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Abstract A complete theoretical analysis of the C-
conserving semileptonic decays η(′) → π0l+l− and η′ →
ηl+l− (l = e or μ) is carried out within the framework of
the Vector Meson Dominance (VMD) model. An existing
phenomenological model is used to parametrise the VMD
coupling constants and the associated numerical values are
obtained from an optimisation fit to V → Pγ and P → V γ

radiative decays (V = ρ0,ω,φ and P = π0,η,η′). The decay
widths and dilepton energy spectra for the two η → π0l+l−
processes obtained using this approach are compared and
found to be in good agreement with other results available in
the published literature. Theoretical predictions for the four
η′ → π0l+l− and η′ → ηl+l− decay widths and dilepton
energy spectra are calculated and presented for the first time
in this work.

1 Introduction

The electromagnetic and strong interactions conserve parity
(P) and charge conjugation (C) within the well-established
and well-tested Standard Model of particle physics (SM).
In this framework, the η and η′ pseudoscalar mesons are
specially suited for the study of rare decay processes, for
instance, in search of C , P and CP violations, as these
mesons are C and P eigenstates of the electromagnetic and
strong interactions [1].

Specifically, the semileptonic decays η(′) → π0l+l− and
η′ → ηl+l− (l = e or μ) are of special interest given that they
can be used as fine probes to assess if new physics beyond the
Standard Model (BSM) is at play. This is because any contri-
bution from BSM physics ought to be relatively small1 and
the above decay processes only get a contribution from the

1 Otherwise, they would have already been detected.

a e-mail: rescriba@ifae.es
b e-mail: eroyo@ifae.es (corresponding author)

SM through the C-conserving exchange of two photons that
is highly suppressed, as there is no contribution at tree-level
but only corrections at one-loop and higher orders. This small
SM contribution would presumably be of the same order of
magnitude as that of physics BSM, which, in turn, means that
the η-η′ phenomenology might play an interesting role and
be an excellent arena for stress testing SM predictions [1,2].
As an example, the η(′) → π0l+l− and η′ → ηl+l− decays
could be mediated by a single intermediate virtual photon,
but this would entail that the electromagnetic interactions
violate C-invariance (e.g. [3,4]) and, therefore, would repre-
sent a departure from the SM.

Early theoretical studies of semileptonic decays of pseu-
doscalar mesons date back to the late 1960s. A very signif-
icant contribution was made by Cheng in Ref. [5] where
he analysed the η → π0e+e− decay mediated by a C-
conserving, two-photon intermediate state within the Vector
Meson Dominance (VMD) framework. By setting the elec-
tron mass to me = 0 and neglecting in the numerator of the
amplitude terms that were second or higher order in the elec-
tron or positron 4-momenta, he found theoretical estimations
for the decay width Γ (η → π0e+e−) = 1.3 × 10−5 eV, the
relative branching ratio Γ (η → π0e+e−)/Γ (η → π0γ γ ) ≈
10−5, as well as the associated decay energy spectrum. This
was an enormous endeavour given the very limited access
to computer algebra systems at the time. For this reason, a
number of strong assumptions had to be made, as pointed
out above, which may have had an undesired effect on the
accuracy of Cheng’s estimates. A different approach was
followed by Smith [6] also in the late 1960s, whereby an
S-wave ηπ0γ γ coupling and unitary bounds2 were used
for the calculation of the C-conserving modes associated
to both η → π0l+l− decay processes. By neglecting p-

2 As it is well known, the Cutkovsky rules [7] allow one to calculate
the imaginary part of a transition amplitude by putting the intermediate
virtual particles on-shell.
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wave contributing terms to simplify the calculations and not-
ing that the unknown ηπ0γ γ coupling constant cancels out
when calculating relative branching ratios, Smith was able
to find Γ (η → π0e+e−)/Γ (η → π0γ γ ) = 3.6 × 10−8 and
Γ (η → π0μ+μ−)/Γ (η → π0γ γ ) = 6.0 × 10−5, after esti-
mating the real part of the matrix element from a single dis-
persion relation and employing a cut-off Λ = 2mη. The
calculation of the latter ratio was possible due to the fact that
Smith did not approximate the lepton mass to zero.

Ng et al. [8] also found in the early 1990s lower lim-
its for the decay widths of the two η → π0l+l− pro-
cesses by making use of unitary bounds and the decay chain
η → π0γ γ → π0l+l−. The transition form factors associ-
ated to the η → π0γ γ decay, which are required to perform
the above calculation, were obtained using the VMD model
supplemented by the exchange of an a0 scalar meson. The
lower bounds that they found are Γ (η → π0e+e−)|VMD =
1.1+0.6

−0.5 μeV and Γ (η → π0μ+μ−)|VMD = 0.5+0.3
−0.2 μeV,

making use of VMD only. By adding the a0 exchange3 to
the latter process, they obtained Γ (η → π0μ+μ−)|constr =
0.9+0.6

