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Abstract In this paper, we have investigated Tsallis holo-
graphic dark energy (infrared cutoff is the Hubble radius)
in homogeneous and anisotropic Bianchi type-I I I Universe
within the framework of Saez–Ballester scalar–tensor theory
of gravitation. We have constructed non-interaction and inter-
action dark energy models by solving the Saez–Ballester field
equations. To solve the field equations, we assume a relation-
ship between the metric potentials of the model. We devel-
oped the various cosmological parameters (namely deceler-
ation parameter q, equation of state parameter ωt , squared
sound speed v2

s , om-diagnostic parameter Om(z) and scalar
field φ) and well-known cosmological planes (namely ωt−ω

′
t

plane, where ′ denotes derivative with respect to ln(a) and
statefinders (r−s) plane) and analyzed their behavior through
graphical representation for our both the models. It is also,
quite interesting to mention here that the obtained results are
coincide with the modern observational data.

1 Introduction

The current scenario of the accelerated expansion of the Uni-
verse confirmed through various observational schemes by
Riess et al. [1,2]. Cosmological observations and Cosmic
Microwave Background (CMB) data suggest [3,4] that the
Universe is spatially flat and is dominated by an exotic com-
ponent with huge negative pressure dubbed as Dark Energy
(DE). It is also believed that DE occupies 73% of the energy
of our Universe, Dark Matter (DM) occupies 23% and the
6% energy is baryonic matter [5,6]. In order to convey this
late time acceleration, two main various approaches have
been advocated: one is to construct different DE candidates
and the second one is the modifications of Einstein’s theory
of gravitation. Among the many modifications, Brans–Dicke
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[7] and Saez–Ballester [8] scalar–tensor theories played a
significant role.

Saez and Ballester [8] introduced a scalar–tensor theory
in which metric is combined with a dimensionless scalar-
field was developed. This coupling is used to describe the
weak fields satisfactorily. This scalar–tensor theory plays an
important part in solving the issue of missing matter problem
and in removing the graceful issue of exit in non-flat FRW
cosmologies and the inflation era. In SB theory, the field
equations are given by

Ri j − 1

2
Rgi j −wφn

(
φ,iφ, j − 1

2
gi jφ,kφ

,k
)

= − 8πG

c4 Ti j ,

(1)

and the scalar field (φ) satisfies the following equation

2φnφ
,i
,i + nφn−1φ,kφ

,k = 0, (2)

here Ti j is the energy momentum tensor of the matter, the
gravitational constant G, w is a dimensionless constant and,
comma (,) and semicolon (;) represents partial and covariant
differentiation respectively. The energy-conservation equa-
tion is given by

T i j
; j = 0. (3)

In past years, the holographic principle had attracted con-
siderable attention due to its importance in quantum grav-
ity [9–11], which is defined as the entropy of a given sys-
tem which does not depend upon the volume, but rather on
the surface area surrounding it. In the cosmological context,
the holographic principle establishes an upper limit for the
entropy of the Universe and there is a theoretical relation
between IR and Ultraviolet (UV) cutoffs. If there is an energy
density (ρde) in a region associated to the UV, then the total
energy in a phase of size L cannot be greater than the mass of
a black hole with the same size, so that [12], L3ρde > LM2

p.
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In this case, the largest value of L can be obtained by con-
sidering the equality in equation such that the holographic
energy density is given by ρde = 3c2M2

pL
−2, where c is a

numerical constant and M2
p = 8πG is the reduced Planck

mass. Li [13] has shown that Hubble horizons and particle
horizons are not in good agreement with the Universe while
the future event horizon is the best model for non-interacting
holographic DE with suitable constant c. Gao et al. [14] have
pointed out that holographic DE with future event horizon
is plagued with causality problem. Inspired by this, several
authors have modified the IR cutoff as a function of the Ricci
scalar [15,16]. Since the energy density of the holographic
DE is based on the area law of entropy, any modification of
the area law leads to a modified holographic DE. The entropy
expression is associated with the apparent horizon of FRW
Universe in DGP braneworld motivated Sheykhi et al. [17]
to introduce a new model for the holographic DE known as
New Holographic DE (NHDE). They have investigated the
cosmological consequences of this NHDE model by choos-
ing the Hubble radius L = H−1 as the system’s IR cutoff
and have proved that it can explain the current cosmic accel-
eration of the Universe.

