero tempera-
ture. The interaction is extended at finite temperature via
including the thermal mass from perturbative QCD compu-
tation. Within this scheme, we then obtain the pole masses
and decay constants for π and ρ meson in a large range
of temperature. Moreover, by including the computation of
the chiral condensate, we also have the opportunity to verify
the GMOR relation in medium. Though the method is not
sophisticated enough to extract the thermal width of meson
since it is related to the imaginary part of the Bethe-Salpeter
amplitudes which can not be directly obtained in the imagi-
nary time formalism, it can be argued that the finite thermal
width would cause the deviation of GMOR relation at finite
temperature, which is then analyzed in this work.

The remainder of this paper is organized as follows. In
Sect. 2 we reiterate briefly the DSEs and BSEs approach at
finite temperature. We highlight in this section how the pole
mass is extracted from the BSEs in imaginary time formalism
with Matsubara frequency. Sect. 3 contains our results of the
temperature dependence of pole masses and decay constants
of π and ρ meson, as well as the discussion on the GMOR
relation at finite temperature. Finally, we summarize in
Sect. 4.

2 DSE-BSE scheme at finite temperature

2.1 Dyson–Schwinger equations at finite temperature

At finite temperature the quark propagator can be written as
[8]

S−1(p) = iγ · pA(p) + iγ0 p0C(p) + B(p) , (1)

where p = (p, p0 = ωl) with ωl = (2l + 1)πT the
fermion Matsubara frequency. The quark propagator satis-
fies the Dyson–Schwinger equation as

S−1(p) = Z⊥
2 iγ · p + Z⊥

2 iγ0 p0 + Z4m0 + Z1Σ(p) , (2)

Σ(p) = T
∑

n

∫
d3q

(2π)3 g2Dμν(p − q; T )

×λa

2
γμS(q)

λa

2
Γν , (3)

where m0 is the current quark mass; q = (q, ωn); Dμν the
gluon propagator; Γν , the quark-gluon vertex; Z1(ζ ) and

Z4(ζ ) respectively, the vertex and mass renormalisation con-
stants; ζ the renormalisation point; Z⊥,⊥

2 (ζ ), respectively,
the spatial and temporal quark wave function renormalisation
constants. With this, the quark condensate can be defined as

〈q̄q〉T � −T
∑

n

∫
d3q

(2π)3 tr S(q) , (4)

The light chiral condensate needs to be subtracted for quarks
with masses, which is then given by [9]

〈q̄q〉 = 〈q̄q〉T − m0
∂〈q̄q〉T
∂m0

. (5)

The quark DSE can be solved under a certain truncation
of quark-gluon vertex, and also there will need a consis-
tent truncation for the quark scattering kernel in BSEs. The
latter truncation entails careful consideration of axial vec-
tor/vector Ward identities in addition to the full computa-
tion of the three point correlation functions required in the
formal one, and the truncations beyond the rainbow-ladder
truncation have only been investigated at zero temperature
[32–34]. The rainbow-ladder truncation is the first system-
atic, symmetry-preserving DSE truncation scheme which
is accurate for ground-state vector- and isospin-nonzero-
pseudoscalar-mesons owing to the corrections of these chan-
nels cancel via the Ward-Takahashi identities [35–37]. There-
fore, in addition to the efforts of improving the truncation of
quark scattering kernel at finite temperature, here we focus on
computing the properties of π and ρ meson with the rainbow-
ladder truncation.

The truncation scheme employs the tree level quark-gluon
vertex with modeling the interaction kernel introduced in Ref.
[38] , g2Dμν(s) = Pμν(k)G (s = k2) :

G (s) = 8π2

ω4 De−s/ω2 + 8π2γmF (s)

ln[τ + (1 + s/Λ2
QCD)2] , (6)

where: Pμν(k) = δμν − kμkν

k2 ; γm = 12/(33 − 2N f ),

N f = 4, Λ
N f =4
QCD = 0.234 GeV; τ = e2 − 1; and F (s) =

[1 − exp(−s/[4m2
t ])]/s, mt = 0.5 GeV. The interaction ker-

nel involves a massive gluon propagator on the domain at
s = 0, which is consistent with that determined in recent
studies of QCD’s gauge sector [39–51]. At finite tempera-
ture, the gluon propagator separates into color-magnetic and
electric modes, i.e., the dimension corresponding to temper-
ature will be isolated in order to allow the introduction of
O(4) symmetry breaking [8]. We then have [52,53]:

g2Dμν(k,Ωln) = PM
μνDM (k) + PE

μνDE (k) , (7)

where Ωln = ωl − ωn , k = p − q, k = (k,Ωln) and PM,E
μν

are, respectively, the color-magnetic and electric projection
operators as:
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PM
μν(k) = (1 − δ0μ)(1 − δ0ν)