−0.5 μeV and Γ (η → π0μ+μ−)|destr = 0.3+0.4
−0.2 μeV

for a constructive and destructive interference, respectively.
The real parts of the amplitudes were estimated by means
of a cut-off dispersive relation and the authors argued
that the expected dispersive contribution should be no
larger than 30% of the absorptive one. Only a few months
later, Ng and Peters provided in Ref. [9] new estima-
tions for the unitary bounds of the η → π0l+l− decay
widths. This new contribution was two-fold; on one hand,
they calculated the η → π0γ γ decay width within a
constituent quark model framework; on the other hand,
they recalculated the VMD transition form factors from
Ref. [8] by performing a Taylor expansion and keeping
terms linear in M2

η/M2
V , x1 and x2 (xi ≡ Pη · qγi /M

2
η ),

which had been neglected in their previous work. Their
new findings were: (i) Γ (η → π0e+e−)|box ≥ 1.2 ±
0.2 μeV and Γ (η → π0μ+μ−)|box ≥ 4.3 ± 0.7 μeV
for a constituent quark mass m = 330 MeV/c2; and
(ii) Γ (η → π0e+e−)|VMD ≥ 3.5 ± 0.8 μeV and
Γ (η → π0μ+μ−)|VMD ≥ 2.4 ± 0.8 μeV. It is important to
highlight that their estimations using the quark-box mech-
anism were strongly dependent on the specific constituent
quark mass selected, especially for the electron mode.

On the experimental front, new upper limits have recently
been established by the WASA-at-COSY collaboration for
the η → π0e+e− decay width [10]. This is a very use-
ful contribution, as the previous available empirical mea-
surements date back to the 1970s which provided an upper
limit for the relative branching ratio of the above process that

3 The a0ηπ0 and a0γ γ couplings needed to perform this calculation
were roughly estimated and the authors acknowledged to be poorly
known. As well as this, their signs were not unambiguously fixed.

was many orders of magnitude larger than the correspond-
ing theoretical estimations at the time. In particular, Adlar-
son et al. [10] found from the analysis of a total of 3 × 107

events of the reaction pd → 3Heη, with a recorded excess
energy of Q = 59.8 MeV, that the results are consistent
with no C-violating single-photon intermediate state event
being recorded. Based on their analysis, the new upper lim-
its Γ (η → π0e+e−)/Γ (η → π+π−π0) < 3.28 × 10−5 and
Γ (η → π0e+e−)/Γ (η → all) < 7.5 × 10−6 (CL = 90%)
have been established for the C-violating η → π0γ ∗ →
π0e+e− decay. In addition, the WASA-at-COSY Collabora-
tion is currently analysing additional data from the pp → ppη

reaction collected over three periods in 2008, 2010 and
2012 which should put more stringent upper limits on the
η → π0e+e− branching ratio. The experimental state of
play is expected to be further improved in the near future
with the advent of new experiments such as the REDTOP
Collaboration, which will focus on rare decays of the η and
η′ mesons, providing increased sensitivity in the search for
violations of SM symmetries by several orders of magnitude
beyond the current experimental state of the art [11].

The present work is structured as follows: In Sect. 2, we
present the detailed calculations for the decay widths associ-
ated to the six η(′) → π0l+l− and η′ → ηl+l− processes. In
Sect. 3, numerical results from theory for the decay widths
and the corresponding dilepton energy spectra are presented
and discussed for the six reactions. Some final remarks and
conclusions are given in Sect. 4.

2 Calculations of η(′) → π0l+l−η(′) → π0l+l−η(′) → π0l+l− and η′ → ηl+l−η′ → ηl+l−η′ → ηl+l−

The calculations in this work assume that the η(′) → π0l+l−
and η′ → ηl+l− decays processes are dominated by the
exchange of vector resonances4 [5]; that is, they proceed
through the C-conserving virtual transition η(′) → V γ ∗
(with V = ρ0, ω or φ), followed by V → π0γ ∗ (or
V → ηγ ∗) and 2γ ∗ → l+l− (see Fig. 1 for details).5

In order to perform the calculations, one first needs to
select an effective vertex that contains the appropriate inter-
acting terms. The V Pγ interaction amplitude consistent with
Lorentz, P , C and electromagnetic gauge invariance can be
written as [13]

M (V → Pγ ) = gV Pγ εμναβε
μ
(V )

pν
V ε∗α

(γ )q
β F̂V Pγ (q2) , (1)

4 It is worth highlighting that contributions from the exchange of scalar
resonances can be safely discarded as they ought to be negligible for
the first four η(′) → π0l+l− decays and relatively small for the last two
η′ → ηl+l− processes. The interested reader is referred to the in-depth
analysis carried out in Ref. [12] where scalar exchanges were introduced
under the framework of the Linear Sigma Model for the η(′) → π0γ γ

and η′ → ηγ γ decays.
5 Note that any C-violating contributions to these processes, such as
e.g. the single-photon exchange channel, would be associated to BSM
physics. In this work, though, the focus is on the SM contribution from
the C-conserving two-photon exchange channel.
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(a) (b)