Nojiri and Odintsov [18] have proposed a unifying
approach to early-time and late-time Universe based on phan-
tom cosmology is proposed. Also, they have discussed the
bound for holographic entropy which decreases in phantom
era. Medved [19] has given a comment on holographic DE
and mentioned that their interpretation of the DE turns out
to be suggestive of a natural resolution to the cosmic coinci-
dence problem. Bisabr [20] has studied the holographic DE
model in a generalized scalar–tensor theory. He has shown
that various types of potentials, the equation of state param-
eter is negative and transition from deceleration to accelera-
tion expansion of the Universe is possible. Many researchers
[21–30] have studied HDE models in various theories of
gravitation. In particular, Mazumder and Chakraborty [31]
have investigated the validity of the generalized second law
of thermodynamics of the universe bounded by the event
horizon in the holographic DE model. Setare and Jamil [32]
have presented a detailed discussion on statefinder diagnostic
and stability of modified gravity consistent with holographic
and agegraphic DE. Sharif and Khanum [33] have investi-
gated the Kaluza–Klein (KK) cosmology in which modified
holographic DE is interacting with DM. Further, they have
shown that the generalized second law of thermodynamics
holds without any constraint. Mohammadi and Malekjani
[34] have discussed the entropy-corrected version of inter-
acting holographic DE, in the non-flat Universe enclosed by
apparent horizon. Two corrections of entropy so-called loga-
rithmic and power law in this model with apparent horizon as
an IR-cutoff is studied. Sharif and Jawad [35] have discussed
cosmological evolution of interacting NHDE in non-flat Uni-

verse. Li et al. [36] have performed a detailed investigation
on the cosmological constraints on the Holographic Dark
Energy (HDE) model by using the Plank data. Praseetha and
Mathew [37] have studied the cosmology and thermodynam-
ics of HDE, and also, they have analyzed the generalized sec-
ond law of thermodynamics in a flat Universe consisting of
interacting DE and DM. Jawad et al. [38] have discussed the
modified holographic Ricci DE model in Chameleon Brans–
Dicke gravity with its energy density in interaction with
energy density of Cold Dark Matter (CDM) and explored its
thermodynamic consequence. Aditya and Reddy [39] have
investigated anisotropic new holographic dark energy model
in the framework of Saez–Ballester theory of gravitation.
Very recently, Prasanthi and Aditya [40] have investigated
anisotropic Renyi HDE models in the framework of general
relativity. In recent years, various entropy formalisms have
been used to investigate the gravitational and cosmological
setups. Among them Tsallis HDE (THDE) model based on
the Tsallis generalized entropy, which is never stable at the
classical level [41,42]. Hence, with this motivation, in this
paper, we assume the HDE with new entropy formalism i.e.,
Tsallis HDE.

Here, we would like to study the difference between our
work and the other THDE models studied in literature [43–
53]. Zadeh et al. [43] have explored the effects of various
IR cutoffs on the properties of THDE model. Sharma and
Pradhan [44] have investigated diagnosing THDE models
with statefinder and ωt − ω

′
t plane analysis. Sadri [45] and

Aditya et al. [46] have studied observational constraints on
interacting THDE models in Brans–Dicke scalar–tensor the-
ory. Sharif and Saba [47], Maity and Debnath [48] and Ayman
[48] have investigated different THDE models in various the-
ories of gravitation. It is observed that all these studies are
in the isotropic background of the universe, i.e., with FRW
space-time. But in view of the importance of anisotropic
space-times, many authors have investigated THDE mod-
els in the anisotropic background. These anisotropic models
will help for a better understanding of the early stages of
evolution of the Universe. Korunur [50] has studied THDE
model in Bianchi type-I I I Universe with scalar fields. Zadeh
et al. [51] explained the cosmic evolution of Bianchi type-I
THDE model with sign-changeable interaction between DM
and DE with various IR cutoffs. Dubey et al. [52] have dis-
cussed THDE models with Hubble horizon as IR cutoff in
axially symmetric Biachi type-I space-time whereas, Dubey
et al. [53] have studied THDE in Bianchi type-I Universe
using hybrid expansion law with k-essence. THDE model
with anisotropic background and in the framework of Saez–
Ballester scalar–tensor theory of gravitation has not been,
so far, studied in literature. Hence, in our work, we studied
the behavior of THDE with Hubble horizon as the IR cutoff
in the background of Biachi type-I I I space-time within the
framework of Saez–Ballester scalar–tensor theory of gravita-
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tion. We obtained an exact and viable solution by solving the
field equations of our proposed THDE model without con-
sidering any spacial expansion law for average scale factor
of the model.

The plan of this work as follows: in Sect. 2 we have derived
SB field equations with the help of Bianchi type-I I I metric
in the presence of two minimally interacting fields: DM and
THDE components. Section 3 devoted to the cosmological
solution of the field equations. Also, we have constructed
non-interacting and interacting THDE models along with
their physical discussions. In Sect. 4, we presented a compar-
ative analysis of our work with the recent works on THDE
and with the modern observational data. In the last section,
we have summarized our results.

2 Metric and SB field equations

We consider the spatially homogeneous and anisotropic
Bianchi type-I I I space-time described by the following met-
ric

ds2 = dt2 − A2(t)dx2 − B2(t)e−2xdy2 − C2(t)dz2, (4)

where A(t), B(t), and C(t) represent the metric potentials of
the Universe.