(
δμν − kμkν

k2

)
,

PE
μν(k) = Pμν(k) − PM

μν(k) , (8)

and

DM (k) = G (k2), DE (k) = G (k2 + m2
g) , (9)

wheremg is the thermal mass of the gluon and can be taken as
m2

g = 16/5T 2 according to perturbative QCD calculations
[54].

2.2 Bethe–Salpeter equation in imaginary time formula

The practical way of computing BSEs for mesons at finite
temperature is through the imaginary time formula which is
simply to change the fourth component of all the momentum
in Euclidean space to Matsubara frequency [23–25]. Apply-
ing the rainbow-ladder truncation, the homogeneous BSE at
finite temperature can be described as:

λ(P2,Ω2
m)Γ ab

π,ρ(k; P) = T
∑

n

∫
d3q

(2π)3 g
2Dμν(k − q; T )

× γμχab
π,ρ(q; P)γν , (10)

where
χab

π,ρ(q; P) := S(q + P, ωn + Ωm)Γ ab
π,ρ(q; P)S(q, ωn)

and P = (P, P0 = Ωm) with Ωm = 2mπT . λ(P2, P2
0 =

Ω2
m) is the eigenvalue of the meson BSE.
The eigenvalue of the homogeneous BSE becomes 1 when

the meson propagator is on shell, i.e.,

P2 + P2
0 + M(P2, P2

0 ) = 0 ,

where M(P2, P2
0 ) is the meson mass. On one hand, people

could define the so called screening mass Mscr via putting
Ω2

m = 0, extending P into complex plane and then locating
the screening mass at λ(−M2

scr, 0) = 1 [18–21,23–25]. On
the other hand, the pole mass is in principle difficult to define
since an analytic continuation of the Matsubara frequency in
the form of spectral representation is required, which is [55]:

1

Ω2
m + P2 + M(P2,Ω2

m)
=

∫ ∞

−∞
dω

ρ(P, ω)

ω − iΩm
. (11)

The pole mass is located at λ(P = 0, P2 = −M2
pole) = 1

through replacing iΩm with Mpole in the above spectral rep-
resentation. Therefore, if people try to obtain the pole mass
directly, the BSE in real time formula with the spectral rep-
resentation is required. However, no matter how the formula
is changed, the eigenvalue λ(P2) keeps to be an analytic
function at least in a broad range of P2 ∈ [−M2

pole,∞)

[56]. Therefore, one could proceed the way of constructing
the meson pole mass as follows: We compute the eigenval-
ues λ(P2 = Ω2

m) at each Ωm with m = 1, 2, ...,mMax, and
extrapolate them to obtain the pole mass of the meson Mπ,ρ at

λ(P2 = −M2
π,ρ) = 1. The larger number of m will certainly

lead to a more precise extrapolation , and here we employ
mMax = 30 practically.

The decay constant of meson also splits into temporal
and spatial components at finite temperature. Here with the
definition of momentum P = (0,Ωm), the decay constant
is then projected to the temporal part in consistency with the
pole mass. The spatial component of decay constant could be
obtained at the location of screening mass for Bethe–Salpeter
equation with momentum P = (P, 0).

2.2.1 π meson

The essential case of interest is the temperature dependent
behaviour of pion, which is the simplest two-body system as
well as the Goldstone mode of QCD [57]. The Bethe–Salpeter
amplitude of pion outlined in Eq.(10) is of the general form

Γπ(q; P) = iγ5τ
π
1 (q; P) + γ5P/ τπ

2 (q; P). (12)

The computation in vacuum shows that these two compo-
nents are dominant while the other two components con-
tribute around 5% to the mass and decay constant. We then
drop the other two terms with higher order Lorentz structures,
which is the most practical choice of theoretical studies on
hadron phenomenological observables at finite temperature.
We limit ourselves to this case, and further investigations
with the complete set of Dirac basis can be the supplement
of this work.

