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Abstract In the present work, a theoretical framework
focussing on local geometric deformations is introduced in
order to cope with the problem of how to join spacetimes with
different geometries and physical properties. This framework
is used to show that two Lorentzian manifolds can be matched
by considering local deformations of the associated space-
time metrics. Based on the fact that metrics can be suitably
matched in this way, it is shown that the underlying geometric
approach allows the characterization of local spacetimes in
general relativity. Furthermore, it is shown that said approach
not only extends the conventional thin shell formalism, but
also allows the treatment of geometric problems that cannot
be treated with standard gluing techniques.

Introduction

The general theory of relativity, like most of its countless
generalizations, is a nonlinear theory of gravity. For this rea-
son, it allows the existence of different types of solutions of
Einstein’s field equations and thus the coexistence and co-
evolution of different types of gravitational fields.

However, the fact that the theory allows for a variety of
different solutions, among which many lead to predictions
that are in complete agreement with observation, leads to the
challenging mathematical problem of how pairs of geometri-
cally distinct spacetimes can be joined with each other along a
hypersurface separating the corresponding Lorentzian man-
ifolds and thus combined to form a single geometric field.
This very problem is usually addressed in general relativ-
ity by considering local junction conditions, the fulfilment
of which ensures that the intrinsic geometric properties of
spacetime at the boundary are such that the local geometries
fit together and can therefore be joined with each other. In
this respect, two cases have to be distinguished:
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On the one hand, there is the case in which the bound-
ary hypersurface is either space- or timelike. In this case,
the well-established Darmois–Israel formalism can be used,
which requires the first and second fundamental forms of
given spacetimes to match with each other across the space-
or timelike boundary hypersurface [1,2]. This matching must
be given in such a way that the first fundamental forms of
the corresponding geometric fields are continuous and coin-
cide at the boundary, whereas the second fundamental forms
do not have to coincide and are allowed to be discontinuous
across the hypersurface separating the Lorentzian manifolds
[2–4]. The condition for this to be the case, however, is the
existence of a concentrated, singular matter distribution – a
so-called thin shell of matter – that happens to form a joint
boundary layer for both spacetimes.

On the the hand, there is the case in which the boundary is
lightlike [4,5], which is more sophisticated from a geomet-
rical point of view. In this case, different types of junction
conditions have to be considered, which allow the pairwise
identification of (projections of) gradients of the correspond-
ing null vector fields across the boundary. The method used
then makes it possible to glue together spacetimes that are
separated by a lightlike boundary hyperface. However, this is
not the only advantage offered by that approach: As it turns
out, the geometric framework used is more general than the
Darmois–Israel framework, since it allows one to combine
the null and non-null formalism into a single formalism called
general thin shell formalism, and also to formulate associ-
ated junction conditions that are always valid regardless of
the causal structure of the boundary hyperface [4,6,7].

The main problem that arises in this context, however, is
that it often proves difficult to actually meet said junction
conditions, especially for spacetimes with different causal
structures and symmetry properties. For this reason, it is a
rather common case that spacetime pairs with excessively dif-
ferent geometrical properties cannot be glued together. This
is, moreover, also one of the main reasons why the above-
mentioned conditions have so far been successfully applied
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mainly to spacetimes with a comparatively high degree of
symmetry, i.e. to spacetimes with either spherical, cylindri-
cal or plane symmetry, while the treatment of the problem of
how to glue less symmetric spacetimes, such as stationary,
axisymmetric or even non-stationary ones, has so far received
far less attention in the literature.

A primary cause of this shortcoming is the fact that the
methods being used to cope with the junction conditions,
in spite of leading to appropriate local discontinuities in the
curvature of respective gravitational fields (at most ‘delta-
like’-singularities), in different cases, fail to deliver physi-
cally feasible predictions. The usual reason for this drawback
is the fact that the corresponding methods lead to concen-
trated, singular gravitational source terms that often do not
obey the energy conditions of the theory, which significantly
reduces their phenomenological and physical relevance. An
even greater problem occurs, moreover, when the two space-
times to be joined have metrics of low regularity; a case that
may lead to undefined products of distributions when calcu-
lating the associated curvature fields, such as in the case of
gravitational shock wave spacetimes, where said fields con-
tain ’squares’ of the delta distribution. In this case, the thin
shell formalism suffers from severe mathematical problems.

In conclusion, however, there appears to be a need for
a more reliable geometric framework that does not lead to
unphysical gravitational source terms and, in contrast to tra-
ditional spacetime gluing approaches, also allows the gluing
of distributional metrics that contain terms proportional to
Dirac’s delta distribution.

In response to that fact, the aim of a major part of this work
is to provide a simple geometric framework that endeavors
to avoid the aforementioned technical and conceptual diffi-
culties, while at the same time guaranteeing that the junction
conditions of the theory are met.

The key difference between the model to be developed
and former approaches to the subject is the fact that said
model considers the transition of one spacetime to another as
a dynamical deformation process. This idea is formally real-
ized by deforming the metric of a given background geometry
and showing that the effect of the deformation completely
subsides if appropriate boundary conditions, which follow
from the addressed junction conditions, are imposed.

Taking advantage of the fact that the geometric structure of
any spacetime metric can be arbitrarily modified by specify-
ing a suitable deformation term, and that it is also possible to
confine oneself only to those deformations that have compact
supports in an embedded subregion of a given Lorentzian
manifold (or go to zero in a suitable limit), the geometric
framework to be presented ensures that the junction condi-
tions of the theory are met, thereby allowing a rigorous char-
acterization of local spacetime geometries in general relativ-
ity.

This is demonstrated in Sect. 3 of this work, where it is
shown that the standard thin shell formalism (which focuses
on the gluing of spacetime metrics that are at leastC2) can be
extended by using the metric deformation formalism in com-
bination with Colombeau’s theory of generalized functions
to allow the gluing of spacetime metrics with low regularity.
In particular, it is shown that spacetime metrics containing
a Dirac delta distribution term can be glued together in a
mathematically rigorous way, whereas it turns out that cer-
tain types of metric deformations are more suitable for such
an endeavor from a physical point of view than others. In the
process, it is shown that thin shell formalism appears as a spe-
cial case of the geometric framework presented. This is clari-
fied using concrete geometric examples, that is, gravitational
shock wave spacetimes, whose curvature cannot be calcu-
lated using standard gluing techniques. To further improve
the spacetime gluing approach, it is shown that deformation
formalism – based on the use of smooth transition functions
– allows the smooth gluing of arbitrary spacetimes and thus
the treatment of cases that cannot be treated with the standard
technical machinery of the general thin shell formalism.

1 Junction conditions and gluings of spacetimes

In Einstein’s General Theory of Relativity, the situation quite
often occurs that two spacetime partitions (M±, g±) with
two associated Lorentzian manifoldsM± = M±∪∂M± are
given, which are bounded by a hypersurface Σ that forms a
part of the boundary of both spacetimes, so that Σ ⊂ ∂M±
applies. Given this situation, the question arises as to whether
or not both spacetimes can be ’combined’ into an ambient
spacetime (M, g), whose manifold is the union of the man-
ifolds of the individual parts such that M ≡ M− ∪ M+.

A relatively straightforward method that allows one to deal
with this question and thus solve the underlying geometric
problem is the method of gluing spacetimes together across
a boundary hypersurface Σ ≡ ∂M+ ∩ ∂M−, using the so-
called thin shell formalism [2–9].

According to this method, which has a rich history and
important applications in general relativity, it is usually
assumed that an ambient spacetime (M, g) with above-
mentioned properties is given, i.e. a spacetime with Lorentzian
manifold M = M+∪Σ∪M− and metric gab, which reduces
to the metrics g±

ab in M±. As a basis for this, it is further
assumed that there is a restricted C2-metric g+

ab = gab|M+
associated with the part (M+, g+) and another C2-metric
g−
ab = gab|M− associated with (M−, g−), respectively;

parts, in relation to which the metric gab of the ambient space-
time (M, g) can be decomposed in the form

gab = θg+
ab + (1 − θ)g−

ab, (1)
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where θ is the Heavyside step function. This step function is
usually assumed to take a value of one half for points lying
on Σ , a value of one for points lying in M+ and a value of
zero for points lying in M−. This makes sense as long as it
is ensured that the ambient metric is continuous across the
layer, which implies that (in appropriate coordinates) it must
apply that

[gab] = 0, (2)

where [gab] ≡ lim
x
M+→ x0

g+
ab(x) − lim

x
M−→ x0

g−
ab(x) applies

for all x0 ∈ Σ .
To provide a coordinate independent description in this

context, it is only natural to use a formalism that is com-
patible with the intrinsic geometric structure of the boundary
portion Σ . However, since such a description cannot be inde-
pendent of the causal structure of Σ , it seems convenient to
first closely pursue the most essential ideas of the so-called
general (or mixed) thin shell formalism developed in [4], not
least because said formalism, unlike previous approaches to
the subject, allows the treatment of the current physical prob-
lem of joining pairs of spacetimes with different geometries
without having to fix the geometric character of the bound-
ary portion Σ . Rather, Σ can very well be null somewhere
in spacetime and non-null elsewhere.

To enable such treatment of the problem, the formalism
takes advantage of the fact that a pair of normal vector fields
ζ a± exists on each side of the layer Σ such that ζ a+ corre-
sponds to M+ and ζ a− corresponds to M−. In addition, the
fact is exploited that – regardless of the causal structure of
the boundary portion – bases of vector fields {Ea

ρ} can be
chosen in T (Σ) with ρ = 1, 2, 3 as well as associated co-
bases {eρ

a} in T ∗(Σ) such that eρ
a Ea

σ = δ
ρ
σ , ζ a±e

ρ
a = 0 and

g±
ab|Σ Ea

ρE
a
σ = g∓

ab|Σ Ea
ρE

a
σ . Furthermore, it is observed

that there is a pair of vector fields ξa±, usually called rig-
ging vector fields, and an associated pair of co-vector fields
ξ±
a such that ξ±

a ζ a± = −1 and ξ±
a Ea

ρ = 0. The corre-
sponding rigging vector fields are fixed in this context by
demanding gab|Σξa+Eb

ρ = gab|Σξa−Eb
ρ ≡ gab|Σξa Eb

ρ and
gab|Σξa+ξa+ = gab|Σξa−ξa−, so that the two bases on the tan-
gent spaces {ξa±, Ea

ρ} ≡ {ξa, Ea
ρ} are identified and the (±)

can be dropped. The two one-forms ζ±
a are automatically

identified as well, so that {ζ±
a , eρ

a } ≡ {ζa, eρ
a }. Consequently,

it then turns out to be possible to construct a projector of the
type oca = δca + ζ cξa with the properties ocao

a
b = ocb and

ocaξ
a = ocaζc = 0, which can be used as a projector onto Σ .

