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Abstract In the present paper we study the onset of the
spin-induced scalarization of a Kerr black hole in scalar-
Gauss–Bonnet gravity with a massive scalar field. Our
approach is based on a (2 + 1) time evolution of the rele-
vant linearized scalar field perturbation equation. We exam-
ine the region where the Kerr black hole becomes unstable
giving rise to new scalarized rotating black holes with a mas-
sive scalar field. With increasing of the scalar field mass, the
minimum value of the Gauss–Bonnet coupling parameter at
which scalarization is possible, increases and thus the insta-
bility region shrinks. Interestingly, the introduction of scalar
field mass does not change the critical minimal value of the
black hole angular momentum acrit/M where the instability
of the Kerr black hole develops.

1 Introduction

Spontaneous scalarization is a very interesting phenomenon
that allows to endow the compact objects with scalar hair
without altering the predictions in the weak field limit. The
black hole scalarization is of particular interest and its study
goes back to [1,2]. More recently, the black hole spontaneous
scalarization was also discovered within the framework of
Einstein-scalar-Gauss–Bonnet (EsGB) gravity [3,4]. In sim-
ple words, the essence of spontaneous scalarization within
Gauss–Bonnet gravity consists of the following: The stan-
dard general relativistic black holes, which are also solu-
tions to the equations of the bigger theory, become unstable
beyond a certain threshold in curvature and the black holes
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can acquire a nontrivial scalar hair. In order for the scalar-
ization to occur, the coupling function f (ϕ), describing the
interaction between the scalar field and the spacetime cur-
vature through the Gauss–Bonnet scalar R2

GB , has to satisfy
d f
dϕ

(0) = 0 and εR2
GB < 0 where ε = d2 f

d2ϕ
(0). Beyond a cer-

tain threshold, the term εR2
GB < 0 in the scalar perturbation

equation triggers the so-called tachyonic instability and the
black holes develop scalar hair. This was first demonstrated
in the case ε > 0 for Schwarzschild black holes [3,4] and
later for the Kerr solution [5,6]. Very recently, it was shown
that the same occurs in the case ε < 0 – above a certain crit-
ical value of the angular momentum per unit mass, the Kerr
black hole becomes unstable and this will eventually lead to
formation of nontrivial scalar hair [7–9]. The scalarization in
the case ε < 0 was dubbed spin-induced scalarization since
the Schwarzschild black hole can not scalarize for ε < 0.

The purpose of the present paper is to study the spin-
induced spontaneous scalarization in the case when the scalar
field is massive. The scalarization with a massive scalar field
for ε > 0 was studied [10–12]. The inclusion of a mass term
for the scalar field, or more generally self-interaction for the
scalar field, is consistent with the principles of effective field
theory [10]. However, only the mass term can alter the onset
of the spontaneous scalarization while the self interaction
affects the nonlinear effects in the scalarized solution. That
is why in the present paper we consider only the mass term.
From a physical point of view, the inclusion of scalar field
mass can change the picture considerably. It suppresses the
scalar field at a length scale of the order of the Compton
wavelength of the scalar field which helps us reconcile the
theory with the observations for a much broader range of
the coupling parameters and functions [11]. In addition, the
scalar field mass shifts the bifurcation points of the scalar-
ization, i.e. the points where new scalarized solutions branch
out of the general relativistic one; in other words, it changes
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the threshold beyond which scalar hair develops similar to
the case of the scalarization of neutron stars with a massive
scalar field [13].

In this paper we study the instability of Kerr EsGB black
holes by fully evolving in 2 + 1 dimensions the modified
Klein–Gordon equation describing the perturbation of the
massive scalar field of Kerr black holes within EsGB grav-
ity. The final goal is to determine in which regions of the
parameter space that defines the theory a tachyonic instabil-
ity gives rise to new hairy black holes.

2 Scalar field perturbations within Gauss–Bonnet
gravity

The EsGB gravity is defined by the action

S = 1

16π

∫
d4x

√−g
[
R − 2∇μϕ∇μϕ − V (ϕ)

+ λ2 f (ϕ)R2
GB

]
, (1)

where R is the Ricci scalar with respect to the spacetime
metric gμν , ϕ is the scalar field with a potential V (ϕ) and a
coupling function f (ϕ) depending only on ϕ, λ is the Gauss–
Bonnet coupling constant having dimension of length and
R2

GB is the Gauss–Bonnet invariant.1 The above action yields
the following field equations

