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Abstract Neutron stars (NSs) are excellent natural labora-
tories to constrain gravity on strong field regime and nuclear
matter in extreme conditions. Motivated by the recent dis-
covery of a compact object with 2.59+0.08

−0.09M� in the binary
merger GW190814, if this object was a NS, it serves as a
strong constraint on the NS equation of state (EoS), ruling out
several soft EoSs favored by GW170817 event. In this work,
we revisit the question of the maximum mass of NSs con-
sidering a chameleon screening (thin-shell effect) on the NS
mass-radius relation, where the microscopic physics inside
the NS is given by realistic soft EoSs. We find that from
appropriate and reasonable combination of modified gravity,
rotation effects and realistic soft EoSs, that it is possible to
achieve high masses and explain GW190814 secondary com-
ponent, and in return also NSs like PSR J0740 + 6620 (the
most NS massive confirmed to date). It is shown that gravity
can play an important role in estimating maximum mass of
NSs, and even with soft EoSs, it is possible to generate very
high masses. Therefore, in this competition of hydrostatic
equilibrium between gravity and pressure (from EoS choice),
some soft EoSs, in principle, cannot be completely ruled out
without first taking into account gravitational effects.

1 Introduction

Recently, the LIGO/Virgo scientific collaboration announced
the discovery of a compact binary coalescence, GW190814,
involving a 22.2–24.3M� black hole (BH) and a compact
object with a mass of 2.50–2.67M� [1]. The secondary com-
ponent is either the most massive neutron star (NS), or the
lightest BH ever discovered in a double compact-object sys-
tem. The existence of ultra-massive NSs has been revealed in
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several studies. So far, the precise determination of the mass
of pulsars leads to M = 1.97 ± 0.04 M� for PSR J1614–
2230 [2], PSR J0348+0432 has M = 2.01 ± 0.04 M� [3]
and the highly likely the most massive NS observed to date,
PSR J0740 + 6620, with M = 2.14 ± 0.1 M� [4].

The discovery of the gravitational wave (GW) binary
GW190814 triggered intense theoretical efforts about the
real nature of its secondary component, in particular, the high
mass requires the compact star matter to be described by a
stiff equation of state (EoS). In [5] is argued that fast rotation
is capable to explain the existence of a stable ∼ 2.6M� NS
for moderately stiff EoS but may not be adequate for soft
EoSs. In particular, several soft EoSs favored by GW170817
and with maximum spherical masses of ∼ 2.1M� cannot
be used to explain this source as a uniformly spinning NS.
In [6] the authors infer a lower limit on the maximum mass
Mmax of non-rotating NSs, using arguments based on univer-
sal relations connecting the masses and spins of uniformly
rotating NSs. Furthermore, they obtain a lower bound on
the dimensionless spin for the secondary companion, using
the upper maximum mass constraints from the GW170817
event [7,8], and show that the allowed range in dimension-
less spins correspond to rotational frequencies much higher
than the fastest millisecond pulsars known [9]. In [10] a rig-
orous upper bounds on maximum mass under the exclusive
assumptions of causality and general relativity (GR), show-
ing that the presence of a NS in GW190814 is not inconsis-
tent with present observational constraints on the NS EoS.
On the other hand, in [11] is showed that the stiffening of the
EoS required to support ultra-massive NSs is inconsistent
with either constraints obtained from the low deformabil-
ity of medium-mass stars demanded by GW170817 or from
energetic heavy-ion collisions. Several other methodology
and speculations about GW190814 are presented in [12–28].

As is well known, the two main observable of a NS, i.e.,
their mass and radius, both depend crucially on the choice
of EoS and the gravitational theory, where gravity will deter-
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mine the macroscopic hydrostatic equilibrium. The general
relativity is very well tested and compatible in weak-field
observations, for instance, from solar system and terrestrial
experiment tests [29–31], but there are theoretical and obser-
vational reasons to believe that GR should be modified when
gravitational fields are strong and/or on large scales. On large
scales and from an observational point of view, the physical
mechanism responsible for accelerating the Universe at late
times is still an open question, and new degrees of freedom
of the gravitational origin are alternatives to explain such
an accelerated stage (see, e.g., [32,33] for review). Theories
beyond GR can serve as alternatives to explain the current
tension in the Hubble constant that persists in the framework
of the standard cosmological model [34–36]. Also, modi-
fied gravity models are motivated to drive the accelerating
expansion of the Universe at early times, known as infla-
tionary era. On astrophysical scales, compact objects such
as BHs and NSs are our best natural laboratories to con-
strain strong gravity. In these bodies, gravity prevails over all
other interactions and collapse leads to large-curvature and
strong-gravity environments [37]. We refer the reader to [38]
and references therein for several modified gravity scenarios
motivation under the regime of strong gravitational field.