The decay constant of pion can also be extrapolated from
P2 = Ω2

m to P2 = −M2
π after the mass is located. The

definition of pion decay constant is given as:

fπ (P2) = Z2

P2 T
∑

n

∫
d3q

(2π)3 tr
[
iγ5P/ χπ(q;Ωm)

]
, (13)

which is the residue at the pion pole in the axial-vector vertex
[35,57].

By projecting pion Bethe–Salpeter wave function onto γ5

channel, we could also define a quantity related to quark
condensate, which is

irπ (P2) = Z4T
∑

n

∫
d3q

(2π)3 tr
[
iγ5χπ(q;Ωm)

]
. (14)

In particular, the preservation of the axial-vector Ward-
Green-Takahashi identity at zero temperature yields the mass
relation [57]

fπ M
2
π = 2m(ζ )rπ (ζ ) . (15)

The quantity rπ is related to quark condensate in chiral limit
with

lim
m→0

rπ (ζ ) = 〈q̄q〉0

f 0
π

, (16)
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where 〈q̄q〉0 is the chiral condensate; f 0
π the pion decay con-

stant in chiral limit. It indicates that the mass relation is equiv-
alent to the GMOR relation:

f 2
π M

2
π = 2m(ζ )〈q̄q〉 . (17)

The mass relation in Eq.(15) and/or the related GMOR
relation could be derived from axial vector Ward identity
by putting pion on-shell, therefore, such relations could be
connected to the thermal width of pion. It is then interesting to
check the behaviour of GMOR relation at finite temperature.

2.2.2 ρ meson

The other case of great interest is the ρ meson, with its Bethe–
Salpeter amplitude outlined in Eq.(10) takes the general form
[58]

Γμ,ρ(q; P) = iγ T
μ τ

ρ
1 (q; P) + qTμ τ

ρ
2 (q; P), (18)

with FT
μ = PμνFν . Here we practically consider two

Lorentz structures for ρ meson, which are the dominant two
terms while in principle there are eight Lorentz structures in
the complete set of the vector Bethe–Salpeter amplitude [58].
Besides that, if trying to reflect the impact of O(4) symmetry
breaking, people need to split γ T

μ and qTμ into their longitu-
dinal and transversal modes [23]. Consequently, one shall
see distinguishing temperature dependence of the transver-
sal ρ meson from the longitudinal one. Instead of doing that,
we keep their original form in the Bethe–Salpeter amplitude,
leaving that possibility for further investigation. However,
noticing that in the Bethe–Salpeter equations, the dominant
contribution of such temperature induced splitting is from
the gluon and quark propagator as we have considered here,
the present approximation that keeps O(4) symmetry for the
Lorentz structures of vertex is acceptable.

It is also straightforward to consider the decay constants
of ρ meson, and they are

fρ(P2) = Z2

3Ωm
T

∑

n

∫
d3q

(2π)3 tr
[
iγλχλ(q;Ωm)

]
,

f Tρ (P2) = ZT

3P2 T
∑

n

∫
d3q

(2π)3 tr
[
iσμλPμχλ(q;Ωm)

]
, (19)

with Z2 is the quark wave function renormalisation constant
and ZT is the renormalisation constant for the tensor vertex.
These two decay constants are both gauge- and Poincaré-
invariant, but f Tρ is renormalisation scale dependent [59].

3 Numerical results

We first fix all the needed parameters through matching pion
properties in vacuum with experimental data. We set the

renormalisation scale at ζ = 19 GeV, which is the typi-
cal choice in a bulk of extant studies [58,60]. The param-
eter of interaction in Eq.(6) is taken as Dω = (0.8 GeV)3

and ω = 0.5 GeV, and one can expect computed observ-
ables to be practically insensitive to the choice of D or ω on
a reasonable domain with keeping the interaction strength
Dω unchanged [61]. The light current quark mass is m(ζ =
19 GeV) = 3.4 MeV, corresponding to the renormalisation-
group-invariant mass m̂ = 6 MeV. Then we can get the
vacuum property of π and ρ meson as follows:

mπ = 138 MeV , fπ = 97 MeV ,

mρ = 760 MeV , fρ = 153 MeV , f Tρ = 110 MeV.

(20)

With this, we then extend the computation into finite temper-
ature region as analyzed above.