Rμν − 1

2
Rgμν + �μν

= 2∇μϕ∇νϕ − gμν∇αϕ∇αϕ − 1

2
gμνV (ϕ), (2)

∇α∇αϕ = 1

4

dV (ϕ)

dϕ
− λ2

4

d f (ϕ)

dϕ
R2

GB, (3)

where ∇μ is the covariant derivative with respect to gμν ,
while �μν is given by

�μν = − R(∇μ	ν + ∇ν	μ) − 4∇α	α

(
Rμν − 1

2
Rgμν

)

+ 4Rμα∇α	ν + 4Rνα∇α	μ

− 4gμνR
αβ∇α	β + 4Rβ

μαν∇α	β (4)

with

	μ := λ2 d f (ϕ)

dϕ
∇μϕ. (5)

1 The Gauss–Bonnet invariant is defined by R2
GB = R2 − 4Rμν Rμν +

Rμναβ Rμναβ , where R is the Ricci scalar, Rμν is the Ricci tensor and
Rμναβ is the Riemann tensor.

In the present paper, we shall consider asymptotically flat
spacetimes. Without loss of generality, we can choose the
asymptotic value of the scalar field to be zero and we can
impose the following constraints on the coupling function

f (ϕ): f (0) = 0 and d2 f
dϕ2 (0) = ε with ε = ±1. Since the

focus of the present paper is on spontaneous scalarization,
we impose one more condition on f (ϕ), namely d f

dϕ
(0) = 0,

which is crucial for the spontaneous scalarization. Addition-
ally, the asymptotic flatness imposes the following conditions
on the potential V (ϕ), namely V (0) = dV

dϕ
(0) = 0. Under

these conditions it is not difficult to see that the Kerr black
hole solution is also a solution to the EsGB gravity with
a trivial scalar field, i.e., ϕ = 0. However, beyond a cer-
tain threshold in curvature, both static and rotating solutions
could become unstable and acquire scalar hair for ε > 0
[3,4], while in the ε < 0 case, rapidly rotating black holes
could suffer from a spin-induced tachyonic instability [7,8].
In order to determine where in the parameter space the onset
of the scalarization occurs, we have to study the stability of
the Kerr solution within the framework of the EsGB gravity
with a massive scalar field.

In order to study the stability of the Kerr black hole we
shall consider the perturbation of the Kerr solution within
the framework of EsGB gravity. It is not difficult to see that
when the condition d f

dϕ
(0) = V (0) = dV

dϕ
(0) = 0 is met,

the equations governing the perturbations of the metric δgμν

are decoupled from the equation governing the perturbation
δϕ of the scalar field. The equations for metric perturbations
are in fact the same as those in the pure Einstein gravity and
therefore we shall focus only on the scalar field perturbations.
The equation for the scalar perturbation is

�(0)δϕ =
(
m2

ϕ − ε

4
λ2R2

GB(0)

)
δϕ, (6)

wherem2
ϕ = 1

4
d2V
dϕ2 (0) is square of the mass of the scalar field

and �(0) and R2
GB(0) are the d’Alembert operator and the

Gauss–Bonnet invariant for Kerr geometry. Since the focus
is on spin-induced scalarization we choose ε = −1. Note
that the δϕ coefficient on the right hand side of Eq. 6 above
gives a non-homogeneous effective mass for the scalar field

μ2
eff = m2

ϕ − ε

4
λ2R2

GB(0) (7)

and tachyonic instability can only occur if this term is not
positive everywhere.

The Kerr metric presented in the standard Boyer–Lindquist
coordinates reads

ds2 = −� − a2 sin2 θ

�
dt2 − 2a sin2 θ

r2 + a2 − �

�
dtdφ

+ (r2 + a2)2 − �a2 sin2 θ

�
sin2 θdφ2
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+�

�
dr2 + �dθ2 (8)

where

� := r2 − 2Mr + a2 and � := r2 + a2 cos2 θ. (9)

The Gauss–Bonnet invariant for the Kerr geometry can be
written as

R2
GB(0) =48M2

�6 (r2 − a2 cos2 θ)

× (r4 − 14a2r2 cos2 θ + a4 cos4 θ). (10)

In writing the perturbation equation (6) in explicit form
it is important to introduce a new azimuthal coordinate φ∗
defined by

dφ∗ = dφ + a

�
dr. (11)

This new azimuthal coordinate helps us to get rid of some
unphysical pathologies near the horizon. It is also convenient
to use the tortoise coordinate x defined by

dx := r2 + a2

�
dr. (12)