A consistent way to modify gravity is to introduce some
screening mechanism in order to have viable gravity, i.e.,
GR, at small distances and scales and possible relevant
effects on others environmental scales, for instance, on com-
pact objects or even on cosmological level. Recall that the
screening mechanisms include chameleons [39,40], sym-
metrons [41], dilatons [42], Vainshtein mechanism [43],
etc. At the heart of screening mechanisms lies the fact
that there are 29 orders-of-magnitude separating the cos-
mological and terrestrial densities and 20 orders of mag-
nitude separating their distance scales. As a result, the
properties of the new degrees of freedom of the gravi-
tational origin (a scalar field) can vary wildly in differ-
ent environments [44]. Screening gravity have been inten-
sively investigated in the literature, in the most diverse
aspects in cosmology and gravitation (see, e.g., [45–58] for
a short list). A compilation/list of various works on com-
pact objects in modified theories of gravity can be found in
[59].

As regards to NS observations, it seems there is a theoreti-
cal degeneration and is not clear if measurement of mass and
radius constrain possible gravity effects or EoSs. As showed
in [60], measurement of mass constrains gravity rather than
the EoS (see also [61]). Thus, it is difficult to distinguish
which of these effects is actually contributing to the actual
observed mass and radius values. In this work, we analyze the
NS mass-radius relation through a modification of the TOV
equations induced by the presence of a possible chameleon
screening (thin-shell effect), where the microscopic physics
inside the NS will be modeled by realistic soft EoSs of which

it is not possible to generate very massive NS with ∼ 2.6 M�
or even ∼ 2.14 M� in GR context. Our main aim is to show
that an appropriate combination of modified gravity, rota-
tion effects and realistic soft EoSs, can have a joint effect
for achieve high masses and explain GW190814 secondary
component, and in return also NS like PSR J0740 + 6620.

This paper is organized as follows. In the next section, we
present our theoretical framework and methodology to gen-
erate the NS mass-radius relation. In Sect. 3 we present our
main results and in Sect. 4 our final comments and perspec-
tives. (The speed of light c is set equal to unity).

2 Theoretical framework and methodology

In this section we review in a nutshell the theoretical method-
ology used to obtain our main results.

2.1 Screening mechanisms

The study of scalar–tensor theories has been motivated
by some cosmological observation, especially in order to
explain the current accelerating expansion stage of the Uni-
verse. One proposed explanation is that gravity is modified
on large scales, but must be suppressed on small scales,
for instance, in the solar system deviations are constrained
to be subdominant by a factor of 10−5. Screening gravity
circumvent this problem by introducing non-linear modifi-
cations of the Poisson equation that dynamically suppress
deviations from GR in the solar system without the need to
fine-tune on the scalar mass or the coupling to matter. In
short, screening mechanisms utilize non-linear dynamics to
effectively decouple solar system and cosmological scales.
At the heart of screening mechanisms lies the fact that there
are 29 orders-of-magnitude separating the cosmological and
terrestrial densities. As a result, the properties of the scalar
field (new degree of freedom of gravitational origin) can vary
widely in different environments.

In this work, we will consider the well-studied chameleon
screening [39,40]. In chameleon models, the mass of the
scalar is an increasing function of the ambient density. The
purpose of this section is review the calculation of the param-
eterized post-Newtonian (PPN) parameter γ that is relevant
for chameleon theories. We follow the methodology pre-
sented in [62] and references therein.