3.1 Pole masses of π and ρ meson

As mentioned above, we computed the eigenvalue of BSE
at Matsubara frequency P0 = 2mπT and then extrapolate it
to λ(P2

0 = −M2
pole) = 1. This method can be analog to the

imaginary chemical potential approach of lattice QCD, where
the phase transition line is extrapolated through the informa-
tion in the chemical potential region [14,62–67]. Here the
eigenvalue of BSEs shares similar character to the phase tran-
sition line, since we know the eigenvalue increases smoothly
and monotonously from 0 to 1 as P2

0 approaches −M2
pole

from P2
0 = ∞, it can be safely extrapolated from positive to

negative P2
0 till around P2

0 ∼ −M2
pole.

In detail, we herein applied the Schlessinger Points
Method (SPM) of extrapolation based on the work by Thiele
and Schlessinger [68,69] and employed recently in a number
of publications, see e.g. [70–73]. The results are fairly stable
with respect to different choices of input regions. After per-
forming the procedure with random-selected data points, one
could also give a statistical error estimate. Additionally, in
order to get a more stable extrapolation, we change the vari-
ables P2

0 and λ(P2
0 ) into x = log(P2

0 + Λ2) with Λ being
roughly chosen at the order of Mpole(T ) and y = −log(λ).
Then we apply the SPM based on the dataset ym = f (xm).
As an example, we depict the extrapolated eigenvalue of pion
BSE at T = 150 MeV in Fig. 1, and the band is given by ran-
domly selecting the data sets and running the extrapolation
as described above. The pole mass is obtained at the location
λ(P2

0 = −M2
pole) = 1. The extrapolation can be done at each

temperature following this procedure, and the pole mass at
finite temperature is then obtained.

We then compute the π and ρ meson pole masses at dif-
ferent temperature as shown in Fig. 2. As the temperature
increases, the mass of pion increases monotonously, while
the mass of ρ meson has no significant shift only decreas-
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Fig. 1 The extrapolation for eigenvalue of pion BSE at T = 150 MeV
with Λ = 1 GeV. The pole mass is obtained at the location λ(P2

0 =
−M2

pole) = 1
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Fig. 2 Pole masses of π (black) and ρ (red) meson at finite tempera-
ture as well as the free field limit of screening mass (dash-dotted curve)
Mscr ∼ 2πT . The bands mark the domain of the results obtained using
SPM extrapolation. The π and ρ mass in vacuum, Mvac

π and Mvac
ρ , are

included to guide comparison. The screening mass for π (olive) and ρ

(orange) mesons are from lattice QCD (lQCD) [21]

ing slightly around 2% till Ts = 0.12 GeV and then rises
rapidly. The weakT -dependence behaviour ofπ andρ meson
pole masses at small temperature is qualitatively consistent
with the response of screening mass to temperature as in
DSE approach [23–25]. Below transition temperature in the
hadronic phase, where the chiral symmetry is dynamically
broken, it results in a relatively stable pattern of the ground
states in both pseudoscalar and vector channel and then the
pole mass rapidly increases after phase transition. In the
region of phase transition, the smooth behaviour of π and
ρ meson pole masses with respective to T also indicates a
crossover rather than a phase transition.

In detail, we compare our obtained π and ρ meson pole
masses with the screening mass results from lattice QCD sim-
ulation [21]. At low temperature, the pole mass of pion differs
from the screening mass. The screening mass in lattice QCD
simulation has reached the vacuum value at relatively high
temperature, while our pole mass increases monotonously

from its zero temperature value, and is consequently larger
than Mvac

π at Ts . For ρ meson, though without data at lower
temperature, the screening mass from lattice QCD simulation
at Ts has reached the vacuum value Mvac

ρ . This feature is con-
sistent with our ρ meson pole mass, which has no significant
shift till Ts and then rises rapidly as temperature increases.

