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Abstract Motivated by recent proposals of possible worm-
hole shape functions, we construct a wormhole shape
function by employing the Karmarkar condition for static
traversable wormhole geometry. The proposed shape func-
tion generates wormhole geometry that connects two asymp-
totically flat regions of spacetime and satisfies the required
conditions. Further, we discuss the embedding diagram in
three-dimensional Euclidean space to present the wormhole
configurations. The main feature of current study is to con-
sider three well-known f (R) gravity models, namely expo-
nential gravity model, Starobinsky gravity Model and Tsu-
jikawa f (R) gravity model. Moreover, we investigate that
our proposed shape function provides the wormhole solu-
tions with less (or may be negligible) amount of exotic mat-
ter corresponding to the appropriate choice of f (R) gravity
models and suitable values of free parameters. Interestingly,
the solutions obtained for this shape function generate stable
static spherically symmetric wormhole structure in the con-
text of non-existence theorem in f (R) gravity. This may lead
to a better analytical representation of wormhole solutions in
other modified gravities for the suggested shape function.

1 Literature survey

Wormholes are assumptive tube-like geometrical structures
connecting two widely separated asymptotically flat distant
universes, or two different asymptotically flat portions of the
same universe and have no horizon. The concept of a tube-
like or bridge-like structure connecting two spacetimes was
firstly presented by Einstein and Rosen [1]. Further, they
explored the exact solution that describe the geometrical
structure of the bridge. The solution presented by Einstein
and Rosen is linked with the work of Flamm [2], who first
time developed the isometric embedding of Schwarzschild
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solution. Ellis [3] introduced another term for wormholes
which is known as “Drainhole”. Wheeler [4] named them
as “Geons” and predicted the shape of a wormhole which
offers a twofold space. Static wormhole configurations have
a constant throat radius while non-static wormhole configu-
rations have a variable throat radius. Kar [5] discussed the
static wormhole and examined their properties along with
examples. Kar and Sahdev [6] explored evolving Lorentzian
wormholes and discussed some results for exponential and
Kaluza–Klein inflation. The locally anisotropic wormhole
and flux tube like solutions have been studied using the
technique of anholonomic frames [7]. Dzhunushaliev et al.
[8] have investigated the linear stability analysis for worm-
hole configurations with and without electric and/or mag-
netic fields. Visser et al. [9] have shown that the violation of
null energy condition (NEC) can be restricted to an arbitrar-
ily small region by an appropriate choice of the wormhole
geometry. The static and spherically symmetric Lorentzian
wormhole solutions are discussed within the frame work of
general theory of relativity (GR) [10].

Morris–Thorne [11] were the first who gave the idea that
human being can travel through wormhole tunnels. They
investigated the static spherically symmetric wormholes by
using the principles of GR and presented the fundamental
theory for traversable wormholes. According to Morris et al.
[12] investigation, for the formation of wormhole structure,
the presence of exotic matter plays an important role in the
context of GR. Exotic matter is a form of dark energy (hav-
ing an EoS with ω < −1/3), produces a repulsive force.
Recent observations have shown that the dark energy is the
main reason for the accelerated expansion of the universe.
A few candidates have been proposed in the literature to
presenting dark energy, like, a positive cosmological con-
stant, Chaplygin gas, the quintessence fields etc. GR has
been the most successful theory of last century. One may
simply needs to add a cosmological constant or some other
exotic source to explain the accelerated expansion. However,
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there are models which may also explain dark energy by
modifying gravity. Recently, different researchers discussed
wormholes geometry in different modified theories of grav-
ity [13–19]. In 1970, Buchdahl [20] proposed one of the
most well known and simplest modified theory of gravity
i.e., f (R) gravity which can be obtained by adopting a mod-
ification in the Einstein Hilbert action with an arbitrary func-
tion of the Ricci scalar R. Following in this way, several
modifications of GR have been developed by considering
different approaches. The geometry of dark energy model
can be depicted by f (R) gravity [21,22]. Harko et al. [23]
discussed static spherically symmetric wormholes with non-
exotic matter (respected energy conditions) in the framework
of f (R) gravity. Rahaman and collaborators [24,25] devel-
oped new solutions for static wormholes in f (R) gravity and
acknowledged the existence of wormhole solutions that do
not require exotic matter. Bronnikov and Starobinsky [26]
discussed the very well known non-existence theorem for
wormhole geometry and observed that no realistic worm-
hole can be formulated in scalar–tensor models for a positive
scalar function. Further, Bronnikov et al. [27] showed that
for d f

dR = F(R) < 0, the non-existence condition of worm-
hole could be violated in f (R) theory of gravity. Bahamonde
et al. [28] discussed the existence of wormholes in galac-
tic halos. Moreover, they described a non-static wormhole
geometry that asymptotically impending towards the Fried-
mann Lemaître Robertson Walker universe.