The Saez–Ballester field equations for combined matter
and DE are given by

Ri j − 1

2
Rgi j −wφn

(
φ,iφ, j − 1

2
gi jφ,kφ

,k
)

= −(Ti j + T̄i j ),

(5)

and the scalar fields (φ) satisfies the Eq. (2). We have energy
conservation equation as

(Ti j + T̄i j ); j = 0. (6)

Here the energy–momentum tensor for matter (Ti j ) and
THDE (T̄i j ) are given as follows:

Ti j = ρmuiu j

= diag[1, 0, 0, 0]ρm, (7)

T̄i j = (pt + ρt )uiu j − pt gi j

= diag[1,−ωt ,−ωt ,−ωt ]ρt , (8)

it can be parameterized as

T̄i j = diag[1,−ωt ,−ωt ,−(ωt + γ )]ρt , (9)

where ρt , ρm are energy densities of THDE and matter,
respectively and pt is the pressure of THDE. ωt = pt

ρt
is

an equation of state (EoS) parameter. Here γ is the devia-
tion from EoS parameter in z direction, known as skewness
parameter.

The SB field equations for Bianchi type-I I I universe (4)
with the help of Eq. (5) can be written as

B̈

B
+ C̈

C
+ ḂĊ

BC
− w

2
φnφ̇2 = − ωt ρt , (10)

Ä

A
+ C̈

C
+ ȦĊ

AC
− w

2
φnφ̇2 = − ωt ρt , (11)

Ä

A
+ B̈

B
+ Ȧ Ḃ

AB
− 1

A2 − w

2
φnφ̇2 = − (ωt + γ ) ρt , (12)

Ȧ Ḃ

AB
+ ḂĊ

BC
+ ȦĊ

AC
− 1

A2 + w

2
φnφ̇2 = ρm + ρt , (13)

Ȧ

A
− Ḃ

B
= 0, (14)

φ̈ +
(
Ȧ

A
+ Ḃ

B
+ Ċ

C

)
φ̇ + n

2

φ̇2

φ
= 0. (15)

We can write the continuity equation (6) of the matter and
THDE as

ρ̇m + ρ̇t +
(
Ȧ

A
+ Ḃ

B
+ Ċ

C

)
(ρm + (1+ωt )ρt )+γ

Ċ

C
ρt = 0,

(16)

where overhead dot (.) denotes for ordinary differentiation
with respect to t .

3 Solution of field equations and cosmological models

From Eq. (14), we have

A = B. (17)

In view of Eq. (17), the field equations (10)–(15) constitute a
system of four independent equations with six unknowns: A,
C , ρm , ωt , φ and γ . Hence, in order to find the determinate
solution of the non-linear field equations we use the following
plausible physical condition:

The shear scalar (σ 2) is proportional to the scalar expan-
sion (θ ) which leads to a relationship between metric poten-
tials [54]

A = Ck (18)

where k �= 1 is a positive constant which preserves the non-
isotropic behavior of the space-time.

Now from Eqs. (10), (11), (17) and (18), we get

C̈

C
+ 2k

Ċ

C
= 1 − γρtC

(k − 1)Ċ
(19)
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in order to solve this Eq. (19), we use the physically viable
assumption as given below

γ = 1 − (k − 1)γ0Ċ

Cρt
. (20)

where γ0 is an arbitrary constant.
Now from Eqs. (19) and (20), we get the metric potentials

A = B =
( (2k + 1)c1eγ0t

γ0
+ c2(2k + 1)

) k
2k+1

, (21)

&C =
( (2k + 1)c1eγ0t

γ0
+ c2(2k + 1)

) 1
2k+1

, (22)

where c1 and c2 are integration constants. Using the metric
potentials (21) and (22) in metric (4), we can write

ds2 = dt2 −
[ (2k + 1)c1eγ0t

γ0
+ c2(2k + 1)

] 2k
2k+1

×(dx2 + e−2xdy2)

−
[ (2k + 1)c1eγ0t

γ0
+ c2(2k + 1)

] 2
2k+1

dz2. (23)

Equation (23) describes Bianchi type-I I I Tsallis holo-
graphic dark energy cosmological model in Saez–Ballester
scalar–tensor theory of gravitation along with the following
properties:

The energy density of the Tsallis holographic DE is given
by the following relation [42]

ρt = αL2δ−4 (24)

where α is a constant, L can be considered as the size of
the current Universe such as the Hubble scale and the future
event horizon, and δ is a free parameter. It can be seen that
ρt reduces to the energy density of HDE model at δ = 1.

We consider the Hubble horizon as the IR cutoff of the
system L = H−1, where H is the Hubble parameter of the
model. Hence, in SB theory the energy density (24) takes the
form

ρt = αH4−2δ. (25)

For our model, the Hubble parameter (H ) can be obtained as

H = 1

3

(
2
Ȧ

A
+ Ċ

C

)
= c1(2k + 1)eγ0t

3
(( 2k+1

γ0

)
c1eγ0t + c2(2k + 1)

) . (26)

From Eqs. (25) and (26), we get the energy density of the
THDE as

ρt = α

⎡
⎣ c1(2k + 1)eγ0t

3
(( 2k+1

γ0

)
c1eγ0t + c2(2k + 1)

)
⎤
⎦

4−2δ

. (27)

Using Eqs. (21), (22), (26), (27) in (12), we get the energy
density of the matter in terms of Hubble parameter as

ρm = 9k(k + 2)

(2k + 1)2 H
2 −

(c1(2k + 1)eγ0t

3H

) −2k
2k+1

+wφ2
0

2

9H2e−2γ0t

c2
1(2k + 1)2

− αH4−2δ. (28)

Using Eqs. (21) and (22) in (15) and (20) we get the SB scalar
field φ as

φ
n+2

2 = n + 2

2

∫
φ0

((2k + 1

γ0

)
c1e

γ0t+c2(2k+1)
)−1

dt+c4,

(29)

where φ0 and c4 are integration constants.