With these definitions at hand, the difference (or jump) of
any object from the + or the − sides of Σ can be specified.
In particular, any (m, n)-tensor field with definite limits on
Σ from M± (regardless of whether it is discontinuous across
Σ or not) can be split up in a +-part and a −-part , so that

T a1a2...am
b1b2...bn

= θT+a1a2...am
b1b2...bn

+ (1 − θ)T−a1a2...am
b1b2...bn

. (3)

The covariant derivative of the same object then reads

∇cT
a1a2...am
b1b2...bn

= θ∇+
c T+a1a2...am

b1b2...bn
+

+(1 − θ)∇−
c T−a1a2...am

b1b2...bn
+ δc[T a1a2...am

b1b2...bn
], (4)

where [T a1a2...am
b1b2...bn

] ≡ lim
x
M+→ x0

T+a1a2...am
b1b2...bn

(x) − lim
x
M−→ x0

xT−a1a2...am
b1b2...bn

(x) applies for all x0 ∈ Σ and δc ≡ ζcδ is
a vector-valued distribution constructed from Dirac’s delta
distribution δ = δ(x).

As already mentioned above, given a suitable pair of
coordinate charts (x0±, x1±, x2±, x3±), the metric is continuous
across Σ . However, its derivatives, and thus the correspond-
ing connections, are discontinuous. In fact, it is found in this
context that

[∂cgab] = 2 · ζcγab (5)

and therefore

[Γ a
bc] = γ a

b ζc + γ a
c ζb − γbcζ

a, (6)

where γab is a symmetric tensor field defining the properties
of the shell.

The associated Riemann tensor is of the form

Ra
bcd = θR+a

bcd + (1 − θ)R−a
bcd + δHa

bcd , (7)

where δ is the Dirac delta distribution and Ha
bcd represents

the singular part of the curvature tensor distribution, which is
explicitly given by Ha

bcd = 1
2 (γ a

dζbζc−γ a
c ζbζd +γ bcζ

aζd −
γbdζ

aζc).

Given this definition, the said approach allows for a gen-
eralized formulation of Einstein’s field equations in a distri-
butional sense, which leads to a distributional Einstein tensor
of the form

Ga
b = θG+a

b + (1 − θ)G−a
b + δ · ρa

b, (8)

where ρa
b = Ha

b − 1
2δabH (with H ≡ gab|Σ Hab) is a sym-

metric covariant tensor field defined only at points of the
hypersurface Σ . The associated stress-energy tensor, on the
other hand, has to possess the form

T a
b = θT+a

b + (1 − θ)T−a
b + δ · τ ab, (9)

which is why, of course, it is required that G±a
b = 8πT±a

b
and ρa

b = 8πτ ab.
On the basis of these relations (and some others which

will not be specifically relevant for this work), the underlying
thin-shell formalism can be used to join different partitions
of spacetime, including those where parts of Σ are either null
or non-null, that is, either null or spacelike or timelike.
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In the latter cases, where portions of the thin shell are
allowed to be non-null, the above general formalism traces
back to the Darmois–Israel method, which is based on a
3 + 1-decomposition of spacetime. The geometric setting
used in this method is essentially the same as that of the
general formalism mentioned above, with the only exception
being that it is additionally required a priori that the ambi-
ent spacetime (M, g) admits a foliation in either spacelike
or timelike hypersurfaces and a boundary portion Σ (with
fixed causal structure) that can be embedded in said folia-
tion of spacetime. This additional restriction of the geometry
of spacetime allows the consideration of a congruence of
curves generated by a normalized vector field na that is nec-
essarily orthogonal to Σ and therefore fulfills nana = ε

and ∇[cna] = 0 with ε = ±1. This normal vector field
(and its associated co-normal) can then be used to define
the first and second fundamental forms hab = gab + εnanb
and Kab = hcah

d
b∇(cnd).

In order to find the corresponding shell equations and
to guarantee that the spacetime partitions (M±, g±) can
be ’combined’ to the ambient spacetime (M, g) in the
given case, it must be ensured that the said pair of space-
times exhibits spacelike or timelike foliations compatible
to that of the ambient spacetime (M, g). Essentially, this
means that pairs of either timelike or spacelike generat-
ing vector fields na± with the properties n±

a n
a± = ε and

∇±
[cn

±
a] = 0 must exist, which can be appropriately iden-

tified across the shell in a manner similar to the general
formalism. By definition, these vector fields have to be
orthogonal to the respective first and second fundamental
forms h±

ab = g±
ab + εn±

a n
±
b and K±

ab = h±c
a h±d

b ∇±
(cn

±
d).

In addition, it needs to be assumed that the three-metrics
of the spacetime partitions are, at least, continuous across
Σ , so that [hab] = 0 is valid; although [Kab] = 0 does
not necessarily have to apply in this context. The corre-
sponding shell equations then yield conditions for match-
ing the Cauchy data (h±

ab, K
±
ab) of the bounded spacetimes

(M±, g±) in such a way across Σ that they are consis-
tent with the Cauchy data (hab, Kab) of the ambient space-
time (M, g). These shell equations result directly from the
general formalism discussed above if one sets ξa ≡ εna ,
ζ a ≡ na , oca ≡ hca = δca + εncna and γ ab = ε[Kab] in
relations (5)–(9), thus proving the fact that said formalism
actually contains the Darmois–Israel framework as a special
case.

Accordingly, in order to avoid the existence of ill-defined
singular contributions to the field equations, it must be
required that the pairs of first and the second fundamental
forms associated with pairs of spacetimes (M±, g±) satisfy
the junction conditions

[hab] = 0 (10)

and

[Kab] = 8πε

(
τab − 1

2
habτ

)
; (11)

conditions which represent, in a quite generic way, geomet-
rically necessary requirements for the identification of the
corresponding Lorentzian manifolds.

It is worth noting that even though the given approach is
formulated in a coordinate-independent manner, it still leads
back to alternative formulations of junction conditions, for
example those given by Lichnerowicz or O’Brian and Synge
in case of the special choice of so-called admissible coordi-
nates on both sides of the layer [2].

Furthermore, there is also the case that Σ is locally null;
a case that seems to require a more deliberate approach than
the traditional non-null description of the problem not least
due to the fact that the first fundamental form is degenerate on
a null hypersurface and the associated null normal is not only
orthogonal but also tangential to it. Nevertheless, assuming
the existence of two pairs of null congruences generated by
a pair of lightlike vector fields la and ka that are orthogonal
to a spacelike two-slice S ⊂ Σ , it turns out that the general
formalism is versatile enough to include said special case as
well; giving rise to the same shell equations previously found
in [5]. These equations can be obtained from expressions (5)–
(9) if the choice ξa ≡ la , ζ a ≡ ka and oca = δca + kcla is
made in this context and a covariant symmetric two-form
Hab = 2ocao

d
b∇(cld) is specified, which (in the continuous

null limit of the Darmois–Israel framework) has the same
jump discontinuity features as the extrinsic curvature across
Σ . More precisely, while in the non-null case generically
one has γbc ≡ ε[Kbc], in the lightlike case, where there is
a different geometric setting, one has γab ≡ [Hab]. With
regard to this specific quantity, which shall be called Mars-
Senovilla two-form from now on, the above series of junction
relations turns into

[Hab] = 0 (12)

and therefore becomes, in contrast to the non-null case in
which the right hand side is non-vanishing, a trivial set of
relations; relations that guarantee that the Einstein tensor of
the geometry contains no singular part proportional to Dirac’s
delta distribution (and thus no surface layer).

However, as shown in [4], these junction relations can
actually be relaxed in the given null case by requiring that
the respective Mars-Senovilla two-forms meet the conditions

[Hab]kb = [H] = 0, (13)

which also guarantee that the singular part of the curvature
tensor distribution vanishes identically.
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Anyhow, junction conditions do not necessarily have to
be based on a 3 + 1-decomposition of spacetime; they also
have been formulated in the 2+2-framework toward general
relativity or in space-time approaches that are based on a
1 + 1 + 2-decomposition of spacetime.

In particular, as shown by Penrose in [10], junction condi-
tions can be formulated (in a coordinate dependent manner)
which are based on a dual null foliation of spacetime in space-
like surfaces. These conditions form the basis of Penrose’s
now infamous cut-and-paste method, which provides the for-
mal basis for the description of gravitational shock wave
spacetimes in general relativity and turns out to be closely
related to the thin shell framework in specific applications.

Besides that, in order to characterize boundary portions
that possess a ’corner’ or a ’sharp edge’, another set of junc-
tion relations has been formulated in the literature in the
past [11]. For the purpose of formulating said conditions,
a timelike generating vector field na and a spacelike one
ua associated with respective timelike and spacelike con-
gruences have been considered, which yield spacelike and
timelike foliations and thus a 1 + 1 + 2-decomposition of
spacetime. Based on the existence of said foliations, the fact
was exploited that the spacetime metric gab can be decom-
posed in the form gab = −nanb + hab = uaub + γab with
hab = qab + sasb and γab = qab − vavb, respectively, where
sa and va are spacelike and timelike unit normals orthogonal
to na and ua and qab is the induced Riemannian metric on
a spacelike two-slice S ⊂ Σ . Due to the fact that the given
vector fields na and ua are not assumed to be normalized with
respect to each other in this context, it then typically turns
out that one has to deal (in the case of a spacelike joint) with
a non-vanishing edge ‘angle’ Θ = cos−1((n, u)) in such
approaches. This non-vanishing quantity has been shown to
lead to jump discontinuities and therefore to an additional set
of junction conditions given by

[Θ]qab = Tab, (14)

where Tab is the stress-energy tensor restricted to S. This par-
ticular set of conditions completes the list of junction con-
ditions discussed in this work. In the following, however,
only conditions (10) and (11) or conditions (12) and (13)
will prove to be really relevant, since the validity of these
conditions will be used as a basis for a geometric extension
of the general thin shell formalism.

The reason why such a geometric extension proves useful
(or even necessary) is the following: When using the thin
shell formalism one must expect that the boundaries of the
spacetimes to be glued together can be singular hyperfaces.
But that means that the curvature along these hypersurfaces
can grow infinitely, which is problematic as long as no plau-
sible physical reason for the occurrence of such infinities is
given, such as possibly the occurrence of a relativistic shock

wave at the boundary of the spacetimes or something simi-
lar. Besides that, the general thin shell formalism suffers from
the problem that the singular parts of the energy-momentum
tensor occurring in (9) may fail to obey relevant energy condi-
tions and, what is even worse, it turns out that said conditions
cannot even be formulated in all cases of relevance, such as,
in particular, in the case of the dominant energy condition.
The main reason for this drawback is that in order to set up
the dominant energy condition, one would have to deal ill-
defined products of distributions, that is, with ’squares’ of
the delta distribution.