One interesting topic in traversable wormhole geometry is
the study of wormhole shape function (WSF) ε(r) for asymp-
totically flat wormhole with their essential properties (see
detail in Sect. 2). Recently, many authors have discussed var-
ious ansatz shape functions to describe the wormhole struc-
ture. Godani and Samanta [29] explored asymptotically flat
wormhole with WSF ε(r) = r0Log(r+1)

Log(r0+1)
. Jahromi and Morad-

pour [30] introduced a WSF ε(r) = a tanhr . The WSF
ε(r) = α + β(r) is proposed by Cataldo and Liempi [31].
Samanta et al. [32] defined ε(r) = r

e(r−r0) , known exponen-

tial WSF. Some authors [33–35] used ε(r) = (r0)
n+1r−n ,

for different values of n. Recently, Golchin and Mehdizadeh
[36] have considered a special class in f (R) theory of gravity
(F(R0) = 0 and d f

dR |(R0) = 0, where R0 is a fixed quantity)
and construct a WSF.

Motivating from this, in this article, we calculate a WSF by
employing the Karmarkar condition (KMc). Karmarkar [37]
developed a mandatory condition for a static and spherically
symmetric line element to be of class one. In recent years,
different researchers have considered the KMc to discussed
the configurations of spherically symmetric compact objects
[38–42]. Kuhfittig [43] developed wormhole geometry using
KMc and shown that the embedding theory may provide the
basis for a complete wormhole solution. Recently, Fayyaz
and Shamir [44] constructed a WSF by applying KMc and

analysed that it obeys all the required conditions and exhibit
the presence of exotic matter in the context of GR. To the best
of our knowledge, we first time apply this shape function in
modified f (R) theory of gravity. This paper is composed as
follows: In Sect. 2, we construct a WSF by employing KMc
and discuss the embedding diagram for wormhole geometry
into three-dimensional Euclidean space. In Sect. 3, we dis-
cuss the formulation of f (R) theory of gravity. Further, we
consider three different well known viable f (R) gravity mod-
els and examine the NEC and weak energy condition (WEC)
via graphical representation. Conclusion is given in Sect. 4.

2 The geometry of traversable wormhole and
embedding diagram

In the present work, our main focus is to develop a WSF
using the KMc that describes wormhole geometry. For this
purpose, we assume static spherically symmetric spacetime
defined as:

ds2 = −eχ(r)dt2 + eη(r)dr2 + r2dθ2 + r2 sin2 θdφ2. (1)

The non-zero Riemann curvature components corresponding
to the above spacetime (1), are given below:

R1414 = eχ (2χ ′′ + χ ′2 − χ ′η′)
4

,

R1212 = rη′

2
, R1334 = R1224Sin

2θ,

R2323 = r2Sin2θ(eη − 1)

eη
,

R3434 = r Sin2θη′eχ−η

2
, R1224 = 0.

These components satisfy the very well known Karmarkar
relation

R1414 = R1212R3434 + R1224R1334

R2323
,

with R2323 �= 0. The form of spacetime, satisfying the KMc
is known as embedding class I . By substituting the non-zero
components of Riemann curvature in Karmarkar relation, we
get the following differential equation:

χ ′η′

1 − eη
= χ ′η′ − 2χ ′′ − χ ′2,

where eη �= 1. The solution of the above differential equation
is given as

eη = 1 + Aeχχ ′2. (2)
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Here, A is an integrating constant. Now, to construct the shape
function, we assume Morris–Thorne metric defined as:

ds2 = −eχ(r)dt2+ 1

1 − ε(r)
r

dr2+r2dθ2+r2 sin2 θdφ2. (3)

The metric co-efficient χ(r) is known as redshift function
such that χ(r) → 0 as r → ∞. Here, we assume the redshift
function χ(r), defined as [35,45]

χ(r) = −2ξ

r
, (4)

where ξ is an arbitrary constant. By comparing the Eqs. (1)
and (3), we obtain

η(r) = Log

[
r

r − ε(r)

]
. (5)

Here, ε(r) is a WSF. Now, by using Eqs. (2), (4) and (5), we
calculate the following WSF

ε(r) = r − r5

r4 + 4ξ2Ae
−2ξ
r

. (6)

According to Morris and Thorne [11], to get a traversable
wormhole solution, shape function should satisfy the fol-
lowing essential properties:

1. ε(r) − r = 0 at r = r0,
2. The condition ε(r)−rε′(r)