Let us consider a specific subset of the general scalar–
tensor theories, which in the Einstein frame is given by

S =
∫

dx4√−g

[
M2

pl

2
R − 1

2
∇μφ∇μφ − V (φ)

]

+Sm[g̃], (1)
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where the Jordan frame metric g̃μν is a Weyl rescaling of the
Einstein frame metric gμν by a conformal factor A(φ), i.e.,
g̃μν = A2(φ)gμν . The coupling is given by

α(φ) = Mpl
d ln A(φ)

dφ
. (2)

Each particular scenario is set by the choice of A(φ) and
V (φ) functions. The PPN metric for a single body, which we
will refer to as body A with mass MA, reads

g̃00 = −1 + 2
GPPN MA

r
(3)

g̃i j =
(

1 + 2γ̃
GPPN MA

r

)
δi j . (4)

We will refer to the quantity GPPN as the PPN gravita-
tional constant. GPPN controls the size of effects computed
using the PPN metric. It is distinct from the gravitational con-
stant G that appears in GR and Newtonian gravity. We are
interested in the regime where some body has some degree of
screening. In this case, the equation inside of some screening
radius is

∇2φ = 0 (5)

while outside the screening radius reads

∇2φ = 8πα(φ)GρA r > rs, (6)

where α is the coupling function.
In order to move on, we need to define α. Here, we assume

the chameleon field which uses a non-linear potential to make
the field mass a function of the environmental density. The
equation of motion reads

∇2φ = −n
	4+n

φn+1 + αρA

Mpl
, (7)

where the effective potential is given by

Veff = 	4+n

φn
+ αφρA

Mpl
. (8)

The mass-scale 	 can vary over many orders of magni-
tude, but it is often compared to the dark energy scale, since
this value is relevant for the present-day cosmic accelera-
tion. Astrophysically, the chameleon profile of a spherically-
symmetric object of mass M and radius R is not sourced by
the object’s mass, but rather by the mass inside a shell near the
surface, a phenomenon that has been dubbed the thin-shell
effect. The reason for this is the following: deep inside the
object, the field minimizes its effective potential correspond-
ing to the ambient density but, as one moves away from the
center, the field must eventually evolve asymptotically to the
minimum at the density of the medium in which the object is
immersed (astrophysical or cosmological densities, depend-
ing on the situation to be investigated). The field can only

roll once the density is low enough so that its effective mass
is light enough. The radius at which this happens is typically
called the screening radius rs.

The coupling functionα above is a constant for chameleons
[44,62]. Ignoring possible scalar mass contribution, the solu-
tion is then

φ = φ0 − 2α2 QAGMA

r
, (9)

where Q is the scalar charge of body A and is given by

QA =
(

1 − MA(r As )

MA

)
. (10)

Transforming to the Jordan frame and expanding A(φ) to
first order in GMA/r , one finds Eqs. (3) and (4) with

GPPN = G
[
1 + 2α2QA

]
and (11)

γ̃ = 1 − 2α2QA

1 + 2α2QA
. (12)

In a binary system, if we consider the orbital dynamics of
a body of mass MB orbiting the body sourcing this metric,
this second body may have its own screening radius r Bs , so
that the chameleon force between the two bodies A and B
reads [63]

F = −GMAMB

r2 [1 + 2α2QAQB] (13)

with the following modified potential

V (r) = GM

r

[
1 + 2α2

(
1 − M(rs)

M

)]
, (14)

where we have once again ignored the mass of the scalar.
Thus, the physical quantity that is measurable in these theo-
ries is

GPPN = G[1 + 2α2QAQB], (15)

with corresponding PPN parameter γ given by

γ = 2[1 + 2α2QAQB]−1 − 1. (16)

Notice that other approaches have been developed in the
literature, see for instance [44,54,55]. In what follows, let us
quantify how this approximation presented above can modify
spherical compact stars.

2.2 Modified TOV

In GR, the hydrostatic equilibrium of a star is described by the
Tolman–Oppenheimer Volkoff (TOV) equations (see, e.g.,
[64]), namely
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dP

dr
= −GM(r)ρ(r)

r2

(
1 + P(r)

ρ(r)

)

×
(

1 + 4πr3P(r)

M(r)

) (
1 − 2GM(r)

r

)−1

(17)

and

dM

dr
= 4πr2ρ(r), (18)

where ρ(r) is the energy density, P(r) is the pressure and
M(r) is the mass within the radial coordinate r .

