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Abstract We study the T T̄ deformation of the chiral
bosons and show the equivalence between the chiral bosons
of opposite chiralities and the scalar fields at the Hamiltonian
level under the deformation. We also derive the deformed
Lagrangian of more generic theories which contain an arbi-
trary number of chiral bosons to all orders. By using these
results, we derive the T T̄ deformed boundary action of the
AdS3 gravity theory in the Chern–Simons formulation. We
compute the deformed one-loop torus partition function,
which satisfies the T T̄ flow equation up to the one-loop order.
Finally, we calculate the deformed stress–energy tensor of a
solution describing a BTZ black hole in the boundary the-
ory, which coincides with the boundary stress–energy tensor
derived from the BTZ black hole with a finite cutoff.

1 Introduction

The deformation by the T T̄ operator [1] has drawn much
attention, because of its solvability and the relation with
gravity theory. Although the T T̄ deformation is an irrelevant
deformation, it is possible to derive the deformed Lagrangian,
finite size spectrum and the S-matrix from the ones of the
original theory [2–4], which does not require the integrabil-
ity in many cases. Based on the finite size spectrum, one
could compute the torus partition function of the T T̄ defor-
mation [5–7], which is still modular invariant but not confor-
mal invariant. The T T̄ deformation is related to the gravity
theory in several aspects. On the one hand, the deformed
theory can be interpreted as the original theory coupled to
a topological gravity [5,8,9]. More concretely, one finds a
one-to-one map between the equations of motion (EOM)
in the deformed theories and those of the original theories
[10,11], which enables one to derive the all-order deformed
Lagrangians [12]. On the other hand, the two-dimensional
T T̄ deformed holographic CFT is proposed to correspond
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to the gravity theory with a finite cutoff under the Dirich-
let boundary condition, where the cutoff is explicitly related
to the deformation parameter [13]. More discussions on the
holography under the T T̄ deformation can be found in [14–
20]. See also [21] for an interesting review and related top-
ics.

The T T̄ deformation of the two-dimensional scalar theory
has been well studied. In particular, the all-order deformed
action of the N massless free bosons has the form of
the Nambu–Goto action in the static gauge of N + 2-
dimension [4]. The deformation of a scalar with an arbi-
trary potential was shown in [4,22] and more examples
of Lagrangians of T T̄ deformed theories was presented in
[23]. In this paper, we study the chiral bosons, which are
interesting in many aspects such as string theory and con-
densed matter. Even though the chiral bosons are not man-
ifestly Lorentz invariant, the sum of a left and a right chi-
ral bosons reproduces the scalar theory [24,25]. The T T̄
deformed action of a general system of chiral bosons, scalars
and fermions was studied in [26], where the first-order
action for chiral bosons and canonical stress–energy ten-
sor were used. We are interested here in the Floreanini–
Jackiw action [27] and the covariant stress–energy ten-
sor.

A remarkable connection between chiral Wess–Zumino–
Witten (WZW) models and Chern–Simons theories was
established in [28–30]. In particular, the AdS3 Einstein grav-
ity theory can be reformulated as a SL(2,R) × SL(2,R)

Chern–Simons theory [31]. Much attention has been paid
to the exact boundary action [32–35], due to its connec-
tion with two-dimensional conformal field theory [36]. The
AdS3 Chern–Simons action can be reduced to two chi-
ral SL(2,R) Wess–Zumino–Witten (WZW) models on the
boundary, and the AdS3 boundary condition implements cer-
tain constraints on the chiral WZW model [32]. In [35], the
exact boundary action was shown to be a quantum field theory
of reparametrizations, which analogous to the Schwarzian
action of the nearly AdS2 gravity. Moreover, the torus parti-
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tion is one-loop exact and shows a shift in the central charge
of 13. The present work aims to study the T T̄ deformation of
the boundary action. We derive the T T̄ deformed Lagrangian
of generic chiral boson theories by explicitly solving the flow
equation. Then we focus on the T T̄ deformed action of the
constrained chiral WZW model associated with the AdS3

Chern–Simons theory. We will see how the exact bound-
ary action and the one-loop torus partition function change
under the T T̄ deformation. We also calculate the deformed
stress–energy tensor of the boundary theory for the BTZ
black hole, and compare it with the boundary stress–energy
tensor derived from the BTZ black hole with a finite cutoff.
Our results provide a concrete realization of the T T̄ defor-
mation on the boundary of the Chern–Simons AdS3 gravity
and may shed light on the holography dual of the deforma-
tion.

This paper is organized as follows. In Sect. 2, we present
the T T̄ deformed Lagrangian of chiral boson theories. We
show the equivalence between the sum of two chiral bosons
of opposite chiralities and a massless free non-chiral scalar
under theT T̄ deformation at the Hamiltonian level. In Sect. 3,
we review the relation between the AdS3 Chern–Simons the-
ory and the sum of two constrained SL(2,R) chiral WZW
model of opposite chiralities, and derive the corresponding
deformed Lagrangian. We then compute the one-loop torus
T T̄ deformed partition function, which is found to satisfy
the flow equations of T T̄ deformation in all-order of defor-
mation parameter up to one-loop level. We also compute the
deformed stress–energy tensor for a solution describing a
BTZ black hole in the deformed field theory and compare
it with the boundary stress–energy tensor of the BTZ black
hole at a finite cutoff. Section 4 is devoted to conclusions
and discussions. In Appendix A, we consider the J J̄ and
T J̄ deformation of the chiral bosons. In Appendix B, we
study the solutions to the EOMs of T T̄ deformed WZW
models.

2 T T̄ deformed Lagrangian of chiral bosons

In this section, we will study the T T̄ deformation of chiral
bosons. The Floreanini–Jackiw action [27] of a left-moving
chiral boson is

Sleft =
∫

d2x
1

2
(∂tφ∂θφ − ∂θφ∂θφ). (1)

As a warm-up, we will first consider the simple case of two
chiral bosons of opposite chiralities and solve the flow equa-
tion induced by the T T̄ deformation. More complicated the-
ories of chiral bosons will also be considered, which will be
useful in the study of the AdS3 Chern–Simons theory.

2.1 Two chiral bosons of opposite chiralities

Let us begin with the undeformed Lagrangian of a left and a
right chiral boson

S0 =
∫

d2xL0, (2)

L0 = − 1

2

(
−∂tφ∂θφ + E+

t

E+
θ

∂θφ∂θφ + ∂t φ̄∂θ φ̄

− E−
t

E−
θ

∂θ φ̄∂θ φ̄

)
, (3)

where Ea is the zweibein and the metric is gμν = E+
μ E−

ν +
E−

μ E+
ν . We couple the zweibein to the fields such that the

undeformed action is invariant under the transformation

δφ = εθ+∂θφ,

δφ̄ = εθ−∂θ φ̄,

δE+
μ = εθ+∂θ E

+
μ + E+

θ ∂μεθ+.

δE−
μ = εθ−∂θ E

−
μ + E−

θ ∂μεθ−,

(4)

where εθ± are coordinate dependent transformation param-
eters. The translation symmetry generated by constant εθ±
enables us to define the stress–energy tensor as

Tμ
ν = − 1

det E

δS

δE A
μ

E A
ν . (5)

In this paper we focus on T T̄ deformation in flat spacetime,
so E A

μ can be set to be constants after deriving the stress–
energy tensor. When E A

μ are constants the conserved law can
be written as ∂μT

μ
ν = 0.