Fig. 1 Feynman diagrams contributing to the C-conserving semileptonic decays η(′) → π0l+l− and η′ → ηl+l− (l = e or μ). Note that
q = p+ + p− and V = ρ0,ω,φ

where gV Pγ is the coupling constant for the V Pγ transi-
tion involving on-shell photons, εμναβ is the totally antisym-
metric Levi-Civita tensor, ε(V ) and pV are the polarisation
and 4-momentum vectors of the initial V , ε∗

(γ ) and q are

the corresponding ones for the final γ , and F̂V Pγ (q2) ≡
FV Pγ (q2)/FV Pγ (0) is a normalised form factor to account
for off-shell photons mediating the transition.6 In addition to
this, the usual QED vertex is used to describe the subsequent
2γ ∗ → l+l− transition. Accordingly, there are six diagrams
contributing to each one of the six semileptonic decay pro-
cesses and the corresponding Feynman diagrams are shown
in Fig. 1.

The invariant decay amplitude in momentum space can,
therefore, be written as follows

M = ie2
∑

V=ρ0,ω,φ

gVη(′)γ gVπ0(η)γ

∫
d4k

(2π)4

1

k2 + iε

1

(k − q)2 + iε
εμναβ

[
kμ(P − k)α(k − q)ρ(P − k)δ

(P − k)2 − m2
V + iε

]
ερσδ

β

u(p−)

[
γ σ

/k − /p+ + ml

(k − p+)2 − m2
l + iε

γ ν + γ ν /p− − /k + ml

(k − p−)2 − m2
l + iε

γ σ

]
v(p+) ,

(2)

where q = p+ + p− is the sum of lepton-antilepton pair 4-
momenta, e is the electron charge, and gVη(′)γ and gVπ0(η)γ

are the corresponding coupling constants in Eq. (1). Noting
that the Levi-Civita tensors are antisymmetric under the sub-
stitutions μ ↔ α and ρ ↔ δ, whilst the products of loop
momenta kμkα and kρkδ are symmetric under these substi-
tutions, one finds that the terms in Eq. (2) containing these
combinations vanish and that the superficial degree of diver-
gence for the loop integrals of the two diagrams in Fig. 1 is
−1. Accordingly, both diagrams are convergent individually.

The numerator of M can be simplified using the usual
Dirac algebra manipulations and the equations of motion. For
these calculations, the mass of the leptons are not approxi-

6 For simplicity of the calculation, we neglect the q2 dependence of
the transition form factor in Eq. (1). This is not fully rigorous but, we
understand, it is a tolerable approximation given that these form factors
are usually determined from on-shell photon processes.

mated to zero, as we are interested in both the electron and
muon modes for the six decay processes; as a result, the task
of manipulating and simplifying the algebraic expressions
would be daunting should computer algebra packages not
be available. In the present work, use of the Mathematica
package FeynCalc 9.2.0 [14,15] is made for this purpose.

Let us now proceed to calculate the loop integral. As usual,
one first introduces the Feynman parametrisation and com-
pletes the square in the new denominators ΔiV (i = 1, 2 and
V = ρ0, ω, φ) by shifting to a new loop momentum variable
� [16]. Hence, the denominators become

Δ1V = 2yz(P · q) + 2xy(p+ · q) + (y − 1)yq2

+ 2xz(P · p+) + x2m2
l + z

[
(z − 1)m2

η(′)

+ mV (mV − iΓV )
]
,

Δ2V ≡ Δ1V with p+ ↔ p− . (3)

Rewriting the numerators of the Feynman diagrams 1 and
2 (i.e. t-channel and u-channel diagrams, respectively, in
Fig. 1) in terms of the new momentum variable �, one finds

N1 = [
A1�

2 + B1
]
u(p−) /Pv(p+)

+ ml
[
C1�

2 + D1
]
u(p−)v(p+) ,

N2 = [
A2�

2 + B2
]
u(p−) /Pv(p+)

+ ml
[
C2�

2 + D2
]
u(p−)v(p+) ,

(4)

where the explicit expressions for the parameters Ai , Bi ,
Ci and Di (i = 1, 2) are provided in Appendix A. Finally,
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we perform a Wick rotation and change to four-dimensional
spherical coordinates [16,17] to carry out the momentum
integral. The following expressions for the amplitudes of the
Feynman diagrams are found

M1V = αV
[
u(p−) /Pv(p+)

] + βVml
[
u(p−)v(p+)

]
,

M2V = σV
[
u(p−) /Pv(p+)

] + τVml
[
u(p−)v(p+)

]
,

(5)

where ml is the corresponding lepton mass, and the parame-
ters αV , βV , σV and τV in Eq. (5) are defined as