The mass and the radius of a star are the two more obvious
observables. Evidently, these quantities depends on the the-
ory of gravitation and microscopic physics, i.e, the EoS of the
matter of the star. In view of the formalism described in the
previous section, we can notice that the chameleon screening
can be quantified in the hydrostatic equilibrium rescaling G
by GPPN in Eqs. (17) and (18). GPPN is also directly con-
nected with the PPN parameter γ , since α2QAQB can be
estimated.

In this work, we will restrict to investigating NSs. Thus,
we need to assume a EoS that describes the microscopic
physics of the matter of the NS to complete the system of
equations above. Let us assume a realistic modeling of this
physics, following the methodology described in [65], where
the nuclear matter inside NS are built by joining together
different polytropic phases on a sequence of different density
intervals (piecewise EoS), given by ρ > ρ0, if for a set of
dividing densities ρ0 < ρ1 < ρ2 · · · , the pressure and energy
density are everywhere continuous and satisfy

P(ρ) = Kiρ

i , d

(
ε

ρ

)
= −Pd

(
1

ρ

)
, ρi−1 < ρ < ρi ,

(19)

where ε is the energy density and fixed by the first law of
thermodynamics. The numerical modeling of EoSs is well
summarized in [65] (see also [66]). In this work, we will
assume the low-density EoSs given by SLy, MS2, GNH3,
ALF2, BBB2, H4, PS, WFF3, AP2 and FPS models. In total,
we have 10 soft EoSs in our sample. In addition to several key
properties of each ones, it should be stressed that these EoSs
are consistent with constraints from GW170817 (see [67] and
references therein). The best fit parametric configuration that
describe these EoSs modeling are summarized in Table III in
[65].

On the other hand, if the NS is spinning, its maximum
mass can be higher than MTOV due to the additional rotational
support against gravitational collapse to a BH. In particular,
[68] computes the maximum mass allowed by uniform rota-
tion, Mmax, purely in terms of the maximum mass of the
non-rotating configuration. The importance of this univer-
sal relation, connecting the dimensionless spin on the sta-
bility line and the maximum dimensionless spin at the mass

shedding limit, is that it allows us to calculate Mmax sustain-
able through fast uniform rotation, finding that for any EoS
it is about 20% larger than the maximum mass supported
by the corresponding non-rotating configuration (see [6,68]
for details). Thus, we complement our modeling considering
Mmax = ξMTOV, with ξ = 1.203 ± 0.022 [6]. Therefore,
our full NS model will be constituted from some soft EoSs,
rotation effects and chameleon screening. Note that this con-
straints on ξ is obtained by assuming GR. In Sect. 3.1, we
relax this condition and obtain ξ within the theoretical frame-
work here investigated. We will find ξ = 1.14+0.080

−0.082 in the
modified gravity we investigated. Thus, these values are fully
compatible with each other and this choice will not biased
the main results to be presented below.

For the convenience of analysis, let us consider that there
is a simple relationship between the expectation mass inside
the screening radius in the form M(rs)i = βi Mi , where i
runs over the bodies A and B, in case of a binary system. In
principle, we could consider more complicated dependency
on the screening mass, for instance, like M(rs)i = βi rni Mi ,
where r is the NS radius and n some power law dependency.
This type of correction will take PPN corrections predict
more complicated relation/dependence on NS mass values.
On the other hand, we expect that the screening radius be
close to the surface of the star, so the approximation M(rs)i =
βi Mi serves as a basis to quantify these screening effects
within a simple approach, and to investigate possible new
effects on the M–R relation. In what follows, we summarize
our main results.

3 Results

Table 1 summarizes the maximum mass of a NS taking
into account 4 possible theoretical configurations and 10
input realistic soft EoSs, from which we can quantify how
each ingredient is contributing to Mmax estimates. Taking
into account the screening mechanisms, we consider a NS
with screening radius rs and MA, orbiting a generic body
B with MB , so given the relation previously mentioned,
M(rs)i = βi Mi , we have GPPN/G = 1 + ᾱ, with ᾱ =
2α2(1 − βB − βA + βBβA), which is a global constant in
our case. In all estimates in Table 1, from the screening and
screening + spinning cases, we assume a small and conserva-
tive total correction with ᾱ = −0.05. As we will see below
(subsection A), through a statistical fit, effective corrections
on GPPN are of this order of magnitude. i.e., ᾱ ∼ −0.05
at ∼ 1σ . Corrections ᾱ > 0 tends to decrease the expec-
tation value of maximum mass. Figure 1 shows this using
SLy EoS + spinning effects, quantifying how much γ and
GPPN corrections can influence Mmax prediction. Important
to note that the expected corrections for γ and GPPN within
screening gravity are not the same as measured on earth or
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Table 1 Summary of the maximum mass values that can be obtained using 10 soft EoSs in different theoretical situations, namely, general relativity,
general relativity with rapid uniform rotation effects, chameleon screening and chameleon screening with rapid uniform rotation effects