The T T̄ deformation of a two-dimensional field theory is
induced by the T T̄ operator which is defined as minus the
determinant of the stress–energy tensor. Concretely, the T T̄
deformed Lagrangian Lλ is the solution to the flow equation

∂Lλ

∂λ
= det E det Tλ, (6)

with the initial condition (3). Here λ is the deformation
parameter and Tλ is the deformed stress–energy tensor of
the deformed theory. We can solve the equation by making a
perturbative expansion in small λ and then guessing the exact
solution. Skipping the boring details, the solution is given by

Lλ = 1

2
(∂tφ∂θφ − ∂t φ̄∂θ φ̄)

− (E−
θ E+

t + E−
t E+

θ )(∂θφ∂θφ − ∂θ φ̄∂θ φ̄)

4E+
θ E−

θ

+det E

2λ
(S − 1), (7)
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with

S =
√

1 − (∂θφ∂θφ + ∂θ φ̄∂θ φ̄)

E−
θ E+

θ

λ + (∂θφ∂θφ − ∂θ φ̄∂θ φ̄)2

4E−
θ

2E+
θ

2
λ2.

(8)

The deformed theory still has the conservation laws ∂μ(Tμ
ν )λ =

0, which corresponds to the symmetries

δφ = ε1∂θφ + ε0∂θφ
2E+

θ E−
θ − λ(∂θφ∂θφ − ∂θ φ̄∂θ φ̄)

2E+
θ E−

θ S ,

(9)

δφ̄ = ε1∂θ φ̄ − ε0∂θ φ̄
2E+

θ E−
θ + λ(∂θφ∂θφ − ∂θ φ̄∂θ φ̄)

2E+
θ E−

θ S ,

(10)

where εi are constant parameters. We also consider the J J̄
andT J̄ deformation and the results are shown in Appendix A.

2.2 Equivalence to the T T̄ deformation of a non-chiral free
scalar

In the undeformed theory, the sum of a left moving chiral
boson and a right moving chiral boson is equivalent to a free
massless scalar [24,37]. We now show that the equivalence
still holds under T T̄ deformation.

We now restrict our attention to flat spacetime so we can
set E+

t = E+
θ = E−

θ = −E−
t = 1/

√
2 after solving the flow

equation. Therefore the Lagrangian (7) becomes

Lλ = 1

2
(∂tφ∂θφ − ∂t φ̄∂θ φ̄) + 1

2λ
(S − 1), (11)

with

S =
√

1 − 2(∂θφ∂θφ + ∂θ φ̄∂θ φ̄)λ + (∂θφ∂θφ − ∂θ φ̄∂θ φ̄)2λ2,

(12)

The stress–energy tensor of the deformed theory becomes

(Tλ)
μ
ν =

(
1−S
2λ

(∂θφ∂θφ−∂θ φ̄∂θ φ̄)
2

− (∂θ φ∂θφ−∂θ φ̄∂θ φ̄)
2

S−1
2λS + (∂θ φ∂θφ−∂θ φ̄∂θ φ̄)2λ

2S

)
,

(13)

from which we obtain the corresponding energy and momen-
tum

Hλ =
∫

dθ
1

2λ

(
1

−
√

1 − 2(∂θφ∂θφ + ∂θ φ̄∂θ φ̄)λ + (∂θφ∂θφ − ∂θ φ̄∂θ φ̄)2λ2
)

,

(14)

Pλ =
∫

dθ
1

2
(∂θφ∂θφ − ∂θ φ̄∂θ φ̄). (15)

The Hamiltonian density of the system can be written as

H = 1

2λ

(
1 −

√
1 − 8(π2 + π̄2)λ + 16(π2 − π̄2)2λ2

)
,

(16)

where π = 1
2∂θφ and π̄ = − 1

2∂θ φ̄ are the canonical
momenta of the fields.

Let us turn to the T T̄ deformed free massless non-chiral
scalar. The Lagrangian is given by [4]

Lscalar
λ = 1

2λ

(√
1 + 2λ(∂tϕ∂tϕ − ∂θϕ∂θϕ) − 1

)
. (17)

The associated Hamiltonian density is

Hscalar
λ = 1

2λ

(
1 −

√
(1 − 2λ∂θϕ2)(1 − 2λπ2

ϕ)
)
, (18)

where the canonical moment of ϕ is defined as

πϕ = ∂tϕ√
1 + 2λ(∂tϕ∂tϕ − ∂θϕ∂θϕ)

. (19)

One can check that the Hamiltonian densities (16) and (18)
are equivalent via the relation

ϕ = 1√
2
(φ + φ̄), πϕ = √

2(π + π̄). (20)

The T T̄ deformed Lorentz invariant free massless scalar
is related to the undeformed model via a field dependent
coordinate transformation [10,11]. To obtain a solution to
the deformed theory, one can start with a solution

ϕ(t̃, θ̃ ) = f (x̃+) + g(x̃−), (21)

where x̃± = θ̃ ± t̃ , to the equation of motion of the unde-
formed model

(∂2
t̃ − ∂2

θ̃
)ϕ = 0. (22)

Then one need to solve the equations

t = t̃ + λ

2

(
G(x̃−) − F(x̃+)

)
,

θ = θ̃ + λ

2

(
G(x̃−) + F(x̃+)

)
, (23)

to express x̃± in terms of t and θ , where the derivatives of
F and G are the components of stress–energy tensor in the
specific classical solution

F ′(x) = 2 f ′(x) f ′(x), G ′(x) = 2g′(x)g′(x). (24)

A solution to the equation of motion of the deformed model
is then given by

ϕ(t, θ) = f
(
x̃+(t, θ)

) + g
(
x̃−(t, θ)

)
. (25)
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Let us return to the chiral boson model. Though we have
not found a coordinate transformation which maps the equa-
tions of motion of the model (11) directly to those of the
undeformed model, one can check that

φ(t, θ) = h(t) + √
2 f (x̃+(t, θ)),

φ̄(t, θ) = h̄(t) + √
2g(x̃−(t, θ)), (26)

is a solution to the equations of motion. Here t, θ are still
related to x̃± by (23). h(t) and h̄(t) are arbitrary functions of
t . We show this in a more general case in Appendix B. The
energy and momentum corresponding to the solution (26) are

Hλ =
∫

dθ
f ′(x̃+)2 − g′(x̃−)2 − 4λ f ′(x̃+)2g′(x̃−)2

1 − 4λ2 f ′(x̃+)2g′(x̃−)2 ,

(27)

Pλ =
∫

dθ
f ′(x̃+)2 − g′(x̃−)2

1 − 4λ2 f ′(x̃+)2g′(x̃−)2 . (28)

We now put the deformed model on a circle of length L .
Then the fields should be periodic in coordinate θ . We take
periodicities of f and g to be L and consider the solutions
with the following form

ϕ = f (n(λ)x̃+(t, θ)) + g(m(λ)x̃−(t, θ)), (29)

where we introduce n(λ) and m(λ) such that the periodicity
of ϕ is L in coordinate θ . It is not difficult to show that

t̃(t, L) − t̃(t, 0) = λPλ, x̃(t, L) − x̃(t, 0) = −λHλ. (30)

Then we have

n(λ) = L

L − λ(Hλ − Pλ)
, m(λ) = L

L − λ(Hλ + Pλ)
.