In the new coordinates (t, x, θ, φ∗), the scalar perturbation
equation (6) takes the following explicit form

−
[
(r2 + a2)2 − �a2 sin2 θ

]
∂2
t δϕ

+ (r2 + a2)2∂2
x δϕ + 2r�∂xδϕ − 4Mar∂t∂φ∗δϕ

+ 2a(r2 + a2)∂x∂φ∗δϕ

+ �

[
1

sin θ
∂θ (sin θ∂θ δϕ) + 1

sin2 θ
∂2
φ∗δϕ

]

=
[
m2

ϕ�� + λ2 12M2�

�5

×(r2 − a2 cos2 θ)(r4 − 14a2r2 cos2 θ + a4 cos4 θ)
]
δϕ.

(13)

The boundary conditions we have to impose when evolv-
ing in time Eq. (13) is that the scalar field perturbation has
the form of an outgoing wave at infinity and an ingoing wave
at the black hole horizon.

3 Numerical method

The perturbation equation (13) is formally a Klein–Gordon
equation with variable effective mass, as defined above, on
the Kerr background. Since the background is axisymmet-
ric we can assume the following form of the scalar field
perturbation

δϕ(t, x, θ, φ∗) = δϕ(t, x, θ)eimφ∗ , (14)

wherem is an integer – the well-known azimuthal mode num-
ber. After substituting this definition into Eq. (13), we will
arrive at a perturbation equation in (2+1) dimensions, mean-
ing two spatial dimensions in addition to the time dimension.
In addition, m will enter explicitly in the resulting equation.

The (2+1) time evolution of similar types of perturbation
equations was performed in [14–18] in the general relativistic
case, and in [19] for instabilities in Chern–Simons gravity.
We will follow the approach described in detail in [8], where
the spin-induced scalarization in the absence of scalar field
mass was examined. As a matter of fact the approach is very
similar to the evolution of spacetime perturbations around
rotating neutron stars considered in [20,21].

Details about the code implementation can be found in [8].
Here we will comment on the most important points. The rel-
evant perturbation equation (13), after the substitution (14),
is transformed to a system of four real equations that are
first order in time and their integration is performed with a
3rd order Runge–Kutta method. The ingoing and outgoing
boundary conditions at the black hole horizon and at infinity,
respectively, are independent of the angular coordinate and
they are imposed following [22]. In this approach, though,
there will inevitably be spurious reflection from the outer
boundaries of the grid that can be “cured” (in the sense that
it does not impact the observed signal for a sufficiently long
evolution time) simply by pushing the right boundary to very
large values. In this way the small reflected signal from infin-
ity needs a very long time to travel to the point of observation
and practically does not influence the observed signal for the
first few milliseconds. At the rotation axis (θ = 0 and θ = π )
we impose δϕ = 0 for m > 0 and ∂δϕ/∂θ = 0 for m = 0.

The initial condition we impose has the form of a Gaussian
pulse in x direction with zero velocity, located at x = 12,
having unit amplitude and width σ = 1. In θ direction the
pulse has the form of the spherical harmonic of order l. The
perturbation equation (13) is practically independent of l, but
it turns out that in most case (if the scalar field evolution is
stable), predominantly the mode with the same l as the initial
data is excited. In the unstable case, the exponential growth
will posses the features of the fastest growing mode for a
fixed m, independent of the initial perturbation.

4 Results

4.1 Scalar field perturbations for mϕ �= 0 and spin-induced
scalarization

The scalar field evolution of the stable and the unstable
black hole models naturally have quite different character-
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Fig. 1 The time evolution of δϕ for m = 0 and some representative
stable (top) and unstable (bottom) black holes. In the stable case we have
chosen a/M = 0.4, λ2/M2 = 10 and several values of mϕ , while for
the unstable case we have chosen a/M = 0.8 and λ2/M2 = 100. In the
top panel, the expected analytical behavior of the late-time asymptotic
of δϕ is plotted, i.e., δϕ ∼ (t/M)−5/6

istics and we will consider the two cases separately in this
section.

The time evolution of the massive scalar field perturba-
tions for stable black hole models has certain specifics com-
pared to the massless case. Figure 1 shows the signal observed
at x/M = 30 for both stable (top panel with a/M = 0.4)
and unstable (bottom panel with a/M = 0.8) background
models; the presented results are for λ2/M2 = 10 and sev-
eral scalar field masses. The normalized scalar field mass
mϕM is roughly the ratio between the horizon radius and the
Compton wavelength of the scalar field. The cases presented
in the figure are representative examples and the results are
qualitatively similar when choosing other values for a, λ and
mϕ . For these simulations we have used 2000×60 grid points
in x and θ direction. The computational domain spans from
x−∞ = −20 up to x∞ = 200, while θ ∈ [0, π ].