EOS Mmax (GR) Mmax (GR with rotation) Mmax (chameleon screening) Mmax (chameleon screening with rotation)

SLy 2.04M� 2.44M� 2.19M� 2.63M�
MS2 1.80M� 2.16M� 1.84M� 2.21M�
ALF4 1.94M� 2.32M� 2.06M� 2.48M�
GNH3 1.96M� 2.35M� 2.03M� 2.44M�
BBB2 1.91M� 2.29M� 2.07M� 2.49M�
H4 2.03M� 2.43M� 2.09M� 2.52M�
PS 1.75M� 2.10M� 1.80M� 2.10M�
WFF3 1.84M� 2.2M� 1.98M� 2.37M�
AP2 1.80M� 2.16M� 1.92M� 2.30M�
FPS 1.79M� 2.14M� 1.93M� 2.32M�

solar system. Without screening mechanisms, we would have
to tune γ value to satisfy terrestrial and solar system exper-
iment bounds, but with screening mechanisms this bound
can be automatically satisfied for this screened region with
M(rs) � M(r) on these scales. Here, we are relaxing this
condition in order to have new γ and GPPN expected values
on a NS under thin-shell effect. Of course, any new γ and
GPPN expected values should not deviate significantly from
solar-system tests. In all our calculations, we are assuming
a maximum deviation of 5% when applied to NS structure
equations.

Figure 2 shows the NS mass–radius relation from all the
EOSs analyzed here, and summarized in Table 1 for spin-
ning + chameleon screening combination, in direct compar-
ison with the expected masses of the PSR J0740 + 6620,
2.14±0.10 M�, a NS in a binary system with a white dwarf
companion, and the mass of the lighter component of the
GW190814 event, 2.6±0.10 M�, if we interpret this object
as being a NS. It is worth mentioning that in the results shown
in Fig. 2 and Table 1, we assume an effective ᾱ = −0.05
(corresponding to an effective GPPN/G = 0.95).

The consideration above has an observational support. For
instance, astrophysical tests on chameleon theories using dis-
tance indicators in the nearby universe are bounds to an effec-
tive values of �G/G ∈ [0.11−0.45] [69]. The observation
of GW170817 event imposed strong constraints on modi-
fied gravity/dark energy scenarios, inferring that the speed
of GWs propagation is equal to the speed of light, so lim-
iting the theoretical parametric space for various theories.
Chameleon theories in principle has already this physical
characteristic and this constraints does not affect in general
any aspect in these theories. The authors in [70] calculate
that the effects of a plausible variation in GN on the period
decay of a local binary system are many orders of magni-
tude suppressed with respect to the effects of a change in
GN . As a result, ĠN/GN is constrained to ∼ 10−3, while

Fig. 1 Illustrative example of a neutron star maximum mass as a func-
tion of PPN parameter γ (blue) and GPPN (orange) assuming EoS SLy

GN is unconstrained by observations of the binary orbital
decay rate. Here, the notation GN is the gravitational cou-
pling between two matter sources. Note that our approach is
linked to the physical variable GN and not ĠN . In general,
all our considerations about GPPN/G, i.e., all range of values
assumed to the prior are compatible with the bounds derived
from other observations.

It is important to note that all EoSs assumed here share a
relatively low maximum mass and thus they are called soft
[65]. Soft EoSs consistent with GW170817 (see Table 1) are
unable to provide enough mass to explain the secondary in
GW190814, even for a NS endowed with maximum uniform
rotation [5]. We noticed that assuming non-rotating mass
configuration, it is troublesome to predicting high mass in
GR, and all these EoSs have difficulties in reaching the mass
expected by J0740 + 6620.