γ =
1 − (k − 1)c1γ0eγ0t

(( 2k+1
γ0

)
c1eγ0t + c2(2k + 1)

) −1
2k+1

ρt

(( 2k+1
γ0

)
c1eγ0t + c2(2k + 1)

) 2k
2k+1

(30)

In Fig. 1, we have plotted the behavior of skewness
parameter (γ ) versus redshift (z) for the different values of
γ0 = 2.13, 2.23, 2.33. We observe that skewness parameter
is positive throughout evolution of the Universe. It can be
seen that at initial epoch it increases, reaches a maximum
value at present epoch and vanishes at late times. Also, as γ0

increases the skewness parameter value increases. The Figs. 2
and 3 represent the plots of energy density (ρm) of matter and
THDE with the Hubble horizon cutoff against redshift (z) for
the values, respectively. It is observed that both ρm and ρt
are positive and decrease as universe evolves.

In the coming sections, we consider the two cases: Non-
interacting model and interacting model. We determine in
both the cases, energy density of THDE ρt , EoS parameter
ωt , squared sound speed v2

s and ωt −ω
′
t plane by solving the

SB field equations. We also discussed their physical behavior.

3.1 Non-interacting model

Firstly, we consider that there is no energy exchange between
the two components (dark sectors), and hence, the energy
conservation equation (16) leads us to the following separate
conservation equations:

ρ̇m + 3Hρm = 0, (31)

ρ̇t + 3H(1 + ωt )ρt + γ
Ċ

C
ρt = 0. (32)
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Fig. 1 Plot of skewness
parameter (γ ) versus redshift (z)
for c1 = 0.01, c2 = 0.115,
k = 0.325 and α = 0.06

Fig. 2 Plot of energy density
(ρm ) of matter versus redshift
(z) for c1 = 0.01, c2 = 0.115,
k = 0.325, γ0 = 2.13, w = 100,
and φ0 = 1

Fig. 3 Plot of energy density
(ρt ) of THDE versus redshift (z)
for c1 = 0.01, c2 = 0.115,
k = 0.325, γ0 = 2.13, δ = 2.5
and α = 1.5
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Using Eqs. (26), (27) and (30) in Eq. (32), we get the EoS
parameter of THDE as

ωt = −1 + 3(k2 − 1)H2(δ−1)

(2k + 1)2γ0α

− (k + 1)( 3
2k+1 )

4k+1
2k+1

(c1eγ0t )
2k

2k+1

H
2kδ+2δ−4k−3

2k+1

− (4 − 2δ)

3
Ḣ H

+ (c1(2k + 1)eγ0t )
1

2k+1 (3H)
2k

2k+1 − 3(k − 1)c1γ0eγ0t H

c1(2k + 1)2eγ0t
,

(33)

where Ḣ = c1c2(2k+1)2γ0t

3

[
( 2k+1

γ0
)c1eγ0 t+c2(2k+2)

]2 .

Caldwell and Linder [55] have pointed out that the
quintessence phase of DE can be separated into two distinct
regions, i.e., thawing (ω

′
t > 0, ωt < 0) and freezing (ω

′
t < 0,

ωt < 0) regions through ωt −ω
′
t plane. Taking the derivative

of Eq. (33) with respect to ln a, we get

ω
′
t = 6(k2 − 1)

γ0α(2k + 1)2 H
2δ−4 Ḣ −

(4 − 2δ

3

)(
Ḧ + Ḣ2

H

)

−
(( k + 1

c1
2k

2k+1

)( 3

2k + 1

) 4k+1
2k+1

)

×
(2kδ + 2δ − 4k − 3

2k + 1

Ḣ

H
− 2kδ

) e −2kγ0 t
2k+1

2k + 1
H

2kδ+2δ−6k−4
2k+1

+ e−γ0t

c1(2k + 1)2

[
(c1(2k + 1)eγ0t )

1
2k+1 (3)

2k
2k+1

(
(1 − γ0)H

2k
2k+1

+ 2k

2k + 1
H

−1
2k+1 Ḣ

)

−3c1(k − 1)γ0e
γ0t

(
γ0H + Ḣ

) + 3c1γ
2
0 (k − 1)eγ0t H

]
,

(34)

where Ḧ = γ0c1c2(2k+1)3(c2γ0−c1eγ0 t )eγ0 t

3

(
( 2k+1

γ0
)c1eγ0 t+c2(2k+2)

)3 .