(31)

Using Eqs. (23) and F(L)−F(0) = H0+P0,G(L)−G(0) =
H0 − P0, we get

− H0L + HλL ± P0L ∓ PλL − λH2
λ + λP2

λ = 0. (32)

Finally we get

Hλ =
L −

√
L2 − 4H0Lλ + 4P2

0 λ2

2λ
, Pλ = P0, (33)

which is a classical version of the general quantum spec-
trum in [3,4]. The significance of the sign of the deformation
parameter λ is well-known in the literature. When λ > 0, the
deformed energy can become complex if H0 is large. This
regime of λ is related to holography. For λ < 0 the deformed
energy spectrum is real and there are Hagedorn growth of
density of states [38].

2.3 General theory of chiral bosons

To solve the flow equation, the field contents and details of the
potentials are not important. We can study the T T̄ deformed
Lagrangian of more general model of chiral bosons with the
initial translational invariant Lagrangian

L0 = C − E+
t

2E+
θ

K+ + E−
t

2E−
θ

K− + E+
θ V+

+E−
θ V− + E+

t W+ + E−
t W−, (34)

where K±, W± and V± are the functions of the fields. We
require that the equations of motion are consistent with the
conservation of the stress–energy tensor defined by (5). We
can again solve the flow equation (6) using a perturbative
approach. The all-order solution can be written as

Lλ = C + Ẽ−
θ Ẽ+

t + Ẽ−
t Ẽ+

θ

4Ẽ+
θ Ẽ−

θ

(K− − K+)

+ 1

2λ

(
E+

θ E−
θ

Ẽ+
θ Ẽ−

θ

det ẼS + det Ẽ − 2 det E

)
, (35)

with

Ẽ±
t = E±

t ∓ λV∓, Ẽ±
θ = E±

θ ∓ λW∓, (36)

S =
√

4Ẽ+2
θ Ẽ−2

θ − 4(K− + K+)Ẽ+
θ Ẽ−

θ λ + (K− − K+)2λ2

4E+
θ E−

θ

.

(37)

As a particular example, we consider a generalized chiral
bosons theory

L0 = 1

2

(
Ftθ − E+

t

E+
θ

Fθθ − F̄tθ + E−
t

E−
θ

F̄θθ

)

− E+
θ V (φ) − E−

θ V̄ (φ̄), (38)

Fμν = GI J (φ)∂μφI ∂νφJ , I, J = 1, 2, . . . , N , (39)

F̄μν = Ḡ Ī J̄ (φ̄)∂μφ̄ Ī ∂νφ̄ J̄ , Ī , J̄ = 1, 2, . . . , N̄ , (40)

where G and Ḡ are non-degenerate matrices. The T T̄ defor-
mation of the chiral boson theory (38) is therefore

Lλ = 1

2
(Ftθ − F̄tθ ) − E−

θ V̄ − E+
θ V

− (E−
θ E+

t + E−
t E+

θ + λ(E+
θ V − E−

θ V̄ ))(Fθθ − F̄θθ )

4E+
θ E−

θ

+ det E − λ(E−
θ V̄ + E+

θ V )

2λ
(S − 1), (41)

with

S =
√

1 − (Fθθ + F̄θθ )

E−
θ E+

θ

λ + (Fθθ − F̄θθ )2

4E−
θ

2E+
θ

2
λ2. (42)
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One can also add an arbitrary number of Weyl–Majorana
fermions to the theory (38). The undeformed Lagrangian is

L0 = 1

2

(
Ftθ − E+

t

E+
θ

Fθθ − F̄tθ + E−
t

E−
θ

F̄θθ

)

− E+
θ V (φ) − E−

θ V̄ (φ̄)

+ BMNψM (E+
t ∂θ − E+

θ ∂t )ψ
N

− B̄MN ψ̄M (E−
t ∂θ − E−

θ ∂t )ψ̄
N ,

(43)

where ψ and ψ̄ are Weyl–Majorana left and right fermions
respectively. The deformed theory is then given by (41) with

C = 1

2

(
Ftθ − F̄tθ

)
, K+ = Fθθ , K− = F̄θθ ,

V+ = V (φ) + BMNψM∂tψ
N ,

V− = V̄ (φ) − B̄MN ψ̄M∂t ψ̄
N ,

W+ = BMNψM∂θψ
N , W− = −B̄MN ψ̄M∂θ ψ̄

N .

(44)

This action differs from the one obtained in [26] using the
canonical stress–energy tensor. It was argued in [26] that
there should be a field redefinition which would make the
T T̄ deformed action driven by the canonical stress–energy
tensor coincide with the one driven by the covariant stress–
energy tensor. It would be interesting to find such a field
redefinition explicitly.

3 T T̄ deformation and Chern–Simons gravity

The three-dimensional Einstein gravity theory with a nega-
tive cosmological constant can be reformulated as a Chern–
Simons action with a gauge group SL(2,R)×SL(2,R) [31].
It was shown in [32] that the Chern–Simons action is equiv-
alent to two copies of constrained SL(2,R) chiral WZW
models of opposite chiralities on the boundary, which can
be combined into a non-chiral Liouville field theory. The
chiral description is more convenient to deal with the zero
modes and leads to geometric actions associated with coad-
joint orbits of the Virasoro group [34,35]. In this section, we
will focus on the T T̄ deformed action of the constrained chi-
ral WZW model. Since the original Lagrangian is a special
case of (38), we can get the all-order T T̄ deformation of the
boundary action using the results in the previous section.1

3.1 AdS3 Chern–Simons theory

Let us recall the connection between AdS3 gravity and the
chiral WZW model derived in [32]. The AdS3 Einstein grav-

1 See also [39] for the T T̄ -deformation of the classical Liouville field
theory.

ity with metric

ds2 = −(r2 + 1)dt2 + r2dθ2 + dr2

r2 + 1
, (45)

can be reformulated as the Chern–Simons action [35]

S = S[A] − S[ Ā] + Sbdy,

S[A] = − k

2π

∫
M

dt ∧ Tr
(

− 1

2
Ã ∧ ˙̃A + A0 F̃

)
,

Sbdy = − k

4π

∫
∂M

dx2
( E+

t

E+
θ

Tr(A2
θ ) − E+

t

E+
θ

Tr( Ā2
θ )

)
,

(46)

where k = 1
4G and we couple the boundary terms to the

boundary zweibein Ea . We will take E+
t = E+

θ = E−
θ =

−E−
t = 1/

√
2. The gauge fields A and Ā are expressed by

using the SL(2) generators and related with the bulk dreibein
ea and the bulk spin connection ω

A − Ā = 2e, A + Ā = 2ω. (47)

In this action, A = A0dt+ Ãi dxi and Ā = Ā0dt+ ˜̄Aidxi are
separated into the temporal and spatial parts. The boundary
conditions of the gauge fields are fixed to be A− = At−Aθ =
0 and Ā− = Āt + Āθ = 0, which are chosen to match the
asymptotics of the AdS3 geometry

A =
( 1

2 + dr
2r + O(r−2) O(r−1)√

2r E+dx+ + O(r−1) − 1
2 − dr

2r + O(r−2)

)
,

Ā =
( 1

2 − dr
2r + O(r−2) −√

2r E−dx− + O(r−1)

O(r−1) − 1
2 + dr

2r + O(r−2)

)
,

(48)

where  is the boundary spin connection. For simplicity, we
consider  = 0 in this paper. The boundary term Sbdy is
necessary for a consistency variation principle.