The exact same problem occurs if the metrics g±
ab con-

sidered in (1) are not C2-metrics, but have lower regularity.
The situation becomes particularly alarming if one of the
metrics of the two spacetime partitions (M±, g±) contains
a part that is proportional to the Dirac delta distribution. To
illustrate this, the specific case shall be considered in which
g+
ab = g0

ab + δeab and g−
ab = g0

ab, where g0
ab is some smooth

C2-metric and eab and is a smooth tensor field. In this case,
taking advantage of the fact θδ ≈ Aδ, where A is a con-
stant and ≈ means association in the sense of distributions
[12], splitting (1) yields gab ≈ g0

ab + Aδeab and Eqs. (7)–(9)
become (similar as in the case of the generic energy condi-
tion) relations that contain ’squares’ of the delta distribution.
Consequently, in this particular case not even the field equa-
tions of the theory can be defined meaningfully.

In response to these defeciences of the general thin shell
formalism, the remainder of the present work will address the
problem of joining different spacetimes from a slightly dif-
ferent angle, namely by means of a geometric approach based
on the use of metric deformations. This approach generalizes
the thin shell formalism in such a way that in important spe-
cial cases the treatment of the above mentioned problems
becomes possible in full accordance with the junction con-
ditions of the theory. To make this possible, the following
two steps are taken: First, the junction conditions of the gen-
eral thin shell formalism are reformulated in the language of
the geometric deformation approach, and second, the sup-
port properties of the corresponding deformation fields are
restricted so that all types of junction conditions discussed in
this section are fulfilled. In this way, as will be explained, the
concept of local spacetime geometry is introcued in relation
to a fixed ambient geometry of spacetime.

2 Local geometries and deformations of spacetime

In order to approach now the subject of joining spacetimes
from a different angle, namely by using special metric defor-
mations that allow one to meet the junction conditions dis-
cussed in the previous section, two different spacetime parti-
tions (M±, g±) of an ambient spacetime (M, g) shall once
more be considered. These partitions, as before, shall be
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assumed to be bounded by a hypersurface Σ which forms a
part of the boundary of both spacetimes such that Σ ⊂ ∂M±
applies.

Without any further assumptions about the geometric
structures of both of the spacetimes (M±, g±), both parti-
tions are allowed to exhibit totally different geometric proper-
ties anywhere except for their boundary, where, by the intro-
duced junction conditions, both spacetimes have to possess
identical induced geometries. As a necessary prerequisite
for obtaining a spacetime (M, g) with connected manifold
M = M+ ∪ M−, it must therefore be ensured that said
spacetime partitions can be identified along the boundary
portion Σ in such a way that the junction conditions dis-
cussed in the previous section are met.

In order to ensure this, the same approach as in the previous
section shall be followed, namely different bases {ξa±, Ea

ρ}
and co-bases {ζ±

a , eρ
a } shall be considered at each side of the

boundary, which can be identified along Σ in the same way
as in Sect. 1 of this work.

Against this background, the main task now is to construct
a spacetime (M, g) with connected Lorentzian manifold
M = M+∪M−, with local spacetime partitions (M±, g±)

that may have different geometric structures everywhere
except along the boundary hyperface Σ .

To face this task, the following observation proves useful:
A change of one spacetime geometry with respect to another
can be characterized by considering a deformation of the
associated metrics, where deformation in this context means
any backreaction that changes the geometric properties of a
given spacetime metric with respect to a given background
metric and a given class or group of deformation fields prop-
agating on the corresponding background spacetime.

To make this final statement precise, let gab be a funda-
mental metric field associated with the ambient spacetime
(M, g) with the manifold structure M = M+ ∪M−. Con-
sidering the tensor deformations

gab = g±
ab + e±

ab (15)

and

gab = g±ab + f ±ab, (16)

one can define the non-vanishing tensor fields g±
ab = gab −

e±
ab and g±ab = gab − f ±ab, which shall be required to be

at least C1, although they may actually turn out to be C∞
0

(locally) in various cases of interest. These tensor fields a
priori do not represent a metric and an inverse metric, respec-
tively. Instead, the objects in question are special tensor fields
whose properties depend on the choice of the deformation
tensor fields e±

ab and f ±ab.
Using these deformation tensor fields, one can re-write

various geometric relations involving the metric gab of

(M, g) and its inverse gab. Specifically, provided that that
the tensor fields e± b

a := e±
acg

±cb = e±
ac(g

cb − f ±cb) and
f ± b
a := g±

ac f
±cb = (gab −e±

ab) f
±cb are identified as tensor

fields on (M, g) , the relation

gabg
bc = δ c

a , (17)

can be brought into the form

e± b
a + f ± b

a + e± c
a f ± b

c = 0. (18)

In addition, one can define the difference tensors C±a
bc =

1
2 (g±ad + f ±ad)(∇±

b e
±
dc + ∇±

c e
±
bd − ∇±

d e
±
bc) in relation to

the unique Levi–Civita connection defined on (M, g), which
then allows one to decompose the Riemann tensor of the
geometry in the following form

Ra
bcd = R±a

bcd + E±a
bcd , (19)

where E±a
bcd = 2∇±

[cC
±a
d]b + 2C±a

e[c C
±e
d]b shall apply by defini-

tion. By contracting indices, one finds that the Ricci tensor
takes the form

Rbd = R±
bd + E±

bd , (20)

where E±
bd = E±a

bad = E±
bd = 2∇±

[aC
±a
d]b+2C±a

e[aC
±e
d]b follows

from the foregoing definition. By repeating that procedure,
the decomposition of the Ricci scalar

R = R± + g±bd E±
bd + f ±bd R±

bd + f ±bd E±
bd (21)

can also be obtained. However, as a direct consequence, Ein-
stein’s equations

Gab = 8πTab (22)

can be re-written in the form

G±
ab + ρ±

ab = 8πTab, (23)

provided that ρ±
ab = ψ±

ab − 1
2g

±
ab( f

±cd R±
cd + f ±cd E±

cd) −
1
2e

±
ab(R

± + f ±cd R±
cd + g±cd E±

cd + f ±cd E±
cd) with ψ±

ab =
E±
ab − 1

2g
±
ab(g

±cd E±
cd) holds in the given context.

Having obtained these relations, the following observa-
tion can be made: By requiring that the deformation tensor
fields e±

ab and f ±ab defined above vanish somewhere in local
subregions of the manifold M, the tensor fields g±

ab coincide
locally with the metric gab of the spacetime (M, g). There-
fore, the following can be concluded: as long as the tensor
fields e±

ab and f ±ab are defined in such a way that they vanish
globally inM± ⊆ M, which is certainly the case if the com-
ponents of said fields are C∞

0 functions or distributions with
compact supports lying in the complementsM±

C ≡ M\M±

123



Eur. Phys. J. C (2020) 80 :1132 Page 7 of 19 1132

of the Lorentzian manifolds M±, the tensor fields g±
ab repre-

sent well-defined continuous (possibly even smooth) metric
fields, but only within the local regions M±. ’Outside’ these
regions, however, they are just specific tensor fields, so that
it can be concluded that the pairs (M±, g±) define pairs of
local spacetimes, i.e. pairs of spacetimes whose metrics g±

ab
represent well-defined tensor fields on (M, g), which coin-
cide locally with the ’correct’ metric of spacetime, which is
gab.1

Probably the simplest way to construct deformation fields
e±
ab and f ±ab with the required properties is to make an ansatz

of the form e±
ab = χM±

C
e±
ab, where the χM±

C
are indicator

functions (also called characteristic functions) with compact
support in M±

C ≡ M\M± and e±
ab are continuous, at least

twice differentiable tensor fields. Since the Heaviside step
function is a special indicator function, which is at the same
time a generalized function, one can always choose said func-
tions and the corresponding deformation fields in such a way
that the distributional splitting (1) results as a special case of
the given construction.

However, as it turns out, there is no need in general to
require that χM±

C
are indicator functions. Rather, it suffices

to choose said functions as smooth transition functions (or a
sequence of such functions), which provide a smooth transi-
tion from zero to one in the unit interval [0, 1]. A transition
(alias cut-off) function with these particular properties can be
obtained by considering the non-analytic smooth function

ψ(x) :=
{
e− 1

x

0
x>0
x≤0

, (24)

which meets the conditions 0 ≤ ψ ≤ 1 and ψ(x) > 0 if
and only if x > 0. This function can be used to define the
transition function

χ(x) = ψ( x0
x )

ψ( x0
x ) − ψ(1 − x0

x )
, (25)

which contains a constant x0 that ensures that the exponent
in (24) is dimensionless and therefore takes a value of zero
for x < 0, a value of one for x ≥ x0 and is strictly increasing
in the interval [0, 1]. This can then be used to give the further

1 In this context, it is important to note that neither e±
ab nor f ±ab are

assumed to be small and that both pairs of objects define a whole class
of tensor deformations which in principle can become arbitrarily large,
so that for a given vector field wa , which is causal with regard to one
of the local metrics g±

ab, there is no need for it to be causal with regard
to the other local metric g∓

ab or the ambient metric gab in the comple-
ment M\M± of M±. However, in the opposite case, the deformations
may also become arbitrarily small, so that they become the subject of
relativistic perturbation theory.

definition

1 − χ(x) = ψ
(
1 − x0

x

)
ψ

( x0
x

) − ψ
(
1 − x0

x

) , (26)

which has the same properties as χ(x), but is strictly decreas-
ing.

By using one of these transition functions instead of the
Heaviside step function, a smooth analogon of the distribu-
tional splitting (1) can then obtained. It is worth noting that
similar approaches can, of course, be given by considering
bump functions or other smooth functions with similar sup-
port properties, which may be constructed from convolutions
of smooth functions with mollifiers.

Since in all these approaches, the full Einstein equations
(22) reduce to the restricted local Einstein equations G±

ab =
8πT±

ab on (M±, g±), it becomes clear that the remaining
equations

ρ±
ab = 8πτ±

ab, (27)

can be determined independently in agreement with the intro-
duced junction conditions, where, of course, τ±

ab := Tab−T±
ab

applies in the given context.
However, it must be stressed that there is a price to be paid

in this context: By introducing transition functions of the
form (25) and (26), the manifold structure is no longer M =
M− ∪ M+, but rather M = M− ∪ O ∪ M+, where O is
some transition region in which χ(x) continuously increases
until it reaches a value of one. Consequently, by considering
transition function of the above form in order to make sure
that there is a smooth geometric transition between the pairs
of local spacetimes (M±, g±), one ends up in a situation
where has to deal with three spacetime partitions (M±, g±)

and (O, g). This implies, however, that one suddenly has
to deal with a completely new geometric setting, which is
slightly different from the one usually considered by general
thin-shell formalism.