The squared sound speed (v2
s ) is used for studying the

stability of the DE models. If v2
s < 0, we obtain a unstable

model and if v2
s > 0, we obtain stable model. For our non-

interacting THDE model v2
s takes the following form

v2
s = −1 + 3(k2 − 1)H2(δ−1)

(2k + 1)2γ0α
− (k + 1)( 3

2k+1 )
4k+1
2k+1

(c1eγ0t )
2k

2k+1

H
2kδ+2δ−4k−3

2k+1

−
(4 − 2δ

3

)
Ḣ H

+ (c1(2k + 1)eγ0t )
1

2k+1 (3H)
2k

2k+1 − 3(k − 1)c1γ0eγ0t H

c1(2k + 1)2eγ0t

+ 1

4 − 2δ

[
6(k2 − 1)

γ0α(2k + 1)2 H
2δ−3 Ḣ −

(4 − 2δ

3

)(
H Ḧ + Ḣ2

)

−
(( k + 1

c1
2k

2k+1

)( 3

2k + 1

) 4k+1
2k+1

)

×
((2kδ + 2δ − 4k − 3

2k + 1

) Ḣ

H
− 2kγ0

)
e

−2kγ0 t
2k+1

2k + 1
H

2kδ+2δ−6k−1
2k+1

+ e−γ0t

c1(2k + 1)2

[
(c1(2k + 1)eγ0t )

1
2k+1 (3)

2k
2k+1

(
(1 − γ0)H

2k
2k+1

+ 2k

2k + 1
H

−1
2k+1 Ḣ

)

− 3c1(k − 1)γ0e
γ0t

(
γ0H + Ḣ

) + 3c1γ
2
0 (k − 1)eγ0t H

]] H

Ḣ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(35)

The behaviour of the EoS parameter (ωt ) versus redshift
(z) for non-interacting THDE model is depicted in the Fig. 4
for different values of γ0. It can be observed that the model
starts from matter dominated era, crosses quintessence and
vacuum DE (CDM) model (ωt = −1) and finally approached
to phantom region (ωt < −1). Also, we observe that as the

Fig. 4 Plot of EoS parameter
(ωt ) versus redshift (z) for
c1 = 0.01, c2 = 0.115,
k = 0.925,
γ0 = 2.13, 2.23, 2.33
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Fig. 5 Plot of ωt versus ω
′
t for

c1 = 0.01, c2 = 0.115,
k = 0.325, γ0 = 2.13, and
α = 1.5

Fig. 6 Plot of energy density of
THDE versus redshift (z) for
c1 = 0.01, c2 = 0.115,
k = 0.325,
γ0 = 2.13, 2.23, 2.33, and
α = 1.5

skewness parameter increases the EoS parameter attains high
phantom values.

The ωt − ω
′
t plane for non-interacting THDE model for

different values of γ0 = 2.13, 2.23, 2.33 is plotted in Fig. 5.
It can be observed that the ωt − ω

′
t plane corresponds to

both thawing and freezing regions for all values of γ0. This
shows that the plane analysis is consistent with the acceler-
ated expansion of the Universe.

We plot squared sound speed (v2
s ) in terms of redshift (z)

as represented in Fig. 6. The squared speed of sound bears
a decreasing behavior but with negative signature which
exhibits unstable behavior of our non-interacting THDE
model.

3.2 Interacting model

In this case, we consider the interaction between two dark
components. Since the nature of both DE and DM is still
unknown, there is no physical argument to exclude the pos-

sible interaction between them. Recently, some observational
data shows that there is an interaction between dark sectors
[56,57]. Abdalla et al. [58,59] have investigated the signa-
ture of interaction between DE and DM by using optical,
X -ray and weak lensing data from the relaxed galaxy clus-
ters. So, it is reasonable to assume the interaction between
DE and DM in cosmology. For this purpose, we can write
the energy conservation equations as

ρ̇m + 3Hρm = Q (36)

ρ̇t + 3H(1 + ωt )ρt + γ
Ċ

C
ρt = −Q, (37)

where the quantity Q denotes interaction between DE com-
ponents. From the Eqs. (36) and (36), we can say that the total
energy is conserved. Since there is no natural information
from fundamental physics on the interaction term Q, one can
only study it to a phenomenological level. Various forms of
interaction term extensively considered in literature include
Q = 3cHρm , Q = 3cHρde and Q = 3cH(ρm +ρde). Here,
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Fig. 7 Plot of EoS parameter
of THDE versus redshift (z) for
c1 = 0.01, c2 = 0.115,
k = 0.325, γ0 = 2.13, α = 1.5,
and β = −0.10,−0.12,−0.14

Fig. 8 Plot of EoS parameter
of THDE versus redshift (z) for
c1 = 0.01, c2 = 0.115,
k = 0.325, γ0 = 2.23, and
α = 1.5,
β = −0.10,−0.12,−0.14

c is a coupling constant and positive c means that DE decays
into DM, while negative c means DM decays into DE. Here
we consider Q = 3βHρt as the interaction term with the
coupling parameter β.

Using Eqs. (26), (27), (30) in (36), we find that the EoS
parameter

ωt = −1 − 3β + 3(k2 − 1)H2(δ−1)

(2k + 1)2γ0α

− (k + 1)( 3
2k+1 )

4k+1
2k+1

(c1eγ0t )
2k

2k+1

H
2kδ+2δ−4k−3

2k+1 − (4 − 2δ)

3
Ḣ H

+ (c1(2k + 1)eγ0t )
1

2k+1 (3H)
2k

2k+1 − 3(k − 1)c1γ0eγ0t H

c1(2k + 1)2eγ0t
.