Thus, in this simplest case, all of these EoSs are excluded.
But, adding rotation effects, all these EoSs can explain
J0740 + 6620 easily. The authors in [71,72] were the first to
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Fig. 2 Left panel: Neutron star mass–radius relation for different soft
EoSs (SLy, MS2, ALF4, GNH3, BBB2) within Spinning + PPN correc-
tions framework, with highlighted regions representing the neutron star

mass expectation from the binary system J0740 + 6620 and GW190814.
Right panel: Same as in left panel, but from other soft EoSs (H4, PS,
WFF3, AP2 and FPS)

Fig. 3 Statistical reconstruction in the plan MMG
max −MGR

max using Gaus-
sian processes for machine learning between the maximum mass esti-
mates summarized in Table 1. The solid blue curve is the Gaussian
process mean. Both Mmax are in units of M�

show that spinning up a NS uniformly can increase its mass
by up to ∼ 20%. Thus, soft EoSs consistent with rapid uni-
form rotation is enough to explain that compact object. The
analysis frame change the situation if we look at GW190814
secondary component. When considering GR + spinning, all
these soft EOSs can not achieve very high masses, and all
them should be ruled out. This means that the secondary com-
pact object in GW190814 can not be explained by an EoS
like SLy (EoS favored by GW170817). Also, as argued in
[5], such EoSs like SLy must now be rejected because their
mass-shedding limit is below the lower limit mass of this
object in GW190814. But, we find that modifying the hydro-
static equilibrium equations of NSs, incorporating a possible
thin-shell effect (in our study from chameleon screening),
we can reach larger masses. We note that chameleon screen-

ing can achieve high masses and explain GW190814 with
soft EoSs like SLy, BB2, ALF4 and H4 (see Fig. 2), which
in GR context is not possible. The BBB2, ALF4 and H4
EoSs predictions live in the lower limit of the error bar of
GW190814, while the SLy EoS easily archive higher val-
ues and can explain GW190814 best fit and more massive
objects. Therefore, in presence of new degrees of freedom of
gravitational origin like a chameleon screening, it is possible
to maintain these soft EoSs to describe the internal structure
of these compact objects.

Note that the same EoS in screening + spinning context can
explain both NSs in J0740 + 6620 and GW190814 at the same
time, changing only the radius prediction. For instance, from
EoS SLy analysis, one obtains [9.16–11.27] km and [10.86–
11.18] km for GW190814 and J0740 + 6620, respectively.

On the other hand, it is interesting to derive a general rela-
tion between the maximum NS mass from GR and the modi-
fied gravity theory from some EoS sample. We will obtain this
relationship based on our 10 soft EoSs sample [65], where
the main results are summarized in Table 1.

To get this relation, let us use a Gaussian Processes
(GP). The GP consists of generic supervised learning method
designed to solve regression and probabilistic classification
problems, where we can interpolate the observations and
compute empirical confidence intervals and a prediction in
some region of interest [73]. Let us consider that our 10 esti-
mates in Table 1 (the case with rotation effects) are data points
to be trained between a certain mass range. Note that 10 data
points, from 10 different soft EoSs, give us reasonable infor-
mation to get a good prediction within the mass range where
soft EoS there due the robustness of this methodology. The
GP method is the state-of-the-art to obtain statistical infor-
mation and model prediction from some previously known
information or data.
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Fig. 4 Two-dimensional marginalized distributions in the parametric
space in the plan GPPN/G − ξ at 68% CL and 95% CL

Figure 3 show the data reconstruction. The solid blue curve
is the GP mean prediction and the shaded areas is the statis-
tical confidence level (CL) at 68%. Each red point represents
the mass information (data point) in the plane MMG

max −MGR
max,

in the case with rotation, which has been trained to obtain
the reconstruction and prediction between these mass esti-
mates. During the reconstruction, we use the most popular
covariance functions in the literature, the standard Gaussian
Squared-Exponential. To obtain these results, we make use of
some numerical routines available in [74]. Interesting to note
that from a soft EoS sample, in general, we can obtain high
mass, like a 3 solar mass, within modified gravity approach
even at 68% CL.