ε′(r) > 0 must be fulfilled at r = r0,
3. ε′(r) < 1,
4. ε(r)

r → 0 at r → ∞,

where r0 is known as a wormhole throat radius and r is
the radial coordinate such that r0 ≤ r ≤ ∞. When we
evaluate Eq. (6) at the throat i.e., ε(r0) − r0 = 0, we get
a trivial solution r0 = 0. To handle this problem we add
a free parameter “C” in Eq. (6). Now, Eq. (6) takes the

form ε(r) = r − r5

r4+4ξ2Ae
−2ξ
r

+ C . Condition (1) provides

A = r4
0 (r0−C)

4ξ2e
−2ξ2
r0

. After substituting the value of A in Eq. (6),

one can find the expression for WSF ε(r) as

ε(r) = r − r5

r4 + r4
0 (r0 − C)

+ C, 0 < C < r0. (7)

Conditions (2) and (3) also satisfy for the given range of C .
Applying condition (4) on Eq. (7), we found that

lim
r→∞

ε(r)

r
= 0. (8)

Thus Eq. (7) provides asymptotically flat traversable
wormholes. We have plotted all the mentioned conditions
in Figs. 1 and 2. It can be clearly seen from these figures
that our proposed WSF fulfils all the required conditions. To
represent the wormhole geometry, we used embedding dia-
gram and excerpt some fruitful information. The spherical
symmetry allows us to take an equatorial slice θ = π

2 with a
rigorous part of time t = const . Using these assumptions in
Eq. (3), we get

ds2 = 1

1 − ε(r)
r

dr2 + r2dφ2. (9)

To visualize this part, embedded Eq. (9) into three-dimensional
Euclidean space with cylindrical coordinates (r, h, φ), given
by

ds2 = dr2 + dh2 + r2dφ2. (10)

The embedded surface h ≡ h(r) in three-dimensional space
with axially symmetry can be written from last equation as

ds2 =
[

1 +
(
dh

dr

)2]
dr2 + r2dφ2. (11)

By comparing Eqs. (10) and (11), one can easily find that

dh

dr
= ±

(
r

ε(r)
− 1

)−1
2

. (12)

From Eq. (12), we investigate that at the throat the embedded
surface is vertical i.e. dh

dr → ∞. We also examine that away
from the throat the space is asymptotically flat because dh

dr
tends to 0 as r tends to infinity. We have shown the embedded
diagram in Figs. 3 and 4. Moreover, one can visualize the
upper universe for h > 0 and the lower universe h < 0 in
Figs. 3 and 4.

3 f (R) gravity

Our starting point for the f (R) theory of gravity is the
Einstein-Hilbert action for modified f (R) gravity,

S =
∫ √−g

(
1

16πG
[ f (R)] + Lm

)
d4x . (13)

Here, Lm stands for the matter Lagrangian field and f (R)

is a function of the Ricci scalar R. One can derive the field
equations by varying the above action with respect to the
metric gζη as:

F(R)Rζη − 1

2
f (R)gζη − ∇ζ ∇ηF(R)
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Fig. 1 Evaluation of wormhole shape function ε(r) (1st plot) and its required conditions ε(r) − r = 0 at r = r0 (2nd plot), ε(r)
r → 0 for r → ∞

(3rd plot) for r0 = 2 and C = 1.9 to present the realistic wormhole geometry

Fig. 2 Condition ε(r)−rε′(r)
ε′(r) > 0 (1st plot) and ε′(r) < 1 (2nd plot), for r0 = 2 and C = 1.9

Fig. 3 Plot of embedding diagram for upper universe h(r) > 0 with respect to radial coordinate with slice t = const and θ = π/2. For a full
visualization of the wormhole surface, took a 2π rotation around the h-axis

+gζη�F(R) = 8πT (m)
ζη , (14)

where � = ∇ζ ∇ζ and ∇ζ denotes the covariant deriva-

tive. T (m)
ζη = (ρ,−pr ,−pt ,−pt ) represents stress energy

momentum tensor, where ρ, pr and pt are the radial and
tangential pressures respectively, and F(R) = d f

dR . Now by
using the trace of energy momentum tensor in above equa-
tion and after some manipulations, the above equation can
also be written as

Gζη = Rζη − 1

2
Rgζη = T (e f f )

ζη = 8π

F
T (m)

ζη

+ 1

F

[
∇ζ ∇ηF(R)−

(
�F(R)+1

2
RF(R)−1

2
f (R)

)
gζη

]
.