(38)

Three Figs. 7, 8 and 9 show that the behavior of EoS
parameter for interacting THDE model versus redshift (z)
for different values of γ0 and β. It is observed that for all the
considered values of γ0 and β, the model starts from matter
dominated era, crosses the quintessence phase −1 < ωt <

−0.33 and finally approaches to �CDM model ωt = −1.
Also, we observe that as β increases the EoS parameter of
our model approaches high phantom values.

Taking the derivative of Eq. (38) with respect to lna, we
get
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Fig. 9 Plot of EoS parameter
of THDE versus redshift (z) for
c1 = 0.01, c2 = 0.115,
k = 0.325, γ0 = 2.33,
β = −0.10,−0.12,−0.14, and
α = 1.5

Fig. 10 Plot of for c1 = 0.01,
c2 = 0.115, k = 0.325,
β = −0.10,−0.12,−0.14,
α = 1.5, and γ0 = 2.13

Fig. 11 Plot of for c1 = 0.01,
c2 = 0.115, k = 0.325,
β = −0.10,−0.12,−0.14,
α = 1.5, and γ0 = 2.23
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ω
′
t = 6(k2 − 1)

γ0α(2k + 1)2 H
2δ−4 Ḣ −

(
4 − 2δ

3

)(
Ḧ + Ḣ2

H

)

−
((

k + 1

c1
2k

2k+1

)(
3

2k + 1

) 4k+1
2k+1

)
e

−2kγ0 t
2k+1

2k + 1

×
(

(2kδ + 2δ − 4k − 3)

2k + 1

Ḣ

H
− 2kδ

)
H

2kδ+2δ−6k−4
2k+1

+ e−γ0t

c1(2k + 1)2

[
(c1(2k + 1)eγ0t )

1
2k+1 (3)

2k
2k+1

×
(

(1 − γ0)H
2k

2k+1 + 2k

2k + 1
H

−1
2k+1 Ḣ

)

−3c1(k − 1)γ0e
γ0t (γ0H + Ḣ) + 3c1γ

2
0 (k − 1)eγ0t H

]
,

(39)

The ωt − ω
′
t plane for interacting THDE model for dif-

ferent values of γ0 and β shown in the Figs. 10, 11 and 12.
It can be observed that the plane corresponds to the thawing
phase ω

′
t > 0 and ωt < 0 for all considered values of γ0 and

β.
The squared sound speed v2

s in this case is obtained as

v2
s = − 1 − 3β + 3(k2 − 1)H2(δ−1)

(2k + 1)2γ0α

−
(k + 1)

(
3

2k+1

) 4k+1
2k+1

(c1eγ0t )
2k

2k+1

H
2kδ+2δ−4k−3

2k+1 −
(

4 − 2δ

3

)
Ḣ H

× (c1(2k + 1)eγ0t )
1

2k+1 (3H)
2k

2k+1 − 3(k − 1)c1γ0eγ0t H

c1(2k + 1)2eγ0t

+ 1

(4 − 2δ)

H

Ḣ

[
6(k2 − 1)

γ0α(2k + 1)2 H
2δ−3 Ḣ

−
(

4 − 2δ

3

)(
H Ḧ + Ḣ2

)

−
((

k + 1

c1
2k

2k+1

)(
3

2k + 1

) 4k+1
2k+1

)
e

−2kγ0 t
2k+1

2k + 1
H

2kδ+2δ−6k−1
2k+1

×
((

2kδ + 2δ − 4k − 3

2k + 1

)
Ḣ

H
− 2kγ0

)

+ e−γ0t

c1(2k + 1)2

[
(c1(2k + 1)eγ0t )

1
2k+1 (3)

2k
2k+1

×
(

(1 − γ0)H
2k

2k+1 + 2k

2k + 1
H

−1
2k+1 Ḣ

)

− 3c1(k − 1)γ0e
γ0t

(
γ0H + Ḣ

) + 3c1γ
2
0 (k − 1)eγ0t H

]]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(40)

We plot the squared sound speed in terms of redshift (z)
as represented in Figs. 13, 14, and 15. The squared speed
of sound is negative and decreasing function as Universe
evolves. This shows that our model is unstable.

Deceleration parameter (DP)

The sign of DP (q) shows whether the model either acceler-
ates or decelerates. If q > 0, the model exhibits decelerating
expansion, if q = 0 a constant rate of expansion and an accel-
erating expansion if −1 < q < 0. The Universe exhibits
exponential expansion or de Sitter expansion for q = −1
and super exponential expansion for q < −1. The DP for
our model, in both (non-interacting and interacting) cases, is
given by

q = −aä

ȧ2 = −1 − 3c2γ0t

c1eγ0t
(41)

The plot of deceleration parameter versus redshift (z) is
shown in the Fig. 16. It indicates that q exhibits negative
behavior throughout evolution and finally approaches to −1,
which shows accelerating behavior. Also, it can be observed
that initially our models exhibit super exponential expansion
(q < −1) and late times it approaches to exponential expan-
sion (q = −1).