Since the spatial field strength F̃ is flat, one can parametrize

the Ã and ˜̄A as

Ã = g−1d̃g, ˜̄A = ḡ−1d̃ ḡ, (49)

where d̃ is the spatial exterior derivative. g and ḡ are elements
of SL(2) and can be written in the Gauss parameterization:

g =
(

1 0
F 1

)(
eϕ 0
0 e−ϕ

)(
1 �

0 1

)
,

ḡ =
(

1 −F̄
0 1

) (
e−ϕ̄ 0

0 eϕ̄

) (
1 0

−�̄ 1

)
.

(50)

The gauge fields can be written as

123
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Ã = g−1dg =
(

A3 A−
A+ −A3

)

=
(−e2ϕ�dF + dϕ −e2ϕ�2dF + 2�dϕ + d�

e2ϕdF e2ϕ�dF − dϕ

)
,

˜̄A = ḡ−1dḡ =
(

Ā3 Ā−
Ā+ − Ā3

)

=
(

e2ϕ̄�̄d F̄ − dϕ̄ −e2ϕ̄d F̄
e2ϕ̄�̄2d F̄ − 2�̄dϕ̄ − d�̄ −e2ϕ̄�̄d F̄ + dϕ̄

)
.

(51)

The action (46) thus can be evaluated as

S = k

π

∫
∂M

d2xLWZW
0 , (52)

where LWZW
0 has the form of Eq. (38) with E+

t = E+
θ =

E−
θ = −E−

t = 1/
√

2 and

Ftθ = ∂tϕ∂θϕ + e2ϕ∂θ F∂t�,

F̄tθ = ∂t ϕ̄∂θ ϕ̄ + e2ϕ̄∂θ F̄∂t �̄,

Fθθ = A3
θ A

3
θ + A+

θ A−
θ ,

F̄θθ = Ā3
θ Ā

3
θ + Ā+

θ Ā−
θ , V = V̄ = 0.

(53)

The fields in the expression of g and ḡ are not independent.
The boundary condition (3.1) imposes the constrains

A3
θ = Ā3

θ = 0, A+
θ − √

2E+
θ r = 0, Ā−

θ + √
2E−

θ r = 0

(54)

on the AdS boundary. The constrains can be expressed as

eϕ =
√

r

∂θ F
, � = − ∂2

θ F

2r∂θ F
,

eϕ̄ =
√

r

∂θ F̄
, �̄ = − ∂2

θ F̄

2r∂θ F̄
.

(55)

By using the conditions (55), we could express the action S
in terms of F and F̄ , which we parameterize as

F = tan
φ

2
, F̄ = tan

φ̄

2
. (56)

where φ and φ̄ are elements of Diff(S1)/PSL(2,R) and we
get two copies of the Alekseev–Shatashvili quantization of
coadjoint orbit Diff(S1)/PSL(2,R) of the Virasoro group
[40]. If we parameterize F and F̄ as

F = tan
αφ

2
, F̄ = tan

αφ̄

2
, (57)

with α �= n, n ∈ Z, we get the orbit Diff(S1)/U (1). See [41]
for further discussion.

3.2 T T̄ deformation of the boundary action

With the solution (41) to the flow equation induced by the T T̄
deformation at hand, we are now ready to get the all-order T T̄
deformation of the boundary action. Simply plugging (53)
into (41), we obtain a T T̄ deformed WZW model denoted
by LWZW

λ .2 However, the action (52) is constrained. It is
a non-trivial question whether the constrains are deformed
by the T T̄ . To treat the constraints carefully, we introduce
Lagrange multipliers in the undeformed action:

LcWZW
0 = LWZW

0 − a3A
3
θ − ā3 Ā

3
θ − a+(A+

θ − √
2E+

θ r)

−ā−( Ā−
θ + √

2E−
θ r). (58)

Here we keep E±
θ unfixed which is necessary when we apply

the solution (41). The terms with coefficient E±
θ can be view

as potentials. By using (41) again with V = −√
2ra+ and

V̄ = √
2r ā−, we find the deformed constrained Lagrangian

LcWZW
λ = 1

2
(Ftθ − F̄tθ ) + 1

2λ
(S − 1) − a+

×
(
A+

θ − r + rS
2

− rλ(Fθθ − F̄θθ )

2

)

− ā−
(
Ā−

θ + r + rS
2

− rλ(Fθθ − F̄θθ )

2

)

− a3A
3
θ − ā3 Ā

3
θ , (59)

where Fμν are given in (53) and we have set E+
t = E+

θ =
E−

θ = −E−
t = 1/

√
2. The constraints A3

θ = Ā3
θ = 0 are

solved by

� = e−2ϕ∂θϕ

∂θ F
, �̄ = e−2ϕ̄∂θ ϕ̄

∂θ F̄
. (60)

Plugging A3
θ = Ā3

θ = 0 into the rest two constraints, we get

A+
θ = r + r2λ Ā+

θ , Ā−
θ = −r + r2λA−

θ , (61)

which are similar to (5.16) in [42]. The explicit expressions
are

p − 1 − λ

4 p̄3 (4 p̄2s̄ + 3(∂θ p̄)
2 − 2 p̄∂2

θ p̄) = 0,

p̄ − 1 − λ

4p3 (4p2s + 3(∂θ p)
2 − 2p∂2

θ p) = 0,

(62)

where

e2ϕ = rp

∂θ F
, e2ϕ̄ = r p̄

∂θ F̄
, s = 1

2
{F, θ}, s̄ = 1

2
{F̄, θ}.

(63)

2 In principle λ should be rescaled to keep the flow equation invariant
due to the coefficient k/π in front of the action. But for convenience
we are not going to rescale λ here.
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s and s̄ are halves of the Schwarzian derivatives defined by

{ f, θ} = ∂3
θ f

∂θ f
− 3

2

(
∂2
θ f

∂θ f

)2

. (64)

Suppose the solution p and p̄ satisfying (62) is known, we
then substitute this solution to the LcWZW

λ and obtain the
all-order T T̄ deformed Lagrangian

LcWZW
λ = s

2p
+ s̄

2 p̄
− Ḟ ′′

4F ′ + 3Ḟ ′F ′′

8F ′2 +
˙̄F ′′

4F̄ ′

− 3 ˙̄F ′ F̄ ′′

8F̄ ′2 + 3
(
p′)2

8p3 − p′′

4p2

− 3 ṗ p′

8p2 + ṗ′

4p
+ 3

(
p̄′)2

8 p̄3 − p̄′′

4 p̄2 + 3 ˙̄p p̄′

8 p̄2 − ˙̄p′

4 p̄
,

(65)

where the overdot and prime denote the derivative with
respect to t and θ respectively. The deformed stress–energy
tensor is given by

(Tλ)
μ
ν = k

π

(
− p+ p̄−2

2λ
p− p̄
2λ

− p− p̄
2λ

p2−2 p̄ p+p+ p̄2+ p̄−2
2λ(p+ p̄−1)

)
. (66)

Using the parameterization

F = tan
αφ

2
, F̄ = tan

αφ̄

2
. (67)

We have

s = φ(3)

2φ′ − 3φ′′2

4φ′2 + αφ′2

4
, s̄ = φ̄(3)

2φ̄′ − 3φ̄′′2

4φ̄′2 + αφ̄′2

4
,

(68)

where f (n) denotes the nth derivative of f with respect to θ .
We also define

u = φ̇′′

2φ′ − 3φ̇′φ′′

4φ′2 + αφ̇φ′

4
, ū =

˙̄φ′′

2φ̄′ − 3 ˙̄φ′φ̄′′

4φ̄′2 + α ˙̄φφ̄′

4
.