As a direct consequence, however, the question arises
which junction conditions need to be fulfilled at the bound-
aries Σ± = ∂M± ∩ ∂O. Beyond that, generally speaking,
the question arises of how the junction conditions of general
thin shell formalism can be formulated to describe the first
case mentioned above and under which circumstances these
conditions can be fulfilled in the given setting.

To face these questions, one may take a closer look at
conditions (10)–(13) of the previous section. Sure enough,
these conditions, if they were to be fulfilled, will lead to con-
straints on the deformation fields e±

ab and f ±ab. More specif-
ically, considering the case in which the manifold structure is
M = M+∪M−, said conditions lead to the requirement that
the fields e±

ab and f ±ab match exactly at Σ and have compact

123



1132 Page 8 of 19 Eur. Phys. J. C (2020) 80 :1132

support inM\{M±\Σ}, thereby ensuring that the spacetime
partitions (M±, g±) can pointwise be joined along Σ .

To see this, one may consider that in the given setting,
the junction conditions (10) and (11) of the Darmois–Israel
framework require

[eab] = 0 (28)

and

nah
e
bh

f
c [Ca

ef ] = 8πε

(
τbc − 1

2
hcbτ

)
(29)

to hold in a suitable coordinate chart. In the lightlike case,
on the other hand, junction condition (12) requires

lao
e
bo

f
c [Ca

ef ] = 0 (30)

to be fulfilled. Consequently, however, it can be concluded
that the spacetime partitions (M±, g±) can always be
smoothly joined – regardless of the causal structure of the
boundary hyperface – if

[eab] = [ f ab] = 0, [Ca
bc] = 0 (31)

applies in a suitable coordinate chart. In the smooth case
mentioned, however, the case may very well occur that (30)
is valid instead of [Ca

bc] = 0 if Σ is null, or that the right side
of (29) is zero if Σ is not null, since the condition [Ca

bc] = 0
can only be met in special cases. Moreover, since not all
spacetimes can be smoothly joined, it may be required in
cases where it is not possible to fulfill condition (31) that

[eab] = [ f ab] = 0, [Ca
bc] �= 0 (32)

applies and conditions (29) or (30) are met as well. However,
these are exactly the conditions of the thin shell formalism
simply transferred to the given geometric setting; conditions
that are known to produce reasonable results when the metrics
to be glued are C2-metrics.

The reformulation of these conditions in the context of the
geometrical deformation approach developed in this section
can be vindicated by the fact that said approach – in com-
bination with Colombeau’s theory of generalized functions
[13,14] - allows an extension of the ‘classic’ thin shell for-
malism. In particular, as shall be substantiated by concrete
examples in the next section, it becomes possible to glue
spacetime metrics that differ by deformation terms that are
proportional to Dirac’s delta distribution, but are nevertheless
of such a form that the condition (32) and the conditions (29)
or (30) can still be fulfilled. The reason for this is that the geo-
metric deformation approach provides direct information on
certain problematic terms and expressions that require care-
ful treatment or, in other words, need to be studied in more

detail using Colombeau’s theory. In this way, the approach
enables the treatment of problems that would go beyond the
usual scope of the formalism due to the low regularity of the
spacetime metrics to be glued. Concrete examples, however,
will only be given later – in the next section of this work.

Anyway, the situation is completely different when the
metrics of the spacetime partitions (M±, g±) are not glued
together directly, but rather joined via using smooth transition
functions of the form (25) or (26). In this particular case,
the manifold structure is M = M− ∪ O ∪ M+, where O
is a transition region with boundary hypersurfaces Σ± =
∂O ∪ ∂M±, and condition (31) takes the form

e±
ab = f ±ab = 0, C±a

e f = 0. (33)

As may be noticed, this condition is fulfilled on Σ± due
to the fact that the deformation fields e±

ab and f ±ab have
been chosen to be local tensor fields with the property that
all their components possess compact supports in M\M±.
To be more precise, based on the fact that e.g. the choice
e±
ab = χ±e±

ab can always be made in the given context, where
χ± are smooth transition functions of the form (25) in which
the constant x0 is replaced by constants x± and e±

ab are con-
tinuous, at least twice differentiable tensor fields, it is clear
from the very outset that condition (33) and therefore either
condition (29) or (30) are met as well on Σ±.

The same line of argument can be used to handle a vari-
ety of smooth geometric transitions, i.e. to include partitions
M = M1 ∪ O1,2 ∪ M2 ∪ · · ·Mn−1 ∪ On−1,n ∪ Mn of
the ambient manifold M, where the Ok,k+1 are transition
regions connecting the four-dimensional Lorentzian mani-
folds Mk and Mk+1 with k = 1, 2, ..., n − 1. This can be
achieved by condsidering the deformation relations

gab = g1
ab + e1

ab = g2
ab + e2

ab = ... = gnab + enab (34)

and

gab = gab1 + f ab1 = gab2 + f ab2 = ... = gabn + f abn , (35)

which are given with respect to associated sequences of
deformation fields e1

ab, e2
ab, ...,enab and f ab1 , f ab2 ,..., f abn that

are chosen in such a way that e(k)
ab = χke

(k)
ab for k =

1, 2, . . . , n, where each χk is a transition function of the form
(25) with x0 replaced by xk and e(k)

ab is a continuous, at least
twice differentiable tensor field. The corresponding defor-
mation fields must be given such that they obey consistency
relation (18) and also

e(k)
ab = f ab(k) = 0, C (k)a

e f = 0. (36)

By requiring this, however, it becomes clear that the field
equations of the theory will have a completely different form
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locally than globally. Therefore, from a local point of view,
the structure of the said equations will change over time, just
like that of the Einstein–Hilbert action. This proves to be
relevant for the action principle of the theory.

In the case that the ambient spacetime (M, g) exhibits a
boundary ∂M without edges or corners, this action is given
by

S[g] =
∫
M

Rωg +
Σ ′∫

Σ

Kωh, (37)

where Σ and Σ ′ are spacelike hypersurfaces and ωg ≡√−gd4x is the four-volume element and ωh ≡ √
hd3x is

the three-volume element of spacetime. If the same bound-
ary ∂M of the ambient spacetime, on the other hand, does
indeed contain a sharp edge or corner, its action alternatively
can be specified by Hayward’s action [11,15]

S[g] =
∫
M

Rωg +
Σ ′∫

Σ

Kωh +
∫
B

K̃ωγ +
Ω ′∫

Ω

sinh−1 ηωq , (38)

where ωh ≡ √
hd3x , ωγ ≡ √−γ dtd2x and ωq ≡ √

qd2x
are volume forms associated with the individual parts of
the boundary ∂M of (M, g), which consists of two space-
like hypersurfaces Σ and Σ ′ and a timelike hypersurface B,
which intersects the spacelike hypersurfaces Σ and Σ ′ in Ω

and Ω ′. Here, the quantities K and K̃ are extrinsic curvature
scalars and η := naua is a generally non-zero scalar param-
eter originating from the fact that the boundary normals na

and ua are usually non-orthogonal in the given case.
Regardless of whether one or the other type of action is

considered in this context, it may happen that, in the course
of a geometric transition, the structure of the metric does not
change momentarily over time, whereas that of the Einstein
equations does very well. In such a case, the local metric and
the ambient metric do coincide, but neither the corresponding
field equations nor the corresponding action functionals (37)
or (38) do so as well.

Considering the simplest case of two local spacetimes
(M±, g±), the changes in the field equations can be
described by Eqs. (23) and (27). The reason why these
changes have to be taken into account here are the following:
The tensor fields e±

ab may be vanishing in M\M±, so that
it may happen that e±

ab → 0 due to the fact that e±
ab → 0

in M\M±. Therefore, it must be expected that C±a
e f → 0

applies in the event that χ± → 0, but not in the event that
e±
ab → 0, in which case C±a

e f �= 0 rather applies in general.
Therefore, it may occur that the local metric and the ambient
metric coincide, but not the corresponding curvature fields.

As a result, the structures of the action and the field equa-
tions of the theory may change, but those of the local metrics

may not. In the case that an ambient spacetime (M, g) with
Lorentzian manifold M = M1 ∪O1,2 ∪M2 ∪ · · ·Mn−1 ∪
On−1,n ∪Mn is given, which exhibits a boundary ∂M with-
out edges or corners, the change of the field equations in the
course of the k-th geometric transition can straightforwardly
be determined to be

G(k)
ab + ρ

(k)
ab = 8πTab, (39)

where ρ
(k)
ab = ψ

(k)
ab − 1

2g
(k)
ab ( f (k)cd R(k)

cd + f (k)cd E (k)
cd ) −

1
2e

(k)
ab (R(k) + f (k)cd R(k)

cd + g(k)cd E (k)
cd + f (k)cd E (k)

cd ) with

ψ
(k)
ab = E (k)

ab − 1
2g

(k)
ab (g(k)cd E (k)

cd ) applies in the given context.

Consequently, using the definition τ
(k)
ab := Tab − T (k)

ab , one
obtains the deformed field equations

ρ
(k)
ab = 8πτ

(k)
ab . (40)

Also the change of the Einstein–Hilbert action can be deter-
mined step by step in such a case. Assuming for this pur-
pose that 1 + ei is the matrix representation of the object
δ a
b + e(i) a

b for the i-th spacetime partition (Mi , gi ), the

relation |X | = eln |X | = etr ln X = 1 + ∑∞
m=1

(tr ln X)m

m!
between the determinant and the trace of a matrix X can be
set up in order to obtain the identity

√−g = (1 +ϕi )
√−gi ,

where ϕi =
∞∑

m=1

(
tr ln(1+e(i))

)m
2mm! applies by definition. More-

over, using the fact that one can always decompose the lapse
function N of the ambient spacetime with respect to the
lapse function Ni of the i-th local background such that
N = Ni + e(i)

00 , the result obtained implies that
√
h =

(1 + ϕi ) Ni

Ni+e(i)
00

√
hi = (1 + ϕi ) 1

1+ e(i)00
Ni

√
hi =: (1 + ϕi )(1 +

ψ i )
√
hi , where ψ i =

∞∑
n=1

(
− e(i)

00
Ni

)n

holds by definition. In

addition, the extrinsic curvature tensor Kab of (M, g) can
be decomposed with respect to the i-th extrinsic curvature
tensor Ki

ab of the i-th local spacetime (Mi , gi ) in the form
Kab = Ki

ab + κ i
bd .