At high temperature, the screening mass of pion from lat-
tice QCD simulation and the obtained pole mass here agree
well with each other around T ∼ 0.2 GeV, and both masses
gradually reach the free field limit. They remain around 12%
smaller than the limit at T ∼ 0.3 GeV, and this discrep-
ancy reveals the strong coupled property of QCD matter at
the temperature nearly above phase transition temperature.
It is also worth mentioning that the screening mass of pion
will remain smaller at very large temperature compared to
the computation in the weak coupling picture [21]. As for ρ

meson, the pole mass of pion gets close to the free field limit
above the critical temperature, while the ρ meson pole mass
is twice as large as this limit. With the caveat of the present
truncation of Bethe–Salpeter equation, this is consistent with
the description of ρ meson as a π − π resonance state. The
screening mass of ρ meson gets close to the free field limit
above the critical temperature Tc. Though the discrepancy of
the pole masses here between pseudoscalar and vector meson
is qualitatively different from that of the screening masses,
it has been shown that the screening mass of π meson is
also notably smaller than ρ meson screening mass till T ∼ 1
GeV in lattice QCD simulation [21], which reveals that it still
remains considerable non-perturbative effect of QCD on the
thermal properties associated with bound states.

3.2 Decay constants of π and ρ meson

Hitherto we have canvassed π and ρ meson thermal pole
masses, it is also important in understanding their corre-
sponding decay properties. The extrapolation for decay con-
stants needs the location of meson mass, and here we take
the central value of the extrapolation for meson mass above.
The temperature dependence of π and ρ meson decay con-
stants is illustrated in Fig. 3. As the temperature increases,
the decay constant of pion goes up very slightly till around
T = Ts and then declines rapidly to zero. Noticing that the
light quark dynamical mass function in the quark propaga-
tor, is also almost T -independent below a critical tempera-
ture, and then goes to zero. It should not be surprising of this
resembling behaviour since the Bethe–Salpeter amplitude of
pseudoscalar meson could be directly related to the quark
mass function via the Ward identity [57]. It is evident that
both pion decay constant and the light quark dynamical mass
function are equivalent order parameters for chiral symmetry
restoration. Below transition temperature, chiral symmetry is
broken, and its order parameters become nonzero. Above Tc,
chiral symmetry get restored, and order parameters vanish
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Fig. 3 Decay constants of pion, fπ (solid curve) in Eq.(13) and ρ

meson, fρ (dashed curve) and f Tρ (dotted curve) in Eq.(19) at finite
temperature

quickly. Compared to other studies, temperature dependence
of pion decay constant here is qualitatively consistent with
DSE results [24,25] and lattice QCD simulation [74].

The longitudinal decay constant of ρ meson has sim-
ilar behaviour as pion’s. It slightly depends on tempera-
ture within the hadronic phase, and then chiral symmetry
is rapidly restored above the transition temperature, apart
from the explicit symmetry breaking by the current quark
mass. The transverse decay constant behaves completely dif-
ferent however, which rises monotonously as temperature
increases. The ratio of fρ/ f Tρ can be related to the proportion
of S− and D− wave content of the ρ meson [59]. There-
fore, considering the behaviour of two decay constants, as
the temperature increases, one would find that the D− wave
contribution becomes larger. Additionally, the higher order
Lorentz structures in the ρ meson Bethe–Salpeter amplitude
could play an important role in computing an accurate value
for f Tρ at finite temperature, because they contain the detailed
contributions of angular momentum.

Noticing that the decay constants fπ and fρ own simi-
lar behaviour as the order parameter, quark condensate, we
then compare the temperature derivative of the decay con-
stants with the chiral susceptibility, defined by the temper-
ature derivative of quark condensate, i.e., χ = ∂〈q̄q〉/∂T .
In Fig. 4 we can see the inflection point of pion decay con-
stant, i.e., ∂2 fπ/∂T 2 = 0 almost coincides with that of ρ

meson decay constant. In detail, the transition temperature
associated with the inflection point of pion decay constant is

T fπ
c = 146 MeV, and that of ρ meson is T

fρ
c = 149 MeV

compared to that determined by the inflection point of quark
condensate as T 〈q̄q〉

c = 150 MeV [53]. On average, our esti-
mate is

Tc = (148 ± 2) MeV . (21)

It is consistent with the chiral phase transition temperature
from functional methods [9,11,75] and also lattice QCD

Fig. 4 Temperature derivative of decay constants fπ (solid curve)
and fρ (dashed curve), along with quark chiral susceptibility χ =
∂〈q̄q〉/∂T (dotted curve)

which is in a range from 147 to 165 MeV in Ref. [76,77]
and T lQCD

c = (154 ± 9) MeV in Ref. [78].
In general, the decay constants could be regarded as a cri-

terion of chiral transition. The fact that chiral phase transition
temperature defined with the temperature dependence of π

and ρ meson decay constants and from the chiral conden-
sate coincide can be viewed as a direct evidence of the chiral
phase transition from the physical observables.