(69)

Dropping total derivatives, the Lagrangian can be written as

L = s

2p
+ s̄

2 p̄
− u

2
+ ū

2
+ 3

(
p′)2

8p3 − p′′

4p2 − 3 ṗ p′

8p2

+ ṗ′

4p
+ 3

(
p̄′)2

8 p̄3 − p̄′′

4 p̄2 + 3 ˙̄p p̄′

8 p̄2 − ˙̄p′

4 p̄
, (70)

where p and p̄ are determined by s and s̄ through the con-
straints (62).

Though the constraints (62) are difficult to solve to all
orders in λ, we can solve p and p̄ in the first few orders of
small λ

p = 1 + λs̄ + λ2
(

−ss̄ − s′′

2

)
+ O(λ)3, (71)

p̄ = 1 + λs + λ2
(

−ss̄ − s̄′′

2

)
+ O(λ)3, (72)

which leads to

LcWZW
λ = s

2
+ s̄

2
− Ḟ ′′

2F ′ + 3Ḟ ′F ′′

4F ′2 +
˙̄F ′′

2F̄ ′ − 3 ˙̄F ′ F̄ ′′

4F̄ ′2 − λss̄

+ 1

8
λ2(4s̄s′′ + 8s2s̄ + 8s′s̄′ + 3s̄′2 − 3 ˙̄ss̄′

− 2s̄ ˙̄s′ + 4ss̄′′ + 6s̄ s̄′′ + 8ss̄2

+ 6ss′′ + 3s′2 + 3ṡs′ + 2sṡ′) + O(λ3). (73)

When λ = 0, this reproduces the original Lagrangian. The
first order term ss̄ is nothing but the T T̄ operator of the
undeformed action.

At the end of this subsection, let us comment on the
deformed constrains (61) and their relation with finite cut-
off AdS. Since (55) is derived from the boundary condition
(3.1) of gauge fields (or metric), it is natural to guess that
the boundary condition will also be transformed non-trivially
under the T T̄ deformation. Let us suppose the new boundary
is at r = rc with a large enough rc. If we identify r2

c λ = 1,
(61) leads to 2e±

θ = rc, which is consistency with the met-
ric (45) at finite cutoff r = rc. In Sect. 3.4, we will check
the identification r2

c λ = 1 in more details by calculating the
boundary stress–energy tensor.

3.3 One-loop torus partition function

The partition function in the undeformed theory was obtained
and shown to be one-loop exact in [35]. We now compute
the one-loop torus partition function in the deformed theory.
Let us Wick-rotate to the Euclidean time t = −iy and put
the boundary theory on a torus of complex structure τ . The
Euclidean action is SE = −i S. On the torus, the coordinate
z = θ+iy has the identifications z ∼ z+2π and z ∼ z+2πτ .
We first focus on the Diff(S1)/PSL(2,R) case. The fields
φ and φ̄ satisfy the boundary condition

f (θ + 2π, y) = f (θ, y) + 2π,

f (θ, y) = f (θ + 2πRe(τ ), y + 2π Im(τ )).
(74)

We consider the saddle point of the Euclidean Lagrangian

φ0 = φ̄0 = θ − τ1

τ2
y, p0 = p̄0 = 1

2γ
, (75)
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where τ1 and τ2 are real and imaginary part of τ respectively
and we will use

γ =
√

λ + 1 − 1

λ
, (76)

instead of λ to avoid square root.
Expanding φ and φ̄ in fluctuations around the saddle

φ = φ0 + δφ, φ̄ = φ̄0 + δφ̄, (77)

the fluctuations of p and p̄ depend on δφ and δφ̄ via the
constraints. We have

p = p0 + p1 + p2 + · · · , p̄ = p̄0 + p̄1 + p̄2 + · · · (78)

where p1 ( p̄1) and p2 ( p̄2) are linear and quadratic terms in
the fluctuation fields δφ and δφ̄ respectively. We then expand
the Lagrangian and the constraints around the saddle, and
express every term by using δφ and δφ̄. On the torus, the
fluctuation fields δφ and δφ̄ can be expand as

δφ =
∑
m,n

n �=−1,0,1

εm,n fm,n, δφ̄ =
∑
m,n

n �=−1,0,1

ε̄m,n fm,n, (79)

where we have set the zero modes to zero and the functions

fm,n = 1

2π
exp

(
i
my

τ2
+ in

(
θ − τ1

τ2
y

))
, (80)

satisfy
∫
T 2

d2x fm1,n1 fm2,n2 = τ2δm1,−m2δn1,−n2 . (81)

Then p1 and p̄1 are solved by

p1 =
∑
m,n

n �=−1,0,1

qn
(
(1 − 2γ )(2n2 − 1)εm,n + ε̄m,n

)
fm,n,

p̄1 =
∑
m,n

n �=−1,0,1

qn
(
(1 − 2γ )(2n2 − 1)ε̄m,n + εm,n

)
fm,n .

(82)

where

qn = − i(2γ − 1)n
(
n2 − 1

)
2

(−2γ n2 + γ + n2 − 1
) (−2γ n2 + γ + n2

) .

(83)

Finally, the quadratic action is given by

− π

k
SE = γ τ2

2
(2π)2 +

∑
m,n

n �=−1,0,1

(εm,n, ε̄m,n)Mm,n

(
ε−m,−n
ε̄−m,−n

)
,

(84)

where Mm,n is a 2 × 2 matrix

Mm,n = n(n2 − 1)

16
(
n2(χ − 1) + 1

)2 (
χ − n2(χ − 1)

)2

×
(
Am,n(τ1, τ2) Bm,n(τ1, τ2)

Bm,n(τ1, τ2) −Am,n(τ1,−τ2)

)
, (85)

with χ = γ
1−γ

= 1√
λ+1

and

Am,n(τ1, τ2)

= −2iχ(n2(n2 − 1)(χ − 1)2 − χ)(m + inτ2χ − nτ1)

− n(n2 − 1)2τ2χ(χ2 − 1)2, (86)

Bm,n(τ1, τ2)

= −n(n2 − 1)τ2χ(χ2 − 1)(n2(χ − 1)2 − χ2 − 1).

(87)

The determinant of Mm,n is

det Mm,n

= n2(n2 − 1)2χ2 (m − inτ2χ − nτ1) (m + inτ2χ − nτ1)

64
(
n2(χ − 1) + 1

)2 (
χ − n2(χ − 1)

)2 .

(88)

Then following the procedure in [35], we obtain the classical
partition function

Zc = exp

(
2πCτ2

√
λ + 1 − 1

6λ

)
, C = 6k, (89)

and the one-loop torus partition function

Z1−loop = exp

(
2πτ2

(
C

(√
λ + 1 − 1

)
6λ

+ 13

12
√

λ + 1

))

×
∣∣∣∣∣

∞∏
n=2

1

1 − exp(2π in(τ1 + i τ2√
λ+1

))

∣∣∣∣∣
2

. (90)

Note that the partition function is not modular invariant even
in the undeformed theory. The spectrum should become com-
plex when λ > 0. In this case the one-loop torus partition
function should be understood as an analytic continuation
from the regime of λ < 0. The singularity at λ = −1 is
related to the Hagedorn divergence. It is easy to check that
the classical partition satisfies the flow equation on the torus
[7]

−πC

6
∂λZc

=
(

τ2

4
(∂2

τ2
+ ∂2

τ1
) + λ

2
(∂τ2 − τ−1

2 )∂λ

)
Zc, (91)
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while the one-loop partition function satisfies the flow equa-
tion up to the one-loop

− 1

Zc

π

6
∂λZ1−loop = 1

CZc

(τ2

4
(∂2

τ2
+ ∂2

τ1
)

+λ

2
(∂τ2 − τ−1

2 )∂λ

)
Z1−loop + O(C−1), (92)

where the first term on the right hand side is order O(C). The
one-loop torus function satisfy the flow equation up to the one
loop order O(C0). This suggests that the T T̄ deformed par-
tition function should not be one-loop exact as in the unde-
formed theory. It is worth to note that the flow equations
(91) and (92) are satisfied for all order in λ, which provide
evidence for our all-order T T̄ deformed Lagrangian.