As one can see in the bottom panel of Fig. 1, the asymptotic
tail appearing for mϕ = 0 at late times is substituted by an

oscillatory behavior when mϕ > 0. The analytical behavior
of this asymptotic tail at late times has the form [23,24]

δϕtail ∼ cos(mϕ t)t
−5/6 (15)

and it can be shown that it is practically independent of the
rotation rate and the value of λ (as long as we have a sta-
ble scalar field evolution). We have checked that indeed the
frequency of the tail is in very good agreement with the ana-
lytically predicted value of ftail = mϕ/2π . In addition, the
analytical function t−5/6 is plotted in Fig. 1 (suitably normal-
ized); it is evident that it fits perfectly to the temporal decay
of the time signal from the simulation with mϕM = 1.0. We
have opted to fit the analytic function to the mϕM = 1.0
curve purely for reasons of clarity; we can confirm that the
other curves have the same power-law decay at late times. We
should note, that the intermediate time behaviour is different,
though, where δϕtail ∼ cos(mϕ t)t−(l+3/2) (see e.g. [25]), that
was also observed in Chern–Simons gravity [26]. Indeed, in
the top panel of Fig. 1 one can notice that for intermediate
times the evolution deviates a little bit from the dependence
given by (15). Numerically verifying that this regime indeed
agrees with the theoretical predictions will be very difficult
first because of the limited time span, and second more impor-
tant – our calculations are independent of l and a mixing of
the modes is inevitable, while the intermediate-time behav-
ior depends on l. Since the focus of the paper is the unstable
models, we will not pay further attention on this.

If the mass of the scalar field is small enough so that ftail

is lower than the QNM frequency of the scalar field pertur-
bation, the signal is first dominated by the QNM ringing fol-
lowed by the oscillatory tail. For larger mϕ , though, where
ftail is comparable or larger than the QNM frequency, the
mass term dominates during the whole evolution. A general
observation is that the oscillatory tail appears earlier in time
with the increase of mϕ .

The behavior in the case of an unstable scalar field per-
turbation (bottom panel of Fig. 1) is somehow similar to the
stable case before the onset of the instability. Once the expo-
nential growth of δϕ starts, it turns out that the growth time τ

of the mode, defined as δϕ ∼ exp(t/τ) is only weakly depen-
dent on the scalar field mass as one can see in Fig. 1 (bottom
panel). Since we are working with m = 0 the superradi-
ance instability [27] will not play any role. From analytical
considerations it is clear that the mass term suppresses the
instability; this is indeed evident in the bottom panel of Fig. 1
– the onset of the exponential growth is shifted to later times
with increasing mass mϕ and eventually it ceases to exist for
large enough mϕ (the dark red line in the figure). Thus, for
every fixed a and λ there is a threshold mϕ that stabilizes the
Kerr black hole.
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Fig. 2 Contour plots of the growth time of the unstable modes for
m = 0 and several values of the scalar field mass – mϕM = 0 (left),
mϕM = 1.0 (middle), and mϕM = 5.0 (right). In addition, the thresh-

old lines dividing the parameter space into stable and unstable regions,
are plotted with solid black lines in each plot for the corresponding mϕ

Fig. 3 (top) The instability lines dividing the parameter space into
stable and unstable regions, for several scalar field masses mϕ . (bottom)
The minimum value of the Gauss–Bonnet coupling parameter, denoted
as λ2

a/M→1/M
2, for which the instability can develop in the a/M → 1

limit, as a function of the scalar field mass

4.2 Instability region of the Kerr black hole in massive
EsGB gravity

Let us now examine more closely the effect that mϕ has on
the instability region of the Kerr black hole within EsGB
gravity. Contour plots of the mode growth time, as a function
of the angular momentum a and the Gauss–Bonnet coupling
parameter λ, are plotted in Fig. 2 for the m = 0 mode and
several values of mϕ .2 For better visibility, the critical lines
where a change of stability is observed for different mϕ is
plotted in the top panel of Fig. 3.