αV = e2
gVη(′)γ gVπ0(η)γ

16π2

∫
dxdydz

[
2A1

Δ1V +iε
− B1

(Δ1V +iε)2

]
,

βV = e2
gVη(′)γ gVπ0(η)γ

16π2

∫
dxdydz

[
2C1

Δ1V +iε
− D1

(Δ1V +iε)2

]
,

σV = e2
gVη(′)γ gVπ0(η)γ

16π2

∫
dxdydz

[
2A2

Δ2V +iε
− B2

(Δ2V +iε)2

]
,

τV = e2
gVη(′)γ gVπ0(η)γ

16π2

∫
dxdydz

[
2C2

Δ2V +iε
− D2

(Δ2V +iε)2

]
,

(6)

with x , y and z being the Feynman integration parameters.
Therefore, the full amplitude can now be expressed as

M =
∑

V=ρ0,ω,φ

M1V + M2V

= Ω
[
u(p−) /Pv(p+)

] + ml�
[
u(p−)v(p+)

]
,

(7)

where Ω and � are defined as follows

Ω =
∑

V=ρ0,ω,φ

αV + σV ,

� =
∑

V=ρ0,ω,φ

βV + τV ,
(8)

and the unpolarised squared amplitude is

|M|2 = 4
{

2(P · p+)(P · p−) − m2
η(′)

[
(p+ · p−) + m2

l
]}

× Abs(Ω)2 + 8m2
l
[
(P · p+) − (P · p−)

]
Re(Ω�∗)

+ 4m2
l
[
(p+ · p−) − m2

l
]
Abs(�)2 . (9)

Finally, the differential decay rate for a three-body decay can
be written as [18]

dΓ = 1

(2π)3

1

32m3
η(′)

|M|2 dm2
l+l−dm

2
l−π0(η)

, (10)

where m2
i j = (pi + p j )

2.

3 Theoretical results

Making use of the theoretical expressions that have been pre-
sented in Sect. 2, one can find numerical predictions for the
decay widths of the η(′) → π0l+l− and η′ → ηl+l− decay
processes, as well as their associated dilepton energy spectra.
Both, the integral over the Feynman parameters as well as the
integral over phase space, must be carried out numerically,
as algebraic expressions cannot be obtained. In addition, the
numerical integrals over the Feynman parameters are to be
performed using adaptive Monte Carlo methods [19]; this is
driven by the complexity of the expressions to be integrated
and their multidimensional nature.

In the conventional VMD model, pseudoscalar mesons do
not couple directly to photons but through the exchange of
intermediate vectors. Thus, in this framework, a particular
V Pγ coupling constant times its normalised form factor,
cf. Eq. (1), is given by7

gV Pγ F̂V Pγ (q2) =
∑

V ′

gVV ′P gV ′γ
M2

V ′ − q2
, (11)

where gVV ′P are the vector-vector-pseudoscalar couplings,
gV ′γ the vector-photon conversion couplings, and MV ′ the
intermediate vector masses. In the SU (3)-flavour symme-
try and OZI-rule respecting limits, one could express all the
gV Pγ in terms of a single coupling constant and SU (3)-group
factors [20]. However, to account for the unavoidable SU (3)-
flavour symmetry-breaking and OZI-rule violating effects,
we make use of the simple, yet powerful, phenomenological
quark-based model first presented in Ref. [21], which was
developed to describe V → Pγ and P → V γ radiative
decays. According to this model, the decay couplings can be
expressed as

gρ0π0γ = 1

3
g ,

gρ0ηγ = gzNS cos φP ,

gρ0η′γ = gzNS sin φP ,

gωπ0γ = g cos φV ,

gωηγ = 1

3
g
(
zNS cos φP cos φV − 2

m

ms
zS sin φP sin φV

)
,

gωη′γ = 1

3
g
(
zNS sin φP cos φV + 2

m

ms
zS cos φP sin φV

)
,

gφπ0γ = g sin φV ,

gφηγ = 1

3
g
(
zNS cos φP sin φV + 2

m

ms
zS sin φP cos φV

)
,

gφη′γ = 1

3
g
(
zNS sin φP sin φV − 2

m

ms
zS cos φP cos φV

)
,

7 Should q2 be timelike, that is, q2 > 0, then an imaginary part would
need to be added to the propagator; this introduces the associated reso-
nance width effects and rids the propagator from its divergent behaviour.

123



Eur. Phys. J. C (2020) 80 :1190 Page 5 of 9 1190

(12)

where g is a generic electromagnetic constant, φP is the pseu-
doscalar η-η′ mixing angle in the quark-flavour basis, φV is
the vector ω-φ mixing angle in the same basis, m/ms is the
quotient of constituent quark masses, and zNS and zS are
the non-strange and strange multiplicative factors account-
ing for the relative meson wavefunction overlaps [21,22]. By
performing an optimisation fit to the most up-to-date V Pγ

experimental data [18], one can find values for the above
parameters

g = 0.70 ± 0.01 GeV−1, zSm/ms = 0.65 ± 0.01 ,

φP = (41.4 ± 0.5)◦, φV = (3.3 ± 0.1)◦ ,

zNS = 0.83 ± 0.02 . (13)