Consequently, in the case of a boundary ∂M without edges
or corners, the corresponding action decomposes according
to the rule

S[g] ≡ S[g1] + Σ[g1, e1, f 1] = ... = S[gn] + Σ[gn, en, f n])

= 1

n

{
n∑

i=1

S[gi ] +
n∑

i=1

Σ[gi , ei , f i ]
}

, (41)

where

S[gi ] =
∫
Mi

Riωgi +
Σ ′

i∫
Σi

Kiωhi (42)
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and

Σ[gi , ei , f i ]

=
∫
Mi

χ i Riωgi +
Σ ′

i∫
Σi

(
ϕi + ψ i + ϕiψ i

)
Kiωhi

+
∫
Mi

(1 + ϕi )
(
gbdi Ei

bd + f bdi Ri
bd + f bdi Ei

bd

)
ωgi

+
Σ ′

i∫
Σi

(
1 + ϕi )(1 + ψ i )(gbdi κ i

bd + f bdi K i
bd + f bdi κ i

bd

)
ωhi

+
∫

M\Mi

(1 + ϕi )
(
Ri + gbdi Ei

bd + f bdi Ri
bd + f bdi Ei

bd

)
ωgi

+
Σ\Σ ′

i∫
Σ\Σi

(
1 + ϕi )(1 + ψ i )(Ki + gbdi κ i

bd + f bdi K i
bd + f bdi κ i

bd

)
ωhi

(43)

applies for the i-th part of the action. Thus, it can be seen that
the action of the ambient spacetime (M, g) can be decom-
posed into a system of ’subactions’ S[gi ] + Σ[gi , ei , f i ],
whose variation with respect to gabi possibly leads to mod-
ifications of the ’standard’ field equations obtained from a
variation of S[gi ] with respect to gabi .

A similar, but slightly more complicated decomposition
relation is also obtained in the case of a boundary ∂M with
edges or corners, which is consistent not least due to the fact
that Hayward’s action has been shown to be additive in a
generalized sense [16]. The associated formalism therefore
allows one to add up the Einstein–Hilbert actions of space-
times with non-smooth boundaries and different topologies
and causal structures.

However, it is important to note in this context that all mod-
ifications to the Einstein’s field equations and the Einstein–
Hilbert action need to be consistent with the geometric struc-
ture of the ambient spacetime (M, g). This point marks an
important difference to alternative multi-metric theories of
gravity treated in literature for which a priori no such corre-
spondence is required [17–20].

This proves to be a very important point in that defor-
mations of spacetime metrics do not always have to lead to
physically meaningful results. Consequently, it is important
to ensure that the respective fields are chosen in a mean-
ingful way. In order to ensure this and to treat models of
physical interest, it generally proves to be useful to consider
only deformation fields, which allow the fulfillment of suit-
able energy conditions [21] on (M, g). By requiring this, it
is ensured that the resulting confined stress-energy tensor is

well-defined from a physical point of view. Moreover, it is
ensured that the same conditions locally hold on (M±, g±).

Anyway, after this has now been clarified, it remains to
be discussed what advantages working with the deformation
approach presented in this section has over working with the
thin shell formalism presented in the previous section.

One of the main advantages of working with the defor-
mation approach is more general and versatile than the thin
shell formalism and and other closely related approaches to
the subject, such as, in particular, Penrose’s cut-and-paste
method. This is not least because it allows the metrics and
curvature fields of pairs of local spacetimes to be smoothly
deformed into each other via introducing smooth transition
functions instead of step functions. In this context, the main
advantage compared to the thin shell formalism is that the
geometric deformation approach cannot fail in the sense that,
in principle, a smooth geometric transition always exists for
arbitrary spacetime pairs. In contrast, the gluing of arbitrary
spacetime pairs is not always possible.

In addition, as shall be explained in greater detail in the
next section on the basis of concrete geometric examples, the
deformation approach allows for a more careful handling of
the subject in the sense that it allows the treatment of prob-
lems where the thin shell method is expected to lead to distri-
butionally ill-defined terms, which cannot be properly treated
from a mathematical point of view. It turns out, however, that
the thin shell formalism can be extended using Colombeau’s
theory of generalized functions in order to enable a mathe-
matically rigorous treatment of the problematic terms men-
tioned, whereas all extensions of the formalism mentioned
prove to be completely consistent with the geometric defor-
mation approach.

Furthermore, in contrast to the thin shell formalism, the
geometric deformation approach allows new solutions of
the field equations to be constructed using transformations
that leave the geometric character of the background metric
unchanged, but lead to a new ambient spacetime or classes
of ambient spacetimes.

Last but not least the deformation formalism includes the
perturbative approach to general relativity as a special case.
Not least for this reason, it allows one to weaken conditions
(28)–(33), which are designed to meet the previously dis-
cussed junction conditions in various cases, in a perturbative
sense, so that they are no longer exact, but only approxi-
mately valid, i. e. up to higher orders in a fixed parameter or
systems of parameters.

All this will be explained in the next section using con-
crete geometric models. For the sake of simplicity, however,
only simple models will discussed, which can be obtained by
specifying a suitable deformation of a (usually highly sym-
metric) background geometry.
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3 Geometric deformations, thin shells and
distributional metrics of spacetime

In the previous section, it was argued that the geometric
deformation framework is more general than the thin shell
formalism and, moreover, can be used (in combination with
Colombeau’s theory of generalized functions) to extend said
formalism to such an extent that the gluing of spacetime met-
rics with low regularity becomes possible. Specifically, it was
stressed that spacetime metrics with components containing
delta functions can be glued together using the geometric
deformation framework. This shall now be demonstrated by
some concrete geometric examples, where – on the basis of
the metric deformation formalism discussed in the previous
section – it will be made clear that certain classes of dis-
tributional spacetimes are better suited to be glued together
than others. In due course, it will be made clear that the thin
shell formalism not only yields the exact same results as the
deformation approach, but rather emerges as a special case
from this approach. Furthermore, it will be made clear that
deformation formalism, in contrast to thin shell formalism,
allows the gluing of arbitrary pairs of local spacetimes by
using suitable transition functions.

To deal with the points mentioned step by step, different
classes of spacetimes with deformed metrics shall be consid-
ered. The very first of these classes will be the so-called gen-
eralized Gordon class [22–24]; a class of spacetimes (M̄, ḡ)
with metrics of the type

ḡab = gab + f nanb. (44)

This special class of spacetimes can be obtained directly by
deforming the metric gab of a given a background spacetime
(M, g), using only two different objects: Some function f ,
whose form is either known in advance or must be determined
by solving the field equations of the theory, and a smooth
non-vanishing co-vector field na = gabnb, which shall be
assumed to be timelike in relation to the background metric
gab, i.e. gabnbnb < 0. For the sake of simplicity, said vector
field shall even be assumed to be normalized with respect to
the background metric, so that gabnanb = −1 applies in the
present context.

A well known example of a spacetime metric, which lies
in the resulting generalized Gordon class of metrics, is the
so-called acoustic metric, which plays an important role in
describing deflections of light or sound in bodies with differ-
ent optical densities or acoustic properties in both special and
general relativity. There are, however, also other important
representatives of this class, many of which lie in a closely
related class of metrics, the so-called generalized conformal
Gordon class, which is a subclass of the generalized Gordon

class with metrics of the form

ḡab = Ω2(gab + f nanb). (45)

Important representatives of this subclass have been studied
within the theory of so-called acoustic black holes and in
the context of analogue gravity; theories that aim to explain,
among other things, the geometric structure of acoustic black
holes as well as electromagnetic phenomena in linear media
and the behavior of condensed matter models in general rel-
ativity or even more general theories of gravity [24–28].

Given this special class of metrics and associated space-
times, one may now ask the question of how two spacetimes
of this class can be joined with each other. To address this
question, one may consider a thin shell splitting and there-
fore make the specific choice f = θ f+ + (1 − θ) f− for
the function f in (44), where for the time being it shall be
assumed that f± are C2-functions. In addition, it may be
required that [ f ] = 0 holds on a spacelike hypersurface Σ

in spacetime. The resulting form of metric can then straight-
forwardly be brought into a form of type (1) by adding and
subtracting a term term of the form θgab, provided that the
definitions g±

ab ≡ gab + f±nanb are used in the present con-
text. But this makes clear that by this special splitting of
the function f , a splitting of the metric in the sense of the
thin shell formalism results. In a similar way, however, a
decomposition of the metric in the sense of the geometric
deformation approach, i.e. a splitting of the form (15), can
be obtained. To obtain such a decomposition of the met-
ric, one may simply add and subtract the term f±nanb in
(44), which yields ḡab = g±

ab + e±
ab, where the definitions

e+
ab ≡ (1 − θ)( f− − f+)nanb and e−

ab ≡ θ( f+ − f−)nanb
are used. Consequently, as can be seen, both decompositions
are equal, so that it becomes clear – due to the fact that it
is known that the thin-shell formalism for C2-metrics yields
mathematically meaningful results – that also the deforma-
tion approach must yield mathematically meaningful results
in the given case.

More precisely, in view of the fact that condition (18)
can readily be satisfied in a distributional sense by mak-
ing an ansatz of the form f +ab ≡ (1 − θ)

f+− f−
1+ f+− f− n

anb

and f −ab ≡ θ
f−− f+

1+ f−− f+ n
anb, it can be seen that conditions

(28) and (29) on Σ are automatically fulfilled due to the
that [ f ] = 0 must hold on that very hypersurface. To addi-
tionally meet the stricter conditions listed in (31), it must
be additionally required that [∂a f ] = 0 applies in the given
context. However, due to the fact that there is a great num-
ber of suitable choices for the functions f±, namely all, in
relation to which either [ f ] = 0 or [ f ] = 0 and [∂a f ] = 0
applies. Concretely, the functions f± may be selected asC∞-
functions with compact supports in M∓, so that it becomes
possible to construct local spacetimes in the sense of Sect. 2
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of this work. As can be seen, the fulfillment of the junction
conditions of the theory does not cause any problems in this
context.

A problem that arises on the other hand is that it can hap-
pen that a stress-energy tensor of the form (9) does not allow
the fulfillment of relevant energy conditions of the theory
or in special cases (as in the case of the dominant energy
condition) does not even allow a mathematically meaning-
ful formulation of the mentioned conditions at all. But apart
from this particular drawback, the formalism produces math-
ematically and physically meaningful results.

However, the situation changes drastically if the require-
ment that f±(x) are (at least) C2-functions is dropped, and it
becomes particularly problematic when the choice f± = f 0±δ

is made, where f 0±(x) are are C2-functions functions and
δ(x) is the Dirac delta distribution. In this particular case,
the association relation θδ ≈ Aδ, previously considered in
Sect. 1 of this work, can be used to show that relation (44)
takes the form ḡab = gab + f0δnanb; at least provided that
the definition f0 = A f 0+ + (1 − A) f 0− is used in the present
context. The problem, which then arises in this context, is
the following: Given this special distributional form of the
metric, one is confronted, as already indicated in Sect. 1, with
the serious problem that the curvature of spacetime and all
associated quantities cannot simply be calculated by consid-
ering products of the delta distribution. The reason for this
is that such an approach would lead to undefined ’squares’
of the Dirac delta distribution, which are ill-defined from a
mathematical point of view. For this reason, the thin shell for-
malism cannot lead to meaningful results in this particular
case.