One can also compute the partition function of the
Diff(S1)/U (1) case, where

F = tan
αφ

2
, F̄ = tan

αφ̄

2
, (93)

with α �= n, n ∈ Z. One can repeat the same steps and finally
get

Z1−loop = exp

⎛
⎝2πτ2

⎛
⎝C

(√
α2λ + 1 − 1

)

6λ
+ 13

12
√

α2λ + 1

⎞
⎠

⎞
⎠

×
∣∣∣∣∣∣

∞∏
n=1

1

1 − exp(2π in(τ1 + i τ2√
α2λ+1

))

∣∣∣∣∣∣
2

. (94)

3.4 T T̄ deformation and BTZ black hole

Following the same procedure in Sect. 3.1, one can describe
the BTZ black hole in the formalism of the Chern–Simons
theory. In this subsection, we compute the stress–energy ten-
sor of the T T̄ deformed boundary theory of the BTZ back-
ground. For simplicity, we will focus on the classical solution
of the BTZ Chern–Simons theory. We also compare the asso-
ciated stress–energy tensor with the “boundary stress–energy
tensor” of the BTZ gravity with a finite cutoff.

The BTZ black hole is described by the metric

ds2 = − f 2(r)dt2 + f −2(r)dr2 + r2(dθ − ω(r)dt)2,

f 2(r) = r2 − 8GM + 16G2 J 2

r2 , ω(r) = 4GJ

r2 . (95)

To describe the BTZ black hole in the Chern–Simons for-
mulation, it is convenient to define

J = b2 − b̄2

4G
, M = −b2 − b̄2

4G
,

r =
√

(1 − z2b2)(1 − z2b̄2)

z2 . (96)

Then the metric can be written as

ds2 = dz2

z2 + 1

z2 ((1 − b̄2z2)dθ + (1 + b̄2z2)dt)

×((1 − b2z2)dθ − (1 + b2z2)dt). (97)

The associated classical gauge fields are

A(0) =
( dz

2z −zb2(dθ + dt)
z−1(dθ + dt) − dz

2z

)
,

Ā(0) =
( −dz

2z −z−1(dθ − dt)
zb̄2(dθ − dt) dz

2z

)
, (98)

and the group elements are

g(0) =
⎛
⎝

cos(bx+)√
b
√
z

−√
b
√
z sin(bx+)

sin(bx+)√
b
√
z

√
b
√
z cos(bx+)

⎞
⎠ ,

ḡ(0) =
⎛
⎝

√
b̄
√
z cos(b̄x−) − sin(b̄x−)√

b̄
√
z√

b̄
√
z sin(b̄x−)

cos(b̄x−)√
b̄
√
z

⎞
⎠ , (99)

where A(0) = (g(0))−1dg(0) and Ā(0) = (ḡ(0))−1dḡ(0). The
BTZ metric leads to same boundary condition (3.1) of gauge
fields at boundary. In the same way as in Sect. 3.1, we could
derive the boundary action and the constrains of the BTZ
black hole, which have the same form as (52) and (55) respec-
tively. However, instead of (56), the fields in the BTZ black
hole are

F = tan(b(θ + t)), F̄ = tan(b̄(θ − t)), (100)

which provides the orbit Diff(S1)/U (1). To describe an BTZ
black hole, we require b2 < 0 and b̄2 < 0. When b = b̄ ∈
(0, 1/2) we have a conical defect rather than a BTZ black
hole. See [35] for more discussions.

In Appendix B, we show that the solutions to the EOM of
the deformed theory can be obtained from the ones of original
theory. The deformed solution associated with g(0) and ḡ(0)

is

g = g(0)(x̃+)|b→bλ, ḡ = ḡ(0)(x̃−)|b̄→b̄λ
, (101)

where

x̃+ = x+ + λb̄2
λx

−

1 − b2
λb̄

2
λλ

2
, x̃− = x− + λb2

λx
+

1 − b2
λb̄

2
λλ

2
,

bλ =
√

λ2
(
b2 − b̄2

)2 + 2λ
(
b2 + b̄2

) + 1 + b2λ − b̄2λ − 1

2bλ
,

b̄λ =
√

λ2
(
b2 − b̄2

)2 + 2λ
(
b2 + b̄2

) + 1 − b2λ + b̄2λ − 1

2b̄λ
.

(102)

Here we introduce bλ and b̄λ such that the boundary condition

arctan F |θ=2π
θ=0 = 2πb, arctan F̄ |θ=2π

θ=0 = 2π b̄, (103)
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are undeformed. The deformed stress–energy tensor in terms
of the classical solution is

(Tλ)
μ
ν = k

π

1

2 − 2b2
λb̄

2
λλ

2

×
( −2λb̄2

λb
2
λ − b2

λ − b̄2
λ b̄2

λ − b2
λ

b2
λ − b̄2

λ −2λb̄2
λb

2
λ + b2

λ + b̄2
λ

)
,

= 1

8πG

(
(1−S)

λ
b̄2 − b2

b2 − b̄2 1
λ

(
1 + S − S

λ(b−b̄)2+1
− S

λ(b+b̄)2+1

)
)

,

(104)

where

S =
√

1 + 2λ
(
b2 + b̄2

) + λ2
(
b2 − b̄2

)2
. (105)

In the following of this subsection, we compare (104) with
the boundary stress–energy tensor of the BTZ black hole at a
cutoff surface r = rc [43] in our convention. Here we mainly
follow the derivation in [14]. The boundary stress–energy
tensor is define as

Ti j = 1

4G
(Ki j − Kgi j + gi j ), (106)

where gi j is the boundary metric and Ki j the extrinsic cur-
vature. On a surface at a finite radial location

z → zc =
⎛
⎝ b̄2 + b̄2 + r2

c −
√
r4
c + 2(b2 + b̄2)r2

c + (b2 − b̄2)2

2b̄2b̄2

⎞
⎠

1
2

,

(107)

we have

gi j =
⎛
⎝−

(
b2z2

c+1
)(
b̄2z2

c+1
)

z2
c

b̄2 − b2

b̄2 − b2
(
b2z2

c−1
)(
b̄2z2

c−1
)

z2
c

⎞
⎠ , (108)

Ki j = −z∂zgi j |z→zc =
(
b2b̄2z2

c − 1
z2
c

0

0 1
z2
c

− b2b̄2z2
c

)
,

(109)

from which we find

T i
j = − z2

c

4G − 4z4
cb

2b̄2G

×
(

2z2
c b̄

2b2 + b2 + b̄2 b2 − b̄2

b̄2 − b2 2z2
c b̄

2b2 − b2 − b̄2

)
.