(15)

Now using Eq. (15) along with Eq. (1), one can find the
following field equations as [28]:

ρ = f

2
−

(
1 − ε

r

)
R′2 fRRR − fR

2r2

×
[
r((ε′ − 4) + 3ε)χ ′ − 2r(r − ε)χ ′2 + 2r(ε − r)χ ′′

]

− fRR
2r2

[
2r(r − ε)R′′
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Fig. 4 Plot of embedding diagram for lower universe h(r) < 0 with respect to radial coordinate with slice t = const and θ = π/2. For a full
visualization of the wormhole surface, took a 2π rotation around the h-axis

−(r(ε′ − 4) + 3ε)R′
]

(16)

pr = − f

2
+ ε fR

2r3

[
2r2χ ′2 + 2r2χ ′′ − rχ ′ − 2

]

+ e−2χ fR
2r2

[
e2χ (ε′(rχ ′ + 2) − 2r2(χ ′2 + χ ′′))

]

+ fRR R
′ (1 − ε

r

)(
χ ′ + 2

r

)
, (17)

pt = − f

2
+ fR

2r3

[
ε(2rχ ′ + 1) + (ε′ − 2rχ ′)r

]

+ fRR
2r2

[
R′(r(2rχ ′ − ε′ + 2) − ε(2rχ ′ + 1)) + 2r(r − ε)R′′

]

+ fRRR
(
R′2 (

1 − ε

r

))
. (18)

Here prime denotes the derivative with respect to the radial
coordinate r . fR, fRR, fRRR are the first, second and third
derivatives of f (R) with respect to the Ricci scalar R respec-
tively. Bronnikov and Starobinsky [26] discussed the stabil-
ity condition for wormhole geometry which is also free from
ghosts. It is shown that no realistic wormhole can be formu-
lated in scalar–tensor models for a positive scalar function.
In the context of f (R) theory of gravity, the non-existence of
wormhole could be violated if d f

dR = F(R) is negative [27].
According to the classical GR, presence of exotic matter in
wormhole structure is the main cause of violation of NEC
denoted as ρ + pr ≥ 0, ρ + pt ≥ 0, and WEC denoted as
ρ ≥ 0, ρ + pr ≥ 0, ρ + pt ≥ 0. Hochberg and Visser
[46,47] extended the results for wormhole solutions, which
was earlier described by Morris–Thorne [11], with exotic
matter and provided the result that wormhole throat does not
respect NEC. In recent work, our main focus is to calculate
the wormhole solutions that respects NEC and also violates
the non-existence theorem in the context of f (R) theory of
gravity. In view of this approach, we further simplify our cal-
culation for ρ + pr and ρ + pt . We found that to respect the

NEC

ρ + pr = ε′r − ε

2r3 ( fRR R
′r + 2 f r), (19)

ρ + pt = fR
(ε′r + ε)

2r3 − χ ′(ε′r − ε)

2r2 , (20)

should be positive at the throat. One can notice that first
part in Eq. (19) involves flaring out condition which gives
ε′r − ε < 0. Thus 2nd part must be negative for ρ + pr > 0,
i.e., fRR R′r + 2 fR < 0. Equation (20) involves term
fR = d f/dR, as we consider violation of non-existence
theorem (i.e., d f/dR < 0) for spherically symmetric worm-
hole structure, therefore, for ρ + pt > 0 the remaining term
should also be negative. This examination shows the impor-
tance of flaring out condition and selection of f (R) gravity
model. In next section, we discuss wormhole solutions under
the influence of three different viable f (R) gravity models.
It is important to mention that we use ξ = −1, r0 = 2 and
C = 1.9 throughout our further analysis.

3.1 The exponential gravity model

Cognola et al. [48] introduced and investigated the expo-
nential gravity model. This model describes the inflation of
early universe and accelerated expansion of the current uni-
verse in a natural way. The exponential model is defined as

f (R) = R − μR∗
[
1 − e

−R
R∗

]
, (21)

where R∗ and μ are arbitrary constants. In particular, we use
μ = 1.8, R∗ = 2 and evaluate the graphical behaviour of
F = d f

dR , ρ, ρ + pr and ρ + pt . It can be clearly seen from
Fig. 5 that the existence of exotic matter can be avoided at
the throat for the traversable wormhole geometry. We itemize
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Fig. 5 The both terms of NEC
ρ + pr (upper left) and ρ + pt
(upper right) are respected at the
throat for wormhole geometry
for all the considering
combinations of free
parameters. The first term of
WEC ρ (lower left) also shows
the validation at the throat.
While, we get the violation of
non-existence theorem when
μ > 0, R∗ > 0 (lower right)

Fig. 6 ρ + pr > 0 (upper left),
ρ + pt > 0 (upper left) and
ρ > 0 (lower left) for all are
considering combinations of
λ, R∗ and n. Whereas, F < 0
for λ < 0, R∗ < 0 and n > 0

the analysis below, in the light of exponential f (R) gravity
model as:

• For R∗ < 0 and μ > 0, WEC is respected for throughout
the wormhole geometry, whereas, F = d f/dR > 0 i.e.,
there is no spherically symmetric wormhole configura-
tions. Such solutions may be interesting for non-static or
thin-shell wormholes due to its stable spherically sym-
metric perturbations [26].