3.3 GMOR relation at finite temperature

GMOR relation as in Eq.(17) can be derived by putting the
axial vector Ward identity on mass shell of pion. The deriva-
tion of GMOR relation will rely on the assumption of a pole
structure for pion. It has been argued that the axial vector
Ward identity still holds at finite temperature [24,79,80], and
hence the deviation of GMOR relation indicates a finite ther-
mal width of pion, which then drives pion spectral function
away from a pole structure. The Ward identity at finite tem-
perature will certainly lead to some relation similar to GMOR
relation, but the relation will deviate against the vacuum for-
mula with additional temperature correction terms [81,82].

The deviation of the GMOR relation is shown in Fig. 5.
Strictly speaking, the GMOR relation at zero temperature is
only satisfied with all four Lorentz structures of pion Bethe–
Salpeter amplitude, however, the other two components in
addition to the dominant two structures computed here in
Eq. (12) barely have impact on the pion mass and decay
constant. With only taking into account of the two dominant
components in Eq. (12), the GMOR relation is well preserved
with a small deviation less than 4%. The deviation in vac-
uum is negligible, and then, a clearly remarkable increase of
the deviation has emerged when T is approaching the crit-
ical temperature, and above Tc, it vanishes drastically. The
experiments indicate that the matter near the phase transition
is in a strongly-coupled state, and the ratio of shear viscos-
ity and entropy density is nearly the lower bound at phase
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Fig. 5 Deviation of GMOR relation at finite temperature, normalized
by the quark condensate product in vacuum

transition point [83–85]. The deviation of GMOR relation
can be then regarded as a signal for this strongly-coupled
property of the matter in the phase transition region, where
the thermal width of pion is generated via Landau damp-
ing mechanism [16,86,87]. Moreover, the non monotonous
behaviour exhibits the change of the pion structure during the
phase transition, and the rapid decrease after phase transition
also indicates the dissociation of pion.

4 Summary

In this work, the hadronic observables at finite tempera-
ture have been studied in the framework of DSEs and BSEs
approach. As the temperature increases, the pole mass of
pion becomes larger monotonously and after the chiral phase
transition, the pole mass gradually reaches the same limit as
screening mass, Mscr ∼ 2πT at high temperature. The pole
mass of ρ meson is quite stable till T ∼ 0.8Tc, and then
rapidly grows at high temperature. The mass of ρ meson
approaches twice as large as pion’s at high temperature,
which is consistent with picture of the ρ meson as the reso-
nance of two pions.

After obtaining the location of the masses, we compute
the decay constants of π and ρ mesons. The decay con-
stant of pion and the longitudinal decay constant of ρ meson
show similar behaviour as a function of temperature. In the
hadronic phase, these quantities are barely dependent on tem-
perature, and then drop rapidly in the phase transition region.
Thus, the decay constant is strongly related to the phase tran-
sition and can be employed as the criterion of chiral phase
transition. They give the consistent chiral phase transition
temperature as the quark condensate. The transversal decay
constant of ρ meson here shows a monotonously increasing
behaviour as temperature increases.

Even though this method cannot directly give the infor-
mation of the thermal width of mesons, the strong devia-
tion of GMOR relation indicates the strongly-coupled prop-

erty of QCD matter in the phase transition region. The non
monotonous behaviour also exhibits the change of the inter-
nal structure of mesons during the phase transition.

A straightforward and worthwhile extension of this work
is the consideration in the pole masses of the σ and a1 meson.
The proper calculation of the scalar and the axial-vector
channel is complicated even at zero temperature, since one
must include other Lorentz structures in quark-gluon ver-
tex beyond rainbow-ladder approximation in order to give
a correct description of the angular momentum. Despite of
this, the research on the temperature dependence of scalar
and the axial-vector channel will nevertheless provide us
insights into the difference of parity partners. The other pos-
sible extension is to consider the mesons with strange quark
and also quarkonium. It has been brought out by lattice QCD
simulation that the screening masses of meson including
strange quark will give a higher Tc [19,21]. For the quako-
nium, the J/Ψ production is especially important for helping
understand experimental data of heavy ion collisions [88,89].
Therefore, it will be of high value to extend the computation
to these observables.
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