In accordance with the behavior of the signals presented
in the previous subsection, the instability window where the
Kerr solutions are unstable within the considered Gauss–
Bonnet theory, shrinks with the increase of mϕ . More pre-
cisely, for fixed a/M , its left boundary is shifted to larger
values of λ2/M2. This effect is very small if mϕM is of the
order of one, which means that the Compton wavelength of
the scalar field is comparable with the black hole horizon
radius, but it can increase significantly for larger scalar field
masses. If we pick a sufficiently large λ (beyond the insta-
bility line), the growth times are weakly dependent on the
particular value of mϕ . This is natural to expect since in this
region the Gauss–Bonnet term prevails (due to the very large
values of λ) and dictates the time evolution and the develop-
ment of instability.

The limiting value λ2
a/M→1/M

2 for which the Kerr solu-
tion looses stability (and gives rise to new scalarized solution)
in the a/M → 1 limit, quickly increases with the increase

2 Modes with higher m have normally larger growth times and develop
instability for larger λ [8] and that is why we will not focus on them
here.
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of the mass as one can see in the bottom panel of Fig. 3.
Again, the changes with respect to the massless case become
significant only for large masses mϕM 
 1.

5 Conclusions

In the present paper, we have studied the development of
spin-induced scalarization of the Kerr black hole within the
framework of Gauss–Bonnet theory. In comparison to pre-
vious studies, we have focused on the impact of a nonzero
scalar field potential. In particular, we studied the case where
the potential corresponds to a scalar field mass term and
neglected other terms, such as possible self-interaction. The
reason for this is that we were mostly interested on the effect
the potential will have on the onset of the instability and thus
scalarization. While the self-interaction can have consider-
able effects on the nonlinear properties of the scalarized black
holes, it does not influence the point of bifurcation. Thus, for
the purpose of the paper, the relevant Klein–Gordon equa-
tion for the scalar field, modified by an additional mass term,
was evolved in (2 + 1) dimensions. The developed code has
proven to be robust and well behaving in both stable and
unstable region.

As far as the time evolutions of stable models are con-
cerned, one of the most significant changes due to the inclu-
sion of nonzero scalar field mass are twofold: First, we
observe the appearance of an oscillatory tail at late times,
and second, if the scalar field mass is large enough so that
the period of the oscillation in the tail is shorter than that of
the quasinormal mode ringing itself, the oscillatory behavior
due to the scalar field mass dominates the signal from very
early times. The qualitative changes in the time evolution of
unstable equilibrium models are smaller, though, compared
to the massless case, as soon as the exponential growth of the
scalar field perturbation kicks in.

The scalar field mass has the effect of suppressing the
scalar field itself and thus the instability – the threshold value
of the Gauss–Bonnet coupling constant above which insta-
bility develops, for fixed black hole angular momentum a, is
shifted to larger values with increasing of mϕ . Presented in
a different way, if we fix the angular momentum a and cou-
pling constant λ, there exists a threshold mϕ above which
the scalar perturbations of the black hole stabilize. We have
found that significant deviations in the region of instability
are observed only for normalized scalar field masses of the
order of one or greater, which corresponds to the Compton
wavelength of the scalar field being of the same order of the
black hole horizon radius, or smaller. As far as the interior
of the instability region is concerned, as soon as we move
a bit further into the instability region, the growth times of
the modes are only very weakly dependent on the scalar field
mass. We point out that the threshold angular momentum for

the development of the instability is not influenced by the
presence of scalar field mass. This should be expected since
the critical acrit/M is achieved in the λ2/M2 → ∞ limit.
Clearly, in this case the mass term can not play any role.

Last, let us conclude with a few remarks on the astrophys-
ical relevance of our study. It is well known that the lack of
observational evidences of neutron star scalarization in close
binary systems or in the inspiral phase before neutron star or
black hole merger might lead to very strong constrains on the
parameters of the theory predicting such a phenomenon. As a
matter of fact, this is currently the case with the pure scalar-
tensor theories and the Damour–Esposito-Farese model in
particular [28–30]. A way to avoid this is to consider a mass
of the scalar field which confines it to a radius not far away
from the black hole and in this way suppresses the scalar
dipole radiation. It is clear that spin-induced scalarization in
EsGB gravity should exist also for neutron stars, including
the case of differential rotation, which might significantly
limit the allowed range of parameters after confronting with
the observations. The inclusion of scalar field mass leads to
suppression of the instability for smaller values of the Gauss–
Bonnet coupling constant, but it still allows scalarized black
holes to exist with angular momentum as low as roughly
a/M = 0.5 (at least for large enough λ2/M2). Therefore, it
might reconcile the theory with the observations for a larger
range of parameters, while still giving the opportunity to test
the interesting phenomena of scalarization with future grav-
itational wave observations.
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