However, there is a feasible way to deal with this issue,
which is to use Colombeau’s theory of algebras of general-
ized functions. Given a paracompact manifold X , the center
of attention of this theory is the so-called Colombeau algebra
G(X) (or rather an entire system of Colombeau algebras, as
there are many of such algebras), which is a commutative,
associative and unital differential algebra of manifold-valued
generalized functions. As such, it is an algebra consisting
of one-parameter families of C∞-functions ( fε(x))ε∈(0,1],
which have to meet certain growth conditions in the so-
called regularization parameter ε. To be more precise, G(X)

results from forming the quotient algebra Em(X)/N (X) of
the algebra of nets of moderate functions Em(X) = {( fε)ε ∈
C∞(X)(0,1] : ∀K ⊂⊂ X ∀P ∈ P(M) ∃l supx∈K |P fε(x)| =
O(ε−l)} by the ideal of nets of so-called negligible func-
tions N (X) = {( fε)ε ∈ C∞(X)(0,1] : ∀K ⊂⊂ X ∀m ∀P ∈
P(M) supx∈K |P fε(x)| = O(εm)}, where, in this context,
P(X) denotes the space of all linear differential operators
on the manifold X . It may be noted that G(X) contains the
vector space of Schwartz distributions as a linear subspace,
and the space of smooth functions as a faithful subalgebra.

Working with Colombeau algebras of generalized func-
tions has a decisive advantage over working directly with dis-
tributions: It allows one to perform nonlinear operations on
generalized functions, which result in well-defined expres-
sions coinciding with distributions in the limit ε → 0. There-
fore, by considering Colombeau algebras, it becomes possi-
ble to treat mathematical problems that cannot be treated
in the standard theory of Schwartz distributions. In particu-
lar, it becomes possible to perform nonlinear operations on
a so-called strict delta net (δε)ε∈(0,1] ∈ C∞(M̄)(0,1], which
converges to the delta distribution in the limit ε → 0 and thus
allows for a regularization of the delta distribution [12–14].
This offers the possibility to work with a delta sequence δε

instead of directly with the delta distribution and thus calcu-
late undefined products of the delta distribution in a math-
ematically rigorous way. However, the situation is subtle:
Different regularizations of the delta distribution can lead to
different results, which may lead to different physical inter-
pretations of the subject. To ensure that a physically mean-
ingful result is obtained in the end, one must therefore be
careful when selecting a preferred regularization by hand, as
can be illustrated very well by the example of the distribu-
tional Gordon metric discussed above.

To illustrate this, it is sufficient to consider a simple geo-
metric example. As a basis for considering such a simple
example, the simplifying assumption shall be made that a
covariantly constant timelike normal vector field na exists
on the background spacetime (M, g), i.e. a vector field with
the properties ∇anb = 0 and gabnanb = −1. Using this vec-
tor field to set up (in somewhat sloppy notation) a relation of
the form

ḡε
ab = gab + f0δε · nanb, (46)

where f0 is a continuous, at least twice differentiable function
and (δε)ε is a delta sequence that coincides with the delta
distribution in the limit ε → 0. To treat a particularly easy
example, it shall be assumed that the delta sequence δε and the
function f0 are specified in such a way that ∇aδε = −na δ̇ε

and ∇a f0 = −na ḟ0 applies. From (46) then follows directly

ḡab = lim
ε→0

ḡε
ab = gab + f0δ · nanb. (47)

Given this form of the metric, the inverse metric can be
obtained by making an ansatz of the form

ḡabε = gab + h0δε · nanb, (48)

where h0 is some function that has to be determined with
respect to f0 via solving

lim
ε→0

ḡε
abḡ

bc
ε = δ c

a . (49)
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Relation (48) then yields an inverse metric of the type

ḡab = lim
ε→0

ḡabε = gab + h0δ · nanb, (50)

whereas it turns out that the value of h0 will depend on the
choice of regularization of the delta distribution. For the pos-
sibility of selecting a particular regularization by hand leads
in this context to ambiguities or, to put it more precisely,
to different solutions for relations (49) and (50). For exam-
ple, there are regularizations of the delta distribution, which
lead to the result δ2 ≈ 0, while there are also other types
of regularizations, which instead lead to the result δ2 ≈ cδ
[12,29–32]. Both of these types of regularizations can be used
to handle the nonlinear operations on distributions,2 which
are necessary to solve relation (49), where both relations are
equally correct from a purely mathematical point of view.
This is why, from a physics standpoint, the question arises
as to which of the two choices of regularization is the most
reasonable and whether there are other useful regularizations
that allow to solve the problem at hand or not. Ultimately,
from the point of view of Colombeau’s theory of generalized
functions, there is no silver bullet to solve relations like (49)
and to derive from them, by means of solving (50), the form
of the inverse metric ḡab; in order get then in the position to
determine the form of the Levi–Civita connection Γ̄ a

bc and
the field equations of the theory, which, in the given context,
take the form

Ḡab ≈ 8π T̄ab, (51)

or equivalently

R̄ab ≈ 8π

(
T̄ab − 1

2
ḡabT̄

)
, (52)

where the LHS of (52) is given by R̄ab = Rab + Eab with
a deformed Ricci tensor distribution of the form Eab =
2∇[cCc

b]a + 2Cc
d[cC

d
b]a .

However, as may be realized, making an optimal choice
of delta regularization is also important from a mathematical
point of view, since such a choice plays an essential role in
the solution of the generalized field equations of the theory
for the given type of metric deformation. For in order to find
a solution of the mentioned equations, different problem-
atic distributional products must be determined, i.e. different
powers of the delta distribution as well as different powers of
its derivative. However, the calculation of such products is,
if at all, only possible for a suitable choice of regularization

2 Note that there are many ways of modeling δ2 in Colombeau’s theory,
but these will not be of further relevance at this point, because they are
not suitable for solving the problem at hand.

of the delta distribution. Regardless of the concrete choice to
be made, however, one finds in the given case that

Cc
d[cC

d
b]a ≈ 0 (53)

is valid, which implies that

Eab ≈ 2∇[cCc
b]a . (54)

Unfortunately, despite the validity of this identity, it gener-
ally proves to be difficult to solve the remaining part of the
field equations even when using Colombeau’s framework of
generalized functions. The problem here is not only that it
is difficult to find solutions of (51) and (52), respectively,
but that it must be expected that there are several solutions
for the problem under consideration, whereby it is unclear
which one is the most interesting and most suitable from
a physical point of view. As shown in the rear part of this
section, there are, however, also cases in which the above
mentioned regularizations allow one to join pairs of distri-
butional generalized Gordon spacetimes in a mathematically
rigorous way.

Notwithstanding that, from a pragmatic point of view, it
generally proves to be advantageous to continue to consider
generalized Gordon metrics, which areC2, when gluing them
together. For even with the simplest types of distributional
metrics of this form, it may occur that the thin shell for-
malism reaches its limits – even when using Colombeau’s
theory of generalized functions. On the other hand, this can-
not happen in the C2-case. Here Colombeau’s theory is only
needed to set up problematic energy conditions (such as the
dominant energy condition) for the stress-energy tensors of
the form (9), which are undefined in the Schwartz theory of
distributions.

But when it comes to demonstrating that spacetimes with
metrics containing a delta term can be unambiguously glued
together, it is advisable to consider another class of deformed
spacetimes whose representatives lead to simpler curvature
expressions and therefore to a simpler structure of the field
equations.

One class of local geometric deformations, for which this
is actually the case, is the class of so-called generalized Kerr–
Schild deformations; a class, whose representatives are met-
rics of the type

ḡab = gab + f lalb, (55)

which are given with respect to a lightlike geodesic co-
vector field la = gablb that meets the conditions gablalb =
0, (l∇) la = 0 and ḡablalb = 0, (l∇̄)la = 0.

The generalized Kerr–Schild class is a family of solu-
tions that encompass a considerably large class of geometric
models that are of interest to general relativity, such as all
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stationary geometries that are in the Kerr–Newman family
of spacetimes and, in addition, all dynamical radiation fluid
spacetimes lying in the even more general Bonnor–Vaidya
family. Moreover, it includes various models with cosmologi-
cal horizons, like for instance Kottler alias Schwarzschild–de
Sitter spacetime and its generalizations.

As in the case of the generalized Gordon class of met-
rics, the problem of gluing pairs of generalized Kerr–Schild
spacetimes can be treated in the given case by considering
a thin shell splitting of the form f = θ f+ + (1 − θ) f− in
(55) and requiring that [ f ] = 0 on a lightlike hypersurface
Σ . In this case, the metric ḡab of the ambient spacetime can
straightforwardly be decomposed in such a way that it takes
the form (1). Alternatively, one may add and subtract a term
of the form f±lalb in (55) to obtain a splitting of the form
(15), which yields ḡab = g±

ab + e±
ab, where the definitions

e+
ab ≡ (1 − θ)( f− − f+)lalb and e−

ab ≡ θ( f+ − f−)lalb are
used. Making then an ansatz of the form f± = f 0±δ, where
f 0±(x) are are C2-functions functions and δ(x) is the Dirac
delta distribution, one obtains the result

ḡab = gab + f0 · δlalb, (56)

provided that the definition f0 = A f 0+ + (1 − A) f 0− is
used in the present context. In order to be able to perform
those nonlinear operations on ḡab needed in order to set up
the inverse metric, the Levi–Civita connection Γ̄ a

bc and Ein-
stein’s field equations, which have again the form (51) and
(52), respectively, also in the given case a strict delta net
(δε)ε∈(0,1] ∈ C∞(M̄)(0,1] shall be condidered, which con-
verges to the delta distribution in the limit ε → 0. The asso-
ciated regularized generalized Kerr–Schild metric

ḡε
ab = gab + f0δε · lalb (57)

can then be used to obtain the form of the inverse metric via
solving relation (49) with respect to the ansatz

ḡabε = gab − f0δε · lalb (58)

regularized generalized inverse Kerr–Schild metric. This
yields the result

ḡab = lim
ε→0

ḡabε = gab − f0δ · nanb, (59)

where, in contrast to the previous case of the Gordon class
of metrics, it turns out that the form of (59) is independent
of the choice of regularization of the delta distribution.