In Fig. 3, we also show a cubic fit that best fit the plan
MMG

max − MGR
max in the mass range M ∈ [2.10, 2.46] M� in

GR prediction. We find

MMG
max = −320.38 + 417.26Mmax

−179.96M2
max + 25.90M3

max, (20)

where Mmax is the maximum mass in GR.
Thus, within the theoretical framework investigated here,

Fig. 3, summary the most general relations and predic-
tion analysis between MMG

max and MGR
max within the soft EoS

approach.

3.1 Rotation effects in modified gravity

The spin of the secondary object is a quantity that has not
been constrained by the observations of GW190814. Further-
more, we know that the condition for rapid uniform rotation

contributes significantly to increase the predicted maximum
mass. In the results previously presented, we assume a rota-
tion value that was obtained in GR. Once that the gravity
theory has been modified, it is necessary to re-calculate the
rotational effect in the new gravity framework. Let us obtain
a new estimate on ξ , in the situation we can still explain
GW190814 secondary component, if this compact object was
a NS, within the screening + rotation framework. For this,
we carry out a simple χ2 fit given by

χ2 = (MO − Mmax(GPPN, ξ))2

σ 2
O

, (21)

where Mmax(GPPN, ξ) is the maximum mass expected
assuming GPPN, ξ as free parameter, where we assume the
prior ξ ∈ [1, 1.2]. The range in ξ represent non-rotating with
ξ = 1 and maximum rotation with ξ = 1.2. This upper prior
on ξ can be interpreted that 20% is probably no longer appli-
cable and this correction is an upper limit. The quantities
MO , σ 2

O , are the mass and the associate error bar at 1σ confi-
dence level (CL) from the GW190814 secondary component
observation.

Note that in this approach we are obtaining a new ξ con-
straints parametrically through the relation MMG

max = ξMMG
TOV.

Figure 4 shows the parametric space in the plan GPPN/G−ξ

at 68% CL and 95% CL, after assuming ξ as a free parame-
ter. We find GPPN/G = 0.951+0.039

−0.041 (with the corresponding

γ = 0.90 ± 0.093) and ξ = 1.14+0.080
−0.082. During the analysis

we assume SLy as input EoS. Note that this value is statis-
tically compatible with the value inferred in GR. Thus, we
conclude that the values and analysis derived in the previous
section are not biased from this perspective.

On the other hand, other independent measurements,
from other observational perspectives, have been carried
out recently reporting, γ = 0.87+0.19

−0.17 [75] and |γ − 1| <

0.2(	/100) kpc [76], with 	 = 10−200 kpc. Our con-
straints are in total agreement with these values. All these
constraints suggests no deviation from GR. But, despite the
statistical bounds be compatible with GR, note that the grav-
itational relaxing induced by GPPN is enough to generate NS
with M ∼ 2.6 M� or more, using a soft EoS. In this case, the
NS can rotate below of the maximum limit, which in turn will
generate an effective GPPN slightly smaller, but statistically
equivalent even at 68% CL when considering the maximum
value. From Eq. (11), if we assume the coupling parameter
to be α � 1 [44,62], we find M(rs)/M � 0.98, showing that
the screening mass is near to the surface, as expected.

4 Final remarks

We consider that the gravitational interaction can deviate
minimally from that predicted from GR, through a PPN cor-
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rection induced by a thin-shell effect via a chameleon screen-
ing. We analyze its impacts on the NS mass–radius relation,
motivated to check if it is possible to generate high NS masses
(when compared to GR prediction). Our main conclusion is
that from a combination of modified gravity, rotation effects
and realistic soft EoSs, it is possible to achieve high masses
like M ∼ 2.6 M� or more, and explain GW190814 sec-
ondary component. In return, it is also possible to explain the
most NS massive confirmed to date, i.e., PSR J0740 + 6620.
Then one sees here the following interesting aspect: one can
not ruled out some soft EoSs without first taking into account
effects coming from alternative theories of gravity. Although
our theoretical approach be simple, this consequence is clear
(see, e.g., Table 1 and Fig. 3). Therefore, gravity can play an
important role, without the need to invoke very stiff EoSs or
unusual aspects in nuclear matter.

It might be interesting to see how more sophisticated grav-
ity theories behave in this perspective, and if it is possible to
obtain new and accurate observational bounds on the free
parameters that characterize such scenarios using possible
massive NS observations.
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