Given the very wide decay width associated to the ρ0 res-
onance, which, in turn, is linked to its very short lifetime, the
use of the usual Breit-Wigner approximation for the ρ0 prop-
agator is not justified. Instead, an energy-dependent approx-
imation for the vector propagator must be used. This can be
written for the t-channel process (cf. t-channel diagram in
Fig. 1) as follows

Γρ0(t) = Γρ0 ×
(

t − 4m2
π±

m2
ρ0 − 4m2

π±

) 3
2

× θ(t − 4m2
π±) , (14)

where θ(x) is the Heaviside step function. Likewise, for the
u-channel process (cf. u-channel diagram in Fig. 1), one only
needs to substitute t ↔ u in Eq. (14). The energy dependent
propagator is not needed, though, for the ω and φ resonances,
as their associated decay widths are narrow and, therefore,
use of the usual Breit-Wigner approximation suffices.

Using the most recent empirical data for the meson masses
and total decay widths from Ref. [18], together with all the
above considerations, one arrives at the decay width results
shown in Table 1 for the six η(′) → π0l+l− and η′ → ηl+l−
processes. The total decay widths associated to the electron
modes turn out to be larger than the ones corresponding to
the muon modes despite the second and third terms in the
unpolarised squared amplitude (cf. Eq. (9)) being helicity
suppressed for the electron modes. This suppression, though,
does not overcome the phase space suppression for the muon
modes, yielding Γ (η(′) → π0e+e−) > Γ (η(′) → π0μ+μ−)

and Γ (η′ → ηe+e−) > Γ (η′ → ημ+μ−).
Let us now look at the contributions from the different

vector meson exchanges to the total decay widths. For the
first decay, i.e. η → π0e+e−, we find that the contribu-
tion from the ρ0 exchange is ∼ 25%, the contribution from
the ω is ∼ 22%, whilst the one from the φ is negligible,
i.e. ∼ 0%. The interference between the ρ0 and the ω is
constructive, accounting for the ∼ 47%; similarly, the inter-
ference between the ρ0 and the ω with the φ is constructive

and about ∼ 6%. The contributions to the second decay,
i.e. η → π0μ+μ−, are ∼ 26%, ∼ 22% and ∼ 0% from the
ρ0, ω, and φ exchanges, respectively. As before, the inter-
ference between the ρ0 and the ω is constructive, weigh-
ing ∼ 49%, and the interference between the ρ0 and the ω

with the φ is constructive and accounts for approximately the
∼ 3%. For the third decay, i.e. η′ → π0e+e−, the contribu-
tions from the ρ0, ω and φ turn out to be ∼ 17%, ∼ 36%
and ∼ 0%, respectively; the interference between the ρ0 and
the ω exchanges is constructive and accounts for the ∼ 51%,
whilst the interference between the ρ0 and ω with the φ is
destructive and weighs approximately ∼ 4%. The contribu-
tions to the fourth decay, i.e. η′ → π0μ+μ−, from the ρ0,
ω and φ exchanges are ∼ 21%, ∼ 32% and ∼ 0%, respec-
tively. The interference between the ρ0 and the ω is construc-
tive, representing a ∼ 52% contribution, whilst the interfer-
ence between the ρ0 and the ω with the φ is destructive and
accounts for the ∼ 5%. The fifth decay, i.e. η′ → ηe+e−, gets
contributions from the exchange of ρ0, ω and φ resonances
of approximately ∼ 79%, ∼ 1% and ∼ 2%, respectively; the
interference between the ρ0 and the ω is constructive weigh-
ing ∼ 26%, and the interference between the ρ0 and the ω

with the φ is destructive and contributes with roughly the
∼ 8%. Finally, for the sixth decay, i.e. η′ → ημ+μ−, we
find that the contribution from the ρ0 exchange is ∼ 93%,
the contribution from the ω is ∼ 2% and the one from the φ

is ∼ 3%; the interference between the ρ0 and the ω is con-
structive and accounts for the ∼ 26%, whilst the interference
between the ρ0 and the ω with the φ is destructive weighing
close to ∼ 24%. The tiny contribution from the φ exchange
to the decay widths of the six processes is explained by the
relatively small product of VMD V Pγ coupling constants.
Likewise, the comparatively minute contribution from the ω

exchange to the decay widths of the last two reactions is down
to the significantly smaller product of coupling constants, if
compared to that of the ρ0 exchange.