As shown in [33], the geometric structure of the deformed
field equations is particularly simple in the given case of the
generalized Kerr–Schild class. More specifcally, the mixed
Einstein tensor Ḡa

b of the ambient metric ḡab turns out to be
linear in the profile function f . Moreover, as shown in [34],

also the Einstein tensor with lowered and raised indices are
linear in f ≡ f0 · δ if the geometric constraints

∇̄[alb] = ∇[alb] = 0, (l∇̄) f = (l∇) f = 0 (60)

are met. To see this, one may use the fact that there holds

Ca
bc ≈ 1

2
∇b( f l

alc)+ 1

2
∇c( f l

alb)− 1

2
∇a( f lblc), Cb

ab ≈ 0

(61)

for the corresponding deformation tensor of the generalized
Kerr–Schild class, which relates the pair of covariant deriva-
tive operators ∇̄a associated with ḡab and ∇a and associated
with gab. Using this result, one finds that the deformed Ricci
tensor with lowered indices reads

R̄ab = Rab + Eab, (62)

where Eab = ∇cCc
ab +Cc

adC
d
cb applies. As it then turns out

in this context, the conditions

Cc
adC

d
cb ≈ 0 (63)

and

∇cC
c
abl

a ≈ 0,∇cC
c
abl

b ≈ 0, Ea
blal

b ≈ 0 (64)

are met regardless of the choice of regularization of the
delta distribution, where the conditions listed in (64) result
from the consistency condition R̄ab = ḡac R̄c

b. Thus, using
Colombeau’s theory of generalized functions in combination
with the geometric framework of local metric deformations,
one finds that the field equations of the theory are linear in
f = f0 · δ.

From these results, it can be concluded that the gener-
alized Kerr–Schild framework is well suited to address the
problem of gluing spacetimes of low regularity. In particu-
lar, it is found that it is much more straightforward to glue
together distributional metrics belonging to the generalized
Kerr–Schild class than distributional metrics belonging to the
generalized Gordon class. From this, however, it can be con-
cluded that the choice of the type of local geometric deforma-
tion determines how well the problem of gluing spacetimes
with low regularity can be treated in practice, which in turn
is the reason why the methods discussed in Sect. 2 are useful
for gluing spacetimes with low regularity.

In order to highlight this point, a few concrete geometric
examples shall now be considered, whereas the main focus
shall be placed directly on representatives of the general-
ized Kerr–Schild class. This makes sense not least because
this class provides the best known examples of pairs of dis-
tributional spacetimes that can be glued together. The best
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known examples are gravitational shock wave geometries,
whose importance for the thin shell formalism was recog-
nized long ago [9] (although the treatment of mathemati-
cally problematic expressions has not received the neces-
sary attention at the time). The focus in this context shall
be on gravitational shock wave geometries in black holes
and cosmological backgrounds. These geometries, which all
were found by using Penrose’s cut-and-paste alias scissors-
and-paste procedure, that is, a method for gluing spacetimes
along lightlike hyperfaces, characterize the fields of spheri-
cal shock waves caused by a massless particle moving at the
speed of light along the corresponding event or cosmologi-
cal horizons. The most famous representatives of this class
are the geometries of Dray and ’t Hooft [35], Sfetsos [36]
and Lousto and Sanchez [37], which characterize the grav-
itational fields of spherical shock waves in Schwarzschild,
Reissner–Nordström and Kottler alias Schwarzschild–de Sit-
ter backgrounds.

All of these geometries have in common that their line
elements can be written down in the form

ds2 = 2B2 f0δdU
2−2B2dUdV+r2(dθ2+sin2 θdφ2) (65)

where δ = δ(U ) is Dirac’s delta distribution and B =
B(UV ) is a function whose explicit form depends of
whether background spacetime is Schwarzschild, Reissner–
Nordström or Kottler. Thus, it can be concluded that the met-
rics

ḡab = gab + 2B2 f0δlalb, (66)

corresponding to these line elements belong to the gener-
alized Kerr–Schild classes of the respective backgrounds,
where in each case one has la = gablb = −dUa . Accord-
ingly, given the fact that one can always choose f0 =
f0(θ, φ) with f0 = A f 0+ + (1 − A) f 0− in this context, it
becomes clear that the junction conditions (32) are met if it
is required that ∂V B|U=0 = ∂V r |U=0 = 0. As a result, the
Einstein tensor of the corresponding classes of geometries
takes the form Ga

b = (Δ − c) f0δlalb and thus characterizes
the geometric field of a null fluid source.

The validity of this result cannot be deduced from thin
shell formalism alone; it requires geometric deformation the-
ory to make it possible. This can be concluded from the fact
that in the past, on the basis of careless application of Pen-
rose’s method, which according to [35] gives the same results
as the thin shell formalism (except for a single not particularly
relevant term), the authors of the above-mentioned works
came to the erroneous conclusion that despite the validity of
∂V B|U=0 = ∂V r |U=0 = 0, the field equations should con-
tain ill-defined ’delta-square’ terms. As it turns out, however,
the deformed field equations of the generalized Kerr–Schild
class do not contain such terms after all, but lead to a single

differential equation for the reduced profile function of the
form

(Δ − c) f0 = 2πbδ, (67)

where δ ≡ δ(cos θ −1) is Dirac’s delta distribution and b and
c are constants, whereas c is given by c = 2r+(κ − Λr+) in
the Schwarzschild–de Sitter case, c = 2r+κ in the Reissner-
Nordström case and by c = 1 in the Schwarzschild case.

The resulting equation can be solved by expanding the
reduced profile function on the left hand side and the delta
function on the right hand side simultaneously in Legen-
dre polynomials. Using here the fact that δ(x) = ∑∞

l=0(l +
1
2 )Pl(x), one obtains the solution

f0(θ) = −b
∞∑
l=0

l + 1
2

l(l + 1) + c
Pl(cos θ) (68)

by solving the corresponding eigenvalue problem. As was
shown in [36], however, it is quite possible to find another
representation for the function f , which is fully consistent
with the thin shell formalism discussed in Sect. 1 of this work.

Other examples of Kerr–Schild deformed local spacetimes
with deformation fields that have compact support in a sin-
gle null hypersurface of the geometry are pp-wave space-
times. The perhaps most well-known models in this regard
are the spacetimes of Aichelburg and Sexl [38] and Lousto
and Sanchez [37,39], which have in common that they are
specified by a Brinkmann form that contains a delta distri-
bution and therefore has support only on a single lightlike
hypersurface of spacetime. For that reason, they determine a
local background geometry that coincides everywhere with
that of a spherically symmetric black hole spacetime except
for one single null hypersurface.

Consequently, as it turns out, the deformation approach
is not only fully compatible with the thin shell formalism,
but also shows the treatability of problems that cannot be
treated by the naive application of the standard methods of
said formalism. But this does not only concern the gluing of
distrubtional metrics: In contrast to the thin shell formalism,
the geometric deformation approach allows the smooth glu-
ing of arbitrary pairs of local spacetimes by using a suitable
set of transition functions.

This is because the thin shell formalism requires that only
pairs of spacetimes can be glued together for which the corre-
sponding junction conditions are fulfilled. On the other hand,
the use of suitable transition functions within the geometric
deformation approach ensures that pairs of local spacetimes
can be glued together smoothly, i.e., without the possibility
of the existence of a singular confined stress-energy tensor
with a delta shock at the joint boundary hyperface of the
spacetimes.
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This can be easily made clear by considering a splitting of
the form f = χ+ f+ + χ− f− either in (44) or in (55), where
the χ± are functions of the form (25) which are zero in M±
and f± are essentially arbitrary functions, which, however,
shall be assumed to be at least C2. Such a choice makes it
possible to model local spacetimes whose geometry changes
continuously (and not instantly from one moment to the next,
as in the thin shell formalism) in such a way that a given initial
geometry transitions smoothly into a certain final geometry
of spacetime. Thus, in other words, choosing the function
f in this way allows a smooth geometric transition between
pairs of local spacetimes (M±, g±).

To demonstrate this, the special case f = χ f0 shall be
considered for a generalized Kerr–Schild metric in (55).
More specifically, the Bonnor–Vaidya family of spacetimes
[40] shall be considered, whose metric, in the general rotating
case, can be read off the line element

ds̄2 = −dv2 + 2(dv − a sin2 θdφ)dr + Σdθ2

+ (r2 + a2) sin2 θ

Σ
dφ2 + 2Mr − e2

Σ
(dv − a sin2 θdφ)2,

(69)

where Σ = r2 + a2 cos2 θ and M = M(v), e = e(v).
The energy–momentum tensor of this geometry consists
of a null fluid part and an additional part, i.e. T̄ab =
εlalb +2ϑ

(
l(akb) + m(am̄b)

)+2ςl(am̄b) +2ς̄l(amb), where

ε = − 2r(r Ṁ−eė)+a2 sin θ(r M̈−ėė−eë)
8πΣ2 , ϑ = e2

8πΣ2 and ς =
−ia sin θ√

28πΣ2

{
Σ Ṁ − 2eė

}
with Ṁ := dM

dv
and ė := de

dv
.

By considering a splitting of the mass and the charge
functions into constant and non-constant parts, i.e. M(v) =
M0 + m(v) and e(v) = e0 + e(v) with M0 = const. and
e0 = const., the metric associated with line elment (69) can
be written in the form

ḡab = gab + f lalb, (70)

where f = m+2e0e+e2

Σ
, provided that la = −dva +

a sin2 θdφa . Due to the fact that the mixed Einstein tensor is
linear in the profile function, the energy-momentum tensor
decomposes according to the rule T̄ a

b = T a
b + τ ab, where T a

b
is the energy-momentum tensor of the Kerr–Newman black
hole background spacetime. The resulting deformed geom-
etry of spacetime may therefore be phyiscally interpreted
as the gravitational field of a Kerr–Newman black hole that
accretes null radiation.

Although m(v) and e(v) may in principle be chosen arbi-
trarily, one may choose them to be of the form m(v) =
ψ( v

v0
)m0 and e(v) = ψ( v

v0
)e0, where m0 = const. and

e0 = const . The transition function ψ( v
v0

) takes a value of
zero for v < 0, a value of one for v ≥ 1 and is strictly increas-
ing in the interval [0, 1], so that the set of conditions given in

(33) is met and it can therefore be concluded that the metric
of spacetime coincides locally with that of Kerr–Newman
spacetime; a spacetime that describes the electrovac gravita-
tional field of a stationary axially symmetric charged rotating
black hole, which has, by necessity, a completely different
physical interpretation from the metric of a rotating Bonnor–
Vaidya spacetime. More specifically, the spacetime geome-
try at hand describes how an initially given Kerr–Newman
black hole geometry with ’degrees of freedom’ (M0, e0, a)

transitions smoothly into one with different parameter values
(M0+m0, e0+e0, a), so that it can be concluded that Bonnor–
Vaidya spacetime characterizes the gravitational field of an
charged rotating black hole that accretes null radiation over
a finite period of time.