Statefinder parameters (r, s)

Sahni et al. [60] and Alam et al. [61] proposed a new geomet-
rical diagnostic pair named the statefinder pair (r, s), where r
is generated from the average scale factor (a) and its deriva-
tives with respect to the cosmic time t up to the third order
and s is a simple combination of r and this (r, s) is defined
as follows:

r =
...
a

aH3 ; s = r − 1

3(q − 1
2 )

(42)

r = 9

c2
1(2k + 1)2

[
γ 2

0 e
−2γ0t

((
2k + 1

γ0

)
c1e

γ0t + c2(2k + 1)

)2

−2(2k + 3)γ0

3

eγ0t
((

2k + 1

γ0

)
c1e

γ0t + c2(2k + 1)

)
− 2c2

1(2k + 1)

3

]

(43)
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Fig. 12 Plot of energy density
of THDE versus redshift (z) for
c1 = 0.01, c2 = 0.115,
k = 0.325,
β = −0.10,−0.12,−0.14,
α = 1.5, and γ0 = 2.33

Fig. 13 Plot of squared sound
speed (v2

s ) versus redshift (z)
for c1 = 0.01, c2 = 0.115,
k = 0.325,
γ0 = 2.13, 2.23, 2.33, α = 1.5,
and β = −0.10

Fig. 14 Plot of squared sound
speed (v2

s ) versus redshift (z)
for c1 = 0.01, c2 = 0.115,
k = 0.325,
γ0 = 2.13, 2.23, 2.33, α = 1.5,
and β = −0.12
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Fig. 15 Plot of squared sound
speed (v2

s ) versus redshift (z)
for c1 = 0.01, c2 = 0.115,
k = 0.325,
γ0 = 2.13, 2.23, 2.33, α = 1.5,
and β = −0.14

Fig. 16 Plot of Deceleration
parameter (q) versus redshift (z)
for c1 = 0.01, c2 = 0.115,
k = 0.325, γ0 = 2.13

Fig. 17 Plot of statefinder
parameter (r, s) for c1 = 0.01,
c2 = 0.115, k = 0.325,
γ0 = 2.13
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and

s =
{
γ 2

0 e
−2γ0t

((
2k + 1

γ0

)
c1e

γ0t + c2(2k + 1)

)2

−2(2k + 3)γ0

3
eγ0t

((
2k + 1

γ0

)
c1e

γ0t + c2(2k + 1)

)

−2c2
1(2k + 1)

3
− c2

1(2k + 1)

9

}{[
1

2

− γ0

c1(2k + 1)
e−γ0t

((
2k + 1

γ0

)
c1e

γ0 + c2(2k + 1)

)

−c2(2k + 1)eγ0t
]
c2

1(2k + 1)2
}−1

(44)

In Fig. 17, we have plotted the trajectories of the r − s
plane. It can be observed that the region belongs to s > 0
and r < 1. Hence our model corresponds to the DE regions
such as quintessence and phantom.

Om diagnostic:

Sahni et al. [62] has been proposed Om-diagnostic param-
eter as a complementary to the statefinder parameter, which
helps to distinguish the present matter density contrast Om
in different models more effectively. This is also a geometri-
cal diagnostic that explicitly depends on redshift (z) and the
Hubble parameter (H ). It is defined as follows:

Om(z) =
H2(z)
H2

0
− 1

(1 + z)3 − 1
, (45)

here H0 is the present value of the Hubble parameter.
We have plotted the evolution of Om(z) in the Fig. 18.

It can be observed that initially the slope of Om(z) is neg-
ative and finally it approaches to positive value. Hence, our
models initially behave like quintessence model and finally
approaches to phantom region. We can conclude that the
behavior of Om-diagnostic parameter coincides with the
behavior of EoS parameter.

4 Discussion and comparison

In this section, we present a comparative analysis of our work
with the recent works on THDE and with the modern obser-
vational data.

Ghaffari et al. [63] have studied FRW THDE model in
Brans–Dicke cosmology. They found that in both interact-
ing and non-interacting THDE models, the EoS parame-
ter approaches to the cosmological constant in future. The
models are not stable. Zadeh et al. [43] have studied FRW
THDE by assuming various infrared cutoffs. It is observed
that the EoS parameter of interacting and non-interacting

THDE models exhibit phantom DE behavior for all the IR
cutoffs. Also, they are unstable. Aditya et al. [46] have
discussed observational constraints on THDE in Brans–
Dicke scalar–tensor theory with logarithmic scalar field.
They have investigated an EoS parameter starts from mat-
ter dominated era, then goes towards quintessence region,
and finally, approaches to vacuum DE era in non-interacting
case, while in interacting case, the EoS parameter starts from
quintessence region and turns towards phantom region by
crossing phantom divide line. Ghaffari et al. [64] have inves-
tigated THDE in fractal Universe. They have discussed an
EoS parameter in non-interacting case, THDE model in the
fractal universe emulates the cosmological constant while in
interacting case, THDE model can cross the phantom divide
line at the late time. Sharif and Saba [47] have discussed
THDE models in f (G, T ) gravity. They have concluded that
the EoS parameter indicates phantom phase while the decel-
eration parameter demonstrates accelerated cosmic epoch for
both conserved as well as non-conserved energy–momentum
tensor. Dubey et al. [53,65] have studied Bianchi type-I and
I I I THDE models. In both the models, the EoS parame-
ter approaches to �CDM model in future. Dubey et al. [52]
have discussed THDE models with Hubble horizon as IR
cutoff in axially symmetric space-time. They have obtained
an EoS parameter which varies quintessence region, crosses
the phantom divide line.