(110)

We define basis vectors

vi0 =
⎛
⎝ zc

√(
b2z2

c − 1
) (
b̄2z2

c − 1
)

1 − b2b̄2z4
c

,

z3
c

(
b2 − b̄2

)
(
1 − b2b̄2z4

c

)√(
b2z2

c − 1
) (
b̄2z2

c − 1
)
⎞
⎠ , (111)

v
j
1 =

⎛
⎝0,

zc√(
b2z2

c − 1
) (
b̄2z2

c − 1
)
⎞
⎠ , (112)

where v0 is a unit vector normal to a constant t slice of the
boundary and v1 is a unit vector normal to v0. In the new
basis {vI }, the stress–energy tensor becomes

T I
J = z2

c

4G
(
b2z2

c − 1
) (
b̄2z2

c − 1
)

×
(

2b2b̄2z2
c − b2 − b̄2 b̄2 − b2

b2 − b̄2 2b4 b̄4z6
c−3b4 b̄2z4

c−3b2 b̄4z4
c+6b2 b̄2z2

c−b2−b̄2

b2 b̄2z4
c−1

)
,

(113)

or

T I
J = 1

4Gr2
c

×
(
r2
c (1 − Sc) b̄2 − b2

b2 − b̄2 r2
c

(
− r2

cSc

(b−b̄)2+r2
c

− r2
c S

(b+b̄)2+r2
c

+ 1 + Sc

)
)

,

(114)

Sc = r−2
c

√
r4
c + 2(b2 + b̄2)r2

c + (b2 − b̄2)2, (115)

which matches (104) up to a factor under the identification
r2
c λ = 1. As in [13,14], to compare with the energy obtained

on the QFT side one should multiply the energy by the cir-
cumference of the circle L = 2πrc to get a dimensionless
“proper energy”

E = L

2π

∫ 2π

0

√
gθθT

0
0dθ = 2πr2

c T
0
0. (116)

When rc is large, we have E = 2πM + O(r−1
c ).

The same result can be derived in the Chern–Simons for-
mulation. We assume that the boundary term on a finite cutoff
surface has the same form as that at infinity

Lbdy = −1

4
Tr(Aθ Aθ ) − 1

4
Tr( Āθ Āθ ). (117)

The boundary conditions consistent with the variational prin-
ciple are

A3
θ = Ā3

θ = 0, A+
θ = z−1, A−

θ = −z−1. (118)

To obtain the boundary stress–energy tensor we need to insert
back the zweibein. The zweibein on the cutoff surface are

123
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E+
c = 1√

2
((1 − b̄2z2)dθ + (1 + b̄2z2)dt),

E−
c = 1√

2
((1 − b2z2)dθ − (1 + b2z2)dt). (119)

Therefore the on-shell boundary term should be interpreted
as

Lbdy = −1

4

(√
2E+

t + z Ā(0)+
t√

2E+
θ + z Ā(0)+

θ

tr(A(0)
θ A(0)

θ )

−
√

2E−
t − zA(0)−

t√
2E−

θ − zA(0)−
θ

tr( Ā(0)
θ Ā(0)

θ )

)

= −1

2

(√
2E+

t − z2b̄2

√
2E+

θ + z2b̄2
b2 −

√
2E−

t + z2b2

√
2E−

θ + z2b2
b̄2

)
.

(120)

Then we get the boundary stress–energy tensor,

T i
j = − k

π

1

det E
E A

j
∂Lbdy

∂E A
i

|E±→E±
c

= k

π

1

2 − 2z4b2b̄2

(
2z2b̄2b2 + b2 + b̄2 b2 − b̄2

b̄2 − b2 2z2b̄2b2 − b2 − b̄2

)
,

(121)

which equals (110) up to a factor.

4 Conclusions and discussions

In this paper, we have studied the T T̄ deformation of chi-
ral bosons. In particular, the T T̄ deformation of two chi-
ral bosons of opposite chiralities is equivalent to that of
a non-chiral free scalar theory at the Hamiltonian level.
Furthermore, we have obtained the all-order T T̄ deformed
Lagrangian of more general theories which contain an arbi-
trary number of chiral bosons with potentials. Based on these
results, we study the T T̄ deformation of the boundary theory
in Chern–Simons AdS3 gravity which is a constrained chiral
WZW model. We have derived the all-order T T̄ deformed
Lagrangian and computed the one-loop torus partition func-
tion of the deformed theory, which satisfies the flow equa-
tion of general T T̄ torus partition function up to one-loop
order. Our result suggests that the one-loop torus partition
function is not one-loop exact under the T T̄ deformation,
which is unlike the situation in the undeformed theory [35].
Moreover, we have computed the stress–energy tensor of the
solution associated with a BTZ black hole in the deformed
theory, which matches the boundary stress–energy tensor of
the BTZ black hole at a finite radial location on the bulk side.

Let us comment on future research directions. It would be
interesting to start with the Chern–Simons theory describ-
ing the AdS3 gravity with a finite cutoff to derive the T T̄
deformed boundary action. This will help us to realize the

holography under T T̄ deformation more explicitly. More-
over, the original exact boundary action of Chern–Simons
AdS3 gravity can be applied to compute the four-point func-
tions in the light-light and heavy-light limit [35]. Recently,
many studies have been devoted to the correlators in general
T T̄ deformed CFTs [44–48]. It would be interesting to com-
pute correlators in our deformed model and compare them
with these results. It would also be interesting to generalize
our analysis to higher spin theories of gravity formulated in
terms of SL(N ,R) Chern–Simons theory [49].
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Appendix A: J J̄ and T J̄ deformation of two chiral
bosons

In this Appendix, we consider the J J̄ and T J̄ deformation
of the chiral bosons.

A.1 J J̄ deformation

Consider the Lagrangian of two chiral bosons of opposite
chiralities

L0 = 1

2

(
∂tφ∂θφ − ∂θφ∂θφ − ∂t φ̄∂θ φ̄ − ∂θ φ̄∂θ φ̄

)
. (122)

To define currents J and J̄ , we couple the chiral bosons to
gauge fields

L0 = 1

2
(∂tφ∂θφ − ∂θφ∂θφ − (Aθ − At )(2∂θφ + Aθ ))

+ 1

2

(−∂t φ̄∂θ φ̄ − ∂θ φ̄∂θ φ̄ − ( Āθ + Āt )(2∂θ φ̄ + Āθ )
)
.

(123)
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We define the currents as

J i = ∂L
∂Ai

, J̄ i = ∂L
∂ Āi

. (124)

In the undeformed theory

∂i J
i
0 = 1

2
∂t Aθ − 1

2
∂θ At , ∂i J̄

i
0 = 1

2
∂θ Āt − 1

2
∂t Āθ .