In order to assess a systematic error associated to the
model dependency of our predictions, we repeat all the
above calculations in the context of Resonance Chiral The-
ory (RChT). In this framework, the V Pγ effective vertex is
made of two contributions, a local V Pγ vertex weighted by
a coupling constant, hV , and a non-local one built from the
exchange of an intermediate vector which, again, is weighted
by a second coupling constant, σV , times the vector-photon
conversion factor fV . For a given V Pγ transition, this effec-
tive vertex can be written in the SU (3)-flavour symmetry
limit as [13]

gV Pγ F̂V Pγ (q2) = CV Pγ

4
√

2 hV
fπ

(
1 + σV fV√

2 hV

q2

M2
V ′ − q2

)
,

(15)

where CV Pγ are SU (3)-group factors and, depending on the
process, the exchanged vector is or is not the same as the
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Table 1 Decay widths and branching ratios for the six C-conserving decays η(′) → π0l+l− and η′ → ηl+l− (l = e or μ). First error is
experimental, second is down to numerical integration and third is due to model dependency

Decay Γth BRth BRexp

η → π0e+e− 2.8(2)(3)(5) × 10−6 eV 2.1(1)(2)(4) × 10−9 < 7.5 × 10−6 (CL=90%) [10]

η → π0μ+μ− 1.6(1)(2)(2) × 10−6 eV 1.2(1)(1)(2) × 10−9 < 5 × 10−6 (CL=90%) [18]

η′ → π0e+e− 8.7(0.5)(0.9)(1.0) × 10−4 eV 4.5(3)(5)(6) × 10−9 < 1.4 × 10−3 (CL=90%) [18]

η′ → π0μ+μ− 3.5(2)(4)(5) × 10−4 eV 1.8(1)(2)(3) × 10−9 < 6.0 × 10−5 (CL=90%) [18]

η′ → η0e+e− 7.6(0.4)(0.8)(1.3) × 10−5 eV 3.9(3)(4)(7) × 10−10 < 2.4 × 10−3 (CL=90%) [18]

η′ → η0μ+μ− 3.1(2)(3)(2) × 10−5 eV 1.6(1)(2)(1) × 10−10 < 1.5 × 10−5 (CL=90%) [18]

initial vector (see Refs. [13,23] for each particular case). To
fix the V Pγ couplings in this second approach, we make use
of the extended Nambu–Jona-Lasinio (ENJL) model, where
hV is found to be hV = 0.033 [13]. The VV P coupling σV
obtained using the ENJL model turns out to be σV = 0.28.
However, σV can also be obtained from the analysis of the
dilepton mass spectrum in ω → π0μ+μ− decays, where one
finds σV ≈ 0.58 [24]. Due to the fact that σV is poorly known
and the dispersion of the above estimations is large, we do
not consider the q2 dependence of the form factors in the
subsequent calculations. An alternative model to fix gV Pγ ,
the normalisation of the form factors, is the Hidden Gauge
Symmetry (HGS) model [25], where the vector mesons are
considered as gauge bosons of a hidden symmetry. Within
this model, a V Pγ transition proceeds uniquely through the
exchange of intermediate vector mesons. In this sense, it is
equivalent to the conventional VMD model with the relevant
exception of including direct γ P3 terms (P being a pseu-
doscalar meson), which are forbidden in VMD [26]. Due
to this similarity, we will not make use of the HGS model
to assess the systematic model error and refer the interested
reader to Ref. [20] for a detailed calculation of the gV Pγ

couplings in this model.
Next, our results for the semileptonic decays η(′) →

π0l+l− and η′ → ηl+l− in the conventional VMD frame-
work using the V Pγ couplings from the phenomenological
quark-based model in Eq. (12) are discussed and, if avail-
able, compared with previous literature. These predictions
include a first experimental error ascribed to the propagation
of the parametric errors in Eq. (13), a second error down to
the numerical integration, and a third systematic error asso-
ciated to the model dependence of our approach. The latter is
calculated as the absolute difference between the predicted
central values obtained from the VMD and RChT frame-
works (cf. Table 1).

Our prediction for the decay width Γ (η → π0e+e−) =
(2.8 ± 0.2 ± 0.3 ± 0.5) × 10−6 eV is about an order
of magnitude smaller than the one provided by Cheng in
Ref. [5] (cf. Sect. 1), i.e. Γ (η → π0e+e−) = 1.3 × 10−5

eV; however, by plugging into our expressions the cou-

plings that Cheng used in his work, we find a decay
width Γ (η → π0e+e−) ≈ 2.2 × 10−5 eV, which is less
than a factor of two larger than Cheng’s result, and the
difference might be down to the simplifications that he
had to carry out in his calculations, as well as the more
sophisticated propagators that have been employed in the
present work.8 In addition, from our calculations one can
also get a prediction for the ratio of branching ratios9

Γ (η → π0e+e−)/Γ (η → π0γ γ ) = (8.3 ± 1.9) × 10−6,
which is very approximate to Cheng’s model independent
estimation of Γ (η → π0e+e−)/Γ (η → π0γ γ ) ≈ 10−5, but
more than two orders of magnitude larger than Smith’s
result10 Γ (η → π0e+e−)/Γ (η → π0γ γ ) = 3.6×10−8 [6];
as well as this, for the muon mode we find the relative branch-
ing ratio11 Γ (η → π0μ+μ−)/Γ (η → π0γ γ ) = (4.6 ±
1.0)×10−6, which is roughly an order of magnitude smaller
than Smith’s estimationΓ (η → π0μ+μ−)/Γ (η → π0γ γ ) =
6.0 × 10−5 [6]. Moreover, our decay widths for both the
η → π0e+e− and η → π0μ+μ− processes are con-
sistent with the lower bounds provided by Ng et al. in
Ref. [8], i.e. Γ (η → π0e+e−)|VMD = 1.1+0.6