In our Bianchi type-I I I THDE models, the study of EoS
parameter reveals that the model starts from matter domi-
nated era, varies in quintessence phase and finally approaches
phantom region in non-interacting case. In interacting case,
the model starts from matter dominated era and finally
approaches to �CDM model at late times. It can be observed
that the behavior of EoS parameter in our models is coincide
with the models given in the literature mentioned above. The
stability analysis also coincides with the existing THDE mod-
els. The behavior of deceleration parameter coincides with
the THDE model obtained by Sharif and Saba [47].

Also, it is worthwhile to mention here that the present
values of EoS parameter of our DE models are in agreement
with the modern Plank observational data given by Aghanim
et al. [66]. It gives the constraints on EoS parameter of dark
energy as follows:

ωt = −1.56+0.60
−0.48(Planck + T T + lowE)

ωt = −1.58+0.52
−0.41(Planck + T T, EE + lowE)

ωt = −1.57+0.50
−0.40

(Planck + T T, T E, EE + lowE + lensing)

ωt = −1.04+0.10
−0.10

(Planck + T T, T E, EE + lowE + lensing + BAO)

It can be observed from the Figs. 4, and (7, 8, 9) that the
EoS parameter of our models in both non-interacting and
interacting cases lie within the above observational limits
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Fig. 18 Plot of Om versus
redshift (z) for c1 = 0.01,
c2 = 0.115, k = 0.325,
γ0 = 2.13, and H0 = 1

which shows the consistency of our results with the above
cosmological data.

5 Conclusions

The current scenario of accelerated expansion of the uni-
verse has become an important subject of investigation. In
order to explain this cosmic acceleration, two approaches
have been suggested. One way is to study various dynamical
DE models and the other is to consider alternative theories of
gravity. Here, we have studied the accelerated expansion by
assuming the THDE in Bianchi type-I I I universe within the
framework of SB scalar–tensor theory of gravity. Using the
relation between the metric potentials, we have obtained the
solution of SB field equations which leads to a varying DP.
We have considered interacting and non-interacting models
of matter and THDE. We have also constructed different cos-
mological parameters to analyze the viability of these models
and our conclusions are the following:

• For models, we observe that skewness parameter is pos-
itive throughout evolution of the Universe. It can be
seen (Fig. 1) that at initial epoch it increases, reaches
a maximum value at present epoch and vanishes at late
times. Also, as γ0 increases the skewness parameter value
increases. Skewness parameter increases with increase in
the parameter φ. It is observed from Figs. 2 and 3 both
ρm and ρt are positive and decrease as universe evolves.

• It can be observed that the EoS parameter of non-
interacting THDE model starts from matter dominated
era, varies in quintessence era and finally approaches
to phantom region(ωt < −1) by crossing vacuum DE
(ωt = −1) for γ0 = 2.13, γ0 = 2.23, γ0 = 2.33. Also,

we observe that as the skewness parameter increases the
EoS parameter of our model attains maximum phantom
value. The EoS parameter of interacting THDE model
starts from matter dominated era, varies in quintessence
phase and finally approaches to �CDM model (ref.
Figs. 7, 8, 9) for all the the values of γ0 = 2.13, 2.23, 2.33
and β = −0.10,−0.12,−0.14. Finally, we observed that
the EoS parameter of our models coincide with the exist-
ing THDE literature and the present values of EoS param-
eter lie within the modern Planck observational data.

• It can be observed that the ωt − ω
′
t plane corresponds

to both thawing and freezing regions for all values of γ0

in non-interacting case, whereas in interacting case the
model varies in thawing region only. However, the trajec-
tories of ωt − ω

′
t plane shows consistent results with the

observational data and can be considered as viable THDE
models. It is observed that our both non-interacting and
interacting THDE models are unstable (ref. Figs. 6, 13,
14, 15).

• The deceleration parameter, statefinder and Om-diagnostic
parameters are same for both non-interacting and inter-
acting models. It can be observed that deceleration
parameter exhibits negative behavior throughout evolu-
tion and finally approaches to −1, which shows accel-
erating behavior (ref. Fig. 16). Also, we observed that
initially our models exhibit super exponential expansion
(q < −1) and at late times it approaches to exponen-
tial expansion. This behavior coincides with the THDE
model obtained by Sharif and Saba [47]. Statefinder anal-
ysis gives that our THDE model corresponds to the DE
regions such as quintessence and phantom (ref. Fig. 17).
We observe that the slope of Om(z) is negative, hence
our models behave like quintessence model (ref. Fig. 18).
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