(125)

When A and Ā are closed, J and J̄ are conserved. The J J̄
operator in the deformed theory is defined as

(J J̄ )λ = 2J tλ J̄
θ
λ − 2 J̄ tλ J

θ
λ . (126)

Solving the flow equation

∂Lλ

∂λ
= (J J̄ )λ. (127)

We get

Lλ = L0 − 4λ(∂θφ
2λ + ∂θ φ̄

2λ + ∂θφ∂θ φ̄(1 + λ2))

(1 − λ2)2

− λ

λ2 − 1

(
At∂θ φ̄ − Āt∂θφ + At Āθ − Aθ Āt

2

)

− λ2

λ2 − 1

(
At∂θφ − Āt∂θ φ̄ + At Aθ − Āθ Āt

2

)

− 2λ

(λ2 − 1)2 Aθ Āθ + λ2
(
λ2 − 3

)
2

(
λ2 − 1

)2 (A2
θ + Ā2

θ )

+ λ2
(
λ2 − 5

)
(
λ2 − 1

)2 (Aθ ∂θφ + Āθ ∂θ φ̄)

− λ
(
λ2 + 3

)
(
λ2 − 1

)2 ( Āθ ∂θφ + Aθ ∂θ φ̄). (128)

Finally setting A = Ā = 0, we get

Lλ = L0 − 4λ(∂θφ
2λ + ∂θ φ̄

2λ + ∂θφ∂θ φ̄(1 + λ2))

(1 − λ2)2

= L0 − 4λ∂θφ∂θ φ̄ − 4λ2(∂θφ
2 + ∂θ φ̄

2) + O(λ3).

(129)

A.2 T J̄ deformation

We couple the left chiral boson to the zweibein and the left
chiral boson to a gauge field

L0 = −1

2

(
−∂tφ∂θφ + E+

t

E+
θ

∂θφ∂θφ

)

+1

2

(−∂t φ̄∂θ φ̄ − ∂θ φ̄∂θ φ̄ − ( Āθ + Āt )(2∂θ φ̄ + Āθ )
)
.

(130)

We define the currents as

T i+ = ∂L
∂E+

i

, J̄ i = ∂L
∂ Āi

. (131)

The T J̄ operator in the deformed theory is defined as

(T J̄ )λ = 2T t+λ J̄
θ
λ − 2 J̄ tλT

θ+λ. (132)

Solving the flow equation

∂Lλ

∂λ
= (T J̄ )λ. (133)

We get

Lλ = −1

2
(−∂tφ∂θφ + ∂θφ∂θφ)

+1

2

(−∂t φ̄∂θ φ̄ − ∂θ φ̄∂θ φ̄ − ( Āθ + Āt )(2∂θ φ̄ + Āθ )
)

+ E+
θ (2(E+

θ + E+
t ) − λ( Āθ + Āt ))

2λ2

×
(√

1 + λ

E+
θ

( Āθ + 2∂θ φ̄) + λ2

E+
θ

2
((∂θ φ̄ + Āθ

2
)2) − ∂θφ2 − 1 − λ

E+
θ

(∂θ φ̄ + Āθ

2
)

)
. (134)

Finally we set E+
θ − 1 = E+

t − 1 = Ā = 0 and obtain

Lλ = 1

2

(
∂tφ∂θφ − ∂θφ∂θφ − ∂t φ̄∂θ φ̄ − ∂θ φ̄∂θ φ̄

)

+
2

(√
λ2

(
∂θ φ̄2 − ∂θφ2

) + 2∂θ φ̄λ + 1 − ∂θ φ̄λ − 1
)

λ2 .

(135)

Appendix B: T T̄ deformed chiral WZW model

We consider the sum of a left and a right chiral WZW model

S = S−[g] + S+[ḡ], (136)

with

S±[g] = k

2π

(∫
d2x Tr

(
(g−1)′∂±g

)

∓1

6

∫
B

Tr(g−1dg ∧ g−1dg ∧ g−1dg)

)
, (137)

123
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where g and ḡ are group elements of group G and Ḡ respec-
tively. We define

Ai = g−1∂i g, Āi = ḡ−1∂i ḡ. (138)

The equations of motions are

∂−Aθ = ∂+ Āθ = 0. (139)

Consider the T T̄ deformed chiral WZW model

2π

k
Sλ = 1

2

∫
d2x

(
(tr(Aθ At ) − tr( Āθ Āt ) + 1

λ
(S − 1)

)

+1

6

∫
B

(
tr(g−1dg ∧ g−1dg ∧ g−1dg)

−tr(ḡ−1dḡ ∧ ḡ−1dḡ ∧ ḡ−1dḡ)
)
, (140)

with

S =
√

1 − 2(tr(Aθ Aθ ) + tr( Āθ Āθ ))λ + (tr(Aθ Aθ ) − tr( Āθ Āθ ))2λ2.

(141)

The equations of motions are

∂θ

(
1 − λ(tr(Aθ Aθ ) − tr( Āθ Āθ ))

S Aθ

)
− ∂t Aθ = 0,

(142)

∂θ

(
1 + λ(tr(Aθ Aθ ) − tr( Āθ Āθ ))

S Āθ

)
+ ∂t Āθ = 0.

(143)

When λ = 0, a solution to the equation of motion is

g = h(t)g0(x
+), ḡ = h̄(t)ḡ0(x

−). (144)

We introduce a new set of coordinate (t̃, θ̃ ) and define a field
dependent coordinate transformation with the Jacobian

(
∂t̃ t ∂t̃θ

∂θ̃ t ∂θ̃ θ

)
=

(
− F

θ̃ θ̃
λ

2 − F̄
θ̃ θ̃

λ

2 + 1
F

θ̃ θ̃
λ

2 − F̄
θ̃ θ̃

λ

2
F̄

θ̃ θ̃
λ

2 − F
θ̃ θ̃

λ

2
F

θ̃ θ̃
λ

2 + F̄
θ̃ θ̃

λ

2 + 1

)
,

(145)

where

Fθ̃ θ̃ = tr(g−1
0 (x̃+)∂θ̃g0(x̃

+)g−1
0 (x̃+)∂θ̃g0(x̃

+)), (146)

F̄θ̃ θ̃ = tr(ḡ−1
0 (x̃−)∂θ̃ ḡ0(x̃

−)ḡ−1
0 (x̃−)∂θ̃ ḡ0(x̃

−)), (147)

x̃± = θ̃ ± t̃ . (148)

Then the solution

g(t, θ) = h(t)g0(x̃
+(t, θ)), ḡ(t, θ) = h̄(t)ḡ0(x̃

−(t, θ)).

(149)

satisfies the equation of motion for the deformed theory.
Using

∂θ + ∂t = 2
∂x̃+ − λFθ̃ θ̃ ∂x̃−

1 − λ2Fθ̃ θ̃ F̄θ̃ θ̃

, (150)

∂θ − ∂t = 2
∂x̃− − λF̄θ̃ θ̃ ∂x̃+

1 − λ2Fθ̃ θ̃ F̄θ̃ θ̃

, (151)

Aθ = g−1
0 (x̃+)∂θ̃g0(x̃

+)
1 − λF̄θ̃ θ̃

1 − λ2Fθ̃ θ̃ F̄θ̃ θ̃

, (152)

Āθ = ḡ−1
0 (x̃−)∂θ̃ ḡ0(x̃

−)
1 − λFθ̃ θ̃

1 − λ2Fθ̃ θ̃ F̄θ̃ θ̃

, (153)

1 − λ(tr(Aθ Aθ ) − tr( Āθ Āθ ))

S Aθ

= g−1
0 (x̃+)∂θ̃g0(x̃

+)
1 + λF̄θ̃ θ̃

1 − λ2Fθ̃ θ̃ F̄θ̃ θ̃

, (154)

1 − λ(tr(Aθ Aθ ) − tr( Āθ Āθ ))

S Aθ

= ḡ−1
0 (x̃−)∂θ̃ ḡ0(x̃

−)
1 + λFθ̃ θ̃

1 − λ2Fθ̃ θ̃ F̄θ̃ θ̃

, (155)

one can check that (142) and (143) are satisfied. One should
also consider boundary condition so in general g0 and ḡ0

should depend on λ.
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