−0.5 μeV and
Γ (η → π0μ+μ−)|VMD = 0.5+0.3

−0.2 μeV making use of
VMD, and Γ (η → π0μ+μ−)|constr = 0.9+0.6

−0.5 μeV and
Γ (η → π0μ+μ−)|destr = 0.3+0.4

−0.2 μeV using VMD sup-
plemented by the exchange of an a0 scalar meson. Using
the quark-box diagram and a constituent quark mass m =

8 Note that in Ref. [5] Cheng used vector propagators without total
decay widths (i.e. Feynman propagators) for the vector exchanges whilst
we are using an energy dependent propagator for the ρ0 exchange and
usual Breit-Wigner propagators for the ω and φ exchanges.
9 Here, we are using the experimental value for the decay width
Γ (η → π0γ γ ) provided in Ref. [18]. Alternatively, one could have
used the theoretical prediction from Ref. [12] Γ (η → π0γ γ )|th =
0.17±0.01 eV to obtain Γ (η → π0e+e−)/Γ (η → π0γ γ ) = (1.6±
0.4) × 10−5.
10 The discrepancy with Smith’s relative branching ratio might be
explained, though, by the effect of p-wave terms that he neglected after
admitting that they are not necessarily small.
11 Once more, should we have used the theoretical prediction from Ref.
[12] Γ (η → π0γ γ )|th = 0.17 ± 0.01 eV, we would have obtained
Γ (η → π0μ+μ−)/Γ (η → π0γ γ ) = (9.1 ± 1.8) × 10−6.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2 Dilepton energy spectra corresponding to the six C-conserving semileptonic decay processes η(′) → π0l+l− and η′ → ηl+l− (l = e or
μ) as a function of the dilepton invariant mass q2
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330 MeV/c2, Ng et al. provided in Ref. [9] an estima-
tion for the electron mode, Γ (η → π0e+e−)|box ≥ 1.2 ±
0.2 μeV, which is in accordance with our result, and an esti-
mate for the muon mode, Γ (η → π0μ+μ−)|box ≥ 4.3 ±
0.7 μeV, which in this case is incompatible with our cal-
culation.12 Additionally, Ng et al. also presented in Ref.
[9] a recalculation of their previous VMD results from Ref.
[8], yielding Γ (η → π0e+e−)|VMD ≥ 3.5 ± 0.8 μeV and
Γ (η → π0μ+μ−)|VMD ≥ 2.4 ± 0.8 μeV, which are consis-
tent with our results if one considers the associated errors.
Our decay width calculations for the other four processes, i.e.
η′ → π0l+l− and η′ → ηl+l−, cannot be compared with
any previously published theoretical results, as these decays
have been calculated, to the best of our knowledge, for the
first time in the present work. Likewise, comparison with the
most up-to-date empirical data provides limited value given
that the corresponding current experimental upper bounds,
though consistent with our theoretical predictions, are many
orders of magnitude larger (cf. Table 1).

Finally, theoretical results for the dilepton energy spectra
of the six C-conserving semileptonic decays are presented in
Fig. 2. The energy spectra for the three electron modes, which
are displayed in Fig. 2a, c, e, take off as the dilepton invari-
ant mass q2 approaches zero. This is in line with Cheng’s
and Ng et al.’s energy spectra for the η → π0e+e− (Refs.
[5] and [8], respectively), which exhibit the same behaviour
at low q2. It appears as though the electron modes prefer
to proceed through the emission of (relativistic) collinear
electron-positron pairs (i.e. θe+e− � 0, where θe+e− is the
electron-positron angle). The reason for this can easily be
understood from dynamics13 if one assumes the electron
and positron to be massless, me ≈ 0; then, by inspection
of Eq. (9), one can determine that the unpolarised squared
amplitude is maximised when q2 → 0, which occurs when
θe+e− � 014. Physically, it may be explained to some extent
by the fact that the diphoton invariant spectra for the three
η(′) → π0γ γ and η′ → ηγ γ peak at low m2

γ γ (cf., e.g., Ref.
[12] and references therein). On the other hand, the dilepton
energy spectra for the muon modes, shown in Fig. 2b, d, f,
are bell-shaped, which is driven by the kinematics of the pro-
cesses. This, once more, seems to be consistent with Ng et

12 Note, however, that, as part of their calculation, they had to estimate
the decay width of the η → π0γ γ process using their quark-box model
and found Γ (η → π0γ γ ) = 0.60 ± 0.10 eV for a constituent quark
mass m = 330 MeV/c2, which is approximately a factor of two larger
than the current experimental measurement. Therefore, it is no surprise
that their estimates for the associated η → π0l+l− processes are at the
upper end of the spectrum of estimations.
13 It must be noted, though, that the kinematics of the electron modes
also contribute to this particular shape of the energy spectra, producing
a somewhat synergistic effect.
14 Note that q2 � 2pe+ pe− � 2| pe+ || pe− |(1 − cos θe+e− ) in the lep-
tonic massless limit, i.e. me ≈ 0.