As a consequence, it is found that the Bonnor–Vaidya
model can always be set up to predict the collapse of a
null radiation field and its absorption by a charged rotating
black hole, which could even result in the complete discharge
of the black hole, whereas it is woth mentioning that these
results are in complete agreement with the famous black hole
uniqueness theorems [41–43].

Of course, one could also try to make another choice for
the function f in (70), which is in better agreement with
the thin shell formalism. In particular, one could choose
m(v) = θ(v − v0)m0 and e(v) = θ(v − v0)e0 where
θ(v−v0) represents the Heaviside step function θ(v−v0) :={

0
1
2
1

v−v0<0
v − v0 = 0

v−v0>0
. However, from a purely physical point of

view, this would actually be a very poor choice, since the
resulting geometry would describe the very unphysical case
of a black hole that accretes material of massm0 and charge e0

within an infinitesimally small instant of time, which is why
it is more sensible to stick to the above smooth description
of the problem. Nevertheless, the given choice also provides
a well-defined example of a local geometry in the previously
introduced sense and the resulting geometric model reveals
the structure of the gravitational field of a black hole that
absorbs null radiation.

Now that this has been clarified, the next thing to be noted
is that the junction conditions of the thin shell formalism
result as a special case of the discussed smooth geometric
framework if the limit is considered where the size of the
smooth transition region goes to zero. To see this, one may
consider a transition region O with length (or time) scale L
and the generalized function

χL(x − x0) = 1

2

(
1 + tanh

x − x0

L

)
= 1

1 + e
x−x0
L

(71)

which provides a smooth, analytic approximation of the step
function, converging exactly to said function in the limit L →
0, i.e. θ(x − x0) = limL→0χL(x − x0). Using this definition
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as a basis for setting up the decomposition relation

gab = lim
L→0

χLg
+
ab + (1 − χL)g−

ab (72)

and, moreover, the fact that

dθ(x − x0)

dx
= lim

L→0

1

L

1

2 + e
x−x0
L + e

x0−x
L

(73)

turns out be singular for x = x0 and zero otherwise, one
finds that condition (2) must be met in order to join pairs of
local spacetimes (M±, g±). In addition, using the fact that
the generalized function χL(x) provides a smooth approxi-
mation of the Heaviside step functionand its derivative with
respect to x a smooth approximation of the delta distribution,
steps analogous to those described in Sect. 1 lead first to rela-
tions (5) and (6) and then to relations (7)–(9). By distinguish-
ing the non-lightlike and lightlike cases one then finds that
junction conditions (10) and (11) must hold in the first case,
whereas junction conditions (12) or (13) must hold in the
latter case. Consequently, it follows that the junction condi-
tions of the theory can be derived via using the smooth metric
deformation framework presented in Sect. 2, but under the
premise that the size of the transition region approaches zero
in a suitable limit. However, since there is a wide range of
generalized functions that are associated with the step func-
tion and whose first derivatives are associated with the delta
distribution in a distributional sense, it becomes clear that the
local geometric deformation approach discussed in Sect. 2 of
this work generalizes the thin-shell formalism discussed in
Sect. 1.

The next point to note is that by considering suitable transi-
tion functions – as already mentioned earlier at the beginning
of Sect. 3 – the unambiguous gluing of generalized Gordon
class spacetimes becomes possible. To see this, one may con-
sider a generalized Gordon class metric of the type

ḡab = gab + lim
ε→0

f0δε · nanb, (74)

which is defined with respect to a timelike vector field
na = 1√

2
(la + χka), where χ is a smooth transition func-

tion of the form (25) whose support does nor intersect that
of the delta distribution resulting from the limit limε→0δε.
Generalized Gordon spacetimes of this type can always be
glued together, since the field equations coincide with those
of the generalized Kerr–Schild class in those local space-
time domains in which the delta distribution becomes sin-
gular. The reason for this is that the timelike vector field
na becomes locally lightlike by the given choice, so that the
gravitational shock wave geometries considered above can be
generalized in a mathematically rigorous way. However, this
makes it clear that in principle it is possible to glue general-
ized Gordon spacetimes together without having to calculate

probematic powers of the delta distribution and its deriva-
tives, which is a challenge despite the use of Colombeau’s
theory of generalized functions.

In any case, the results obtained so far can certainly be
generalized in many ways. This can be demonstrated, for
example, by generalizing the metric associated with the line
element (70). This can be accomplished by performing a
null rescaling of the form la → λla , ka → λ−1ka , which
leaves the geometric structure of the background metric gab
invariant, but changes the geometric structure of the metric
ḡab of the ambient spacetime ¯(M, ḡ). This yields a more
general class of solutions to Einstein’s field equations with a
metric of the form

ḡab = gab + λ2 f lalb, (75)

where the only condition that one may wish to impose in
this context is that (l∇)λ = 0 and therefore λ = λ(v, θ, φ)

holds by definition, so that the resulting class of geometries
still belongs to the generalized Kerr–Schild class of Kerr–
Newman spacetime and the corresponding mixed field equa-
tions remain linear in f . But, of course, that restriction is not
a must by any means.

Another possibility to construct a new class of mod-
els from the one given above is to use the fact that the
null geodesic vector field can be extended to an associated
null geodesic frame (la, ka,ma, m̄a) and then to perform
a null rotation of the form ka → ka, ma → ma + ξka,
la → la + ξ m̄a + ξ̄ma + |ξ |2ka , which again leaves the geo-
metric structure of the background metric gab invariant, but
changes the geometric structure of the metric ḡab of the ambi-
ent spacetime ¯(M, ḡ). In this way, once again a more general
class of solutions to Einstein’s field equations is obtained,
whose metric is of the form

ḡab = gab + f lalb + 2 f ξ l(am̄b) + 2 f ξ̄ l(amb)

+2 f |ξ |2 (
l(akb) + m(am̄b)

) + f ξ2m̄am̄b + f ξ̄2mamb

+2 f ξ |ξ |2k(am̄b) + 2 f ξ̄ |ξ |2k(amb) + f |ξ |4kakb.
(76)

Consequently, models of any complexity can be constructed
by repeatedly applying a combination of null rescalings and
null rotations. Therefore, it is actually quite straightforward
to construct another, more general type of ambient spacetime
¯(M, ḡ) with metric

ḡab = gab + eab (77)

from an ambient spacetime with metric form (70), whose
geometry coincides locally with that of Kerr–Newman space-
time (M, g). It may be noted that the concrete choice of the
local background metric gab is, of course, irrelevant in this
context and that the metric in question therefore certainly
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does not need to specifically match the Kerr–Newman met-
ric or any other metric considered in this section.

On the other hand, one must be a little more careful when
generalizing metrics of type (75). In this case, it is favor-
able to consider only rescalings la → λla , ka → λ−1ka
and null rotations la → la, ma → ma + ξ la, ka →
ka + ξ m̄a + ξ̄ma + |ξ |2la , because otherwise the resulting
local geometry of spacetime would no longer be a Kerr–
Schild geometry and thus similar problems could occur as in
the case of spacetimes of the generalized Gordon class. In
this way, very general metrics of type (77) can be obtained,
which allow a simple generalization of shock wave geome-
tries of type (74), which in turn can be constructed from
known shock wave geometries of type (66).

In any case, there are also other useful ways to construct
interesting models for ambient spacetimes ¯(M, ḡ), e.g. by
considering other more complex types of metric deforma-
tions. As a specific example example, superimposed gen-
eralized Kerr–Schild deformations may be mentioned, not
least because these types of metric deformations allow an
extension of thin shell formalism (although one must be very
careful with the calculation of curvature expressions). These
types of metric deformations are of the form

ḡab = gab +
N∑

A=1

f(A)l
(A)
a l(A)

b , (78)

where each l(A)
a = a(A)la + b(A)ka + c(A)m̄a + c̄(A)ma must

meet the conditions l(A)
a la(A) = 0 and (l(A)∇)la(A) = 0. Rep-

resentatives of this class lead to a whole series of nested
Kerr–Schild spacetimes, i.e.

ḡab = g(1)
ab +

N∑
A=2

f(A)l
(A)
a l(A)

b

= g(2)
ab +

N∑
A=3

f(A)l
(A)
a l(A)

b = · · · = g(N−1)
ab + f(N )l

(N )
a l(N )

b ,

(79)

where g(1)
ab = gab+ f(1)l

(1)
a l(1)

b , g(2)
ab = gab+∑2

A=1 f(A)l
(A)
a l(A)

b ,

...., g(N−1)
ab = gab + ∑N−1

A=1 f(A)l
(A)
a l(A)

b applies by definition.
As highlighted in several works on the subject [44–48], the
corresponding metric deformations can be used to provide ini-
tial data for the construction of solutions to Einstein’s equa-
tions that characterize multiple black holes in general relativity.
On a non-numerical level, these types of metric deformations
have been used to construct generalizations of the gravitational
shock wave spacetimes previously considered in this section
[49].

However, there are many other classes of both exact and
approximate metric deformations besides the geometric mod-

els mentioned above, which can be used to construct local
spacetimes. The deformation of the background metric can
also be applied perturbatively, which can lead to physically
interesting examples. This is not least due to the fact that the
deformation approach allows the geometric transition of arbi-
trary spacetimes and thus the gluing of perturbative metrics.

Because of all these points, the geometric deformation
approach represents a useful extension of the well-established
thin shell formalism, which allows the treatment of a larger
class of problems than previously possible.

Summary

In the present work, a specific approach to the construction
of local spacetimes in general relativity was presented. This
approach is based on the idea of using local deformations of the
metric to join spacetimes with different geometries and physi-
cal properties. As it turned out in this context, the approach pre-
sented allows the calculation of the curvature fields of space-
times with metrics of low regularity, such as gravitational shock
wave spacetimes, which, from the point of view of standard
gluing techniques, does not seem feasible (or even possible).
Furthermore, it was found that smooth gluings of arbitrary
spacetime pairs can be carried out by using suitable transi-
tion functions and that complex types of ambient metrics and
associated spacetimes can be constructed by transformations
that leave the local geometric structure of spacetime invari-
ant. Not least because the above mentioned results do not only
apply to exact deformations, but also to local metric pertur-
bations, it can be plausibly concluded from the observations
made in this work that there may be valuable extensions of
already known geometric models of Einstein–Hilbert gravity or
more general gravitational theories that have remained undis-
covered so far. It might therefore be worthwhile to use the
geometric deformation approach in the analysis of complex
geometric transitions in spacetime, especially if these transi-
tions cannot be treated on the basis of the traditional thin shell
formalism.
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