al.’s [8] energy spectrum for the η → π0μ+μ−. It is interest-
ing to observe that the energy spectra for the η → π0μ+μ−
and η′ → π0μ+μ− are skewed to the left (i.e. small values
for θμ+μ− are favoured, where θμ+μ− is the muon-antimuon
angle), whilst the energy spectrum for the η′ → ημ+μ− is
skewed to the right (i.e. somewhat larger values for θμ+μ−
are preferred). This is more difficult to explain15 given that
this effect, which is connected to the fact that mη > mπ0 , is
a consequence of the complex dynamical interplay between
the different terms in Eq. (9). Surprisingly, the kinematics
of the reactions do not seem to play a significant role in this
difference in skewness.

4 Conclusions

In this work, the C-conserving decay modes η(′) → π0l+l−
and η′ → ηl+l− (l = e or μ) have been analysed within the
theoretical framework of the VMD model. The associated
decay widths and dilepton energy spectra have been calcu-
lated and presented for the six decay processes. To the best
of our knowledge, the theoretical predictions for the four
η′ → π0l+l− and η′ → ηl+l− reactions that we have pro-
vided in this work are the first predictions from theory that
have been published.

The decay width results that we have obtained from our
calculations, which are summarised in Table 1, have been
compared with those available in the published literature. In
general, the agreement is reasonably good considering that
the previous analysis either contain important approxima-
tions or consist of unitary lower bounds. Predictions for the
dilepton energy spectra have also been presented for all the
above processes, cf. Fig. 2.

Experimental measurements to date have provided upper
limits to the decay processes studied in this work. These
upper limits, though, are still many orders of magnitude larger
than the theoretical results that we have presented. For this
reason, we would like to encourage experimental groups,
such as the WASA-at-COSY and REDTOP Collaborations,
to study these semileptonic decays processes, as we believe
that they can represent a fruitful arena in the search for new
physics beyond the Standard Model.
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Appendix A: Definition of parameters AiAiAi , BiBiBi , CiCiCi and DiDiDi

The parameters Ai , Bi , Ci and Di (i = 1, 2) from Eq. (4) are
defined as follows

A1 = −(x + y + 2z)(P · p+) − (y + 2z − 1)(P · p−)

+ (−x + y + 1)(p− · p+) + m2
l (2x + y + 1)

+
3zm2

η(′)

2
, (A.1)

A2 ≡ −A1 with p+ ↔ p− , (A.2)

B1 = −2z(x + y)(x + y + z − 1)(P · p+)2 − 2yz(y + z − 1)

× (P · p−)2 − 2xy(x + y − 1)(p− · p+)2 + (P · p−)

×
{

− 2z
[
x(2y + z − 1) + 2y(y + z − 1)

]
(P · p+)

+ 2y(p− · p+)(−2xz + x + y + z − 1)

+ m2
l

[
x2(1 − 2z) + 2xy + 2y(y + z − 1)

]} + (P · p+)

×
{
m2

l

[
x2(2z − 1) + 2xy(2z − 1) − 2y(y + z − 1)

]

− 2y(p− · p+)(x + y + z − 1)
}

− x3m2
l (p− · p+)

+ zm2
η(′)

{
(p− · p+)

[
x(4y + z − 1) + 4y(y + z − 1)

]

+ m2
l

[
2x2 + x(4y + 3z − 3) + 4y(y + z − 1)

]}

+ xm4
l

[
x2 + 2xy + 2(y − 1)y

]
, (A.3)

B2 ≡ −B1 with p+ ↔ p− , (A.4)
C1 = (x + 1)(P · p−) + (4x + 1)(P · p+)

−
(5

2
x + 1

)
m2

η(′) , (A.5)

C2 ≡ C1 with p+ ↔ p− , (A.6)

D1 = 2
[
x3 + x2(2y + 2z − 1) + xy(y + 2z) + y(y + z − 1)

]

× (P · p+)2 + 2y(xy + y + z − 1)(P · p−)2 + x(P · p+)

×
{

− 2(x2 − y2 + y)(p− · p+) + m2
l

[
x2 + 2(y − 1)y

]

+ (z − 1)zm2
η(′)

}
+ (P · p−)

{
x
[ − 2(y − 1)y

× (p− · p+ + m2
l ) + x2m2

l − (z − 1)zm2
η(′)

] + 4(x + 1)

× y(x + y + z − 1)(P · p+)
}

− m2
η(′)

{
(p− · p+ + m2

l )

× [
x2(4y + 2z − 1) + 4xy(y + z) + 4y(y + z − 1)

]

+ 2x3m2
l

}
, (A.7)

D2 ≡ D1 with p+ ↔ p− . (A.8)
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