• For R∗ < 0 and μ < 0, we found that d f
dR < 0, whereas,

violation of NEC have shown that the wormhole space is
filled with exotic matter.

• For R∗ > 0 and μ < 0, we get the same result as for
R∗ < 0 and μ > 0.

• For R∗ > 0 and μ > 0, we found that the existence
of exotic matter can be avoided at the throat for the
traversable wormhole geometry. It can be clearly seen
from Fig. 5, the term ρ + pr is positive for 1 ≤ r/r0 <

1.4, ρ + pt > 0 for 1 ≤ r/r0 < 1.7 and ρ > 0
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for 1 ≤ r/r0 < 1.3. Therefore, NEC is respected for
r/r0 ∈ [1, 1.4) and WEC is respected for r/r0 ∈ [1, 1.3).

Thus, we conclude that μ = 1.8, R∗ = 2 are the appropri-
ate values to get wormhole solution which violates the non-
existence theorem with the presence of negligible amount of
exotic matter by using exponential f (R) gravity model with
our proposed shape function.

3.2 Starobinsky f (R) gravity model

One of the most well known f (R) gravity model which is
consistent with cosmological conditions and satisfies solar
system and laboratory tests, proposed by Starobinsky [49],
defined as

f (R) = R + λR∗

[(
1 + R2

R2∗

)−n

− 1

]
, (22)

where λ, R∗ and n are free parameters. Model (22) contains
properties of dark energy models and is consistent with cos-
mological and local gravity constraints [50]. In investigation,
we get the following analysis:

• For n < 0,

– if R∗ < 0 and λ < 0, we get the non-spherically
symmetric wormhole geometry with the presence of
ordinary matter at the throat i.e., validation of WEC,

– we get the same result for R∗ < 0 and λ > 0,
– further, we analyze that for R∗ > 0 and λ < 0, again

WEC is respected at the throat, whereas, f > 0.
– for R∗ > 0 and λ > 0, we get some interesting

results. For λ ∈ (0, 6) have shown an attractive
geometry which is feasible for traversable wormhole
without exotic matter as f < 0 with the validation of
WEC at the throat. Moreover, when λ > 6, we found
that ρ + pr > 0, ρ + pt > 0 with ρ < 0.

• For n > 0,

– for the combinations, R∗ < 0, λ < 0 and R∗ > 0,
λ < 0, we get the non-existence condition i.e., F > 0
with ρ + pr > 0, ρ + pt > 0 and ρ > 0,

– for the combinations, R∗ < 0, λ > 0 and R∗ >

0, λ > 0, we found the violation of non-existence
theorem F > 0. As, WEC is respected at the throat for
both the combinations, so, the traversable wormhole
inner space is filled with ordinary matter .

Thus, we can find the wormhole solutions that may have
negligible amount of exotic matter. In particular, we choose
R∗ = −2, λ = −3.5 and n = 2 to show the feasible
traversable wormhole structure which have an ordinary mat-

ter at the throat of the wormhole (see Fig. 6). Further, we have
also shown some other combinations which are respected the
WEC at the throat with non-asymptotically flat wormhole
geometry by using our proposed WSF.

3.3 Tsujikawa f (R) gravity model

Another viable f (R) model that we consider is known as
Tsujikawa model [51] and it is defined as

f (R) = R − μc R∗Tanh
(

R

R∗

)
. (23)

Here R∗ and μc are arbitrary constants. Tsujikawa [51]
described that μc ∈ (0.905, 1) to sustain the viability of the
model i.e., F = d f

dR > 0. Whereas for the violation of non-
existence theorem of static spherically symmetric wormhole
F = d f

dR < 0. To get that requirement we have chosen μc in
the neighbourhood of defined range. We assessed the geomet-
ric nature of wormhole structure through energy conditions
for μc = 1.0135 and R∗ = −2. We analyzed the following
points during investigation:

• For the combinations R∗ < 0, μc < 0 and R∗ > 0,
μc < 0, WEC is respected for r/r0 ∈ (1, ∞). This shows
that the wormhole inner space is filled with normal matter.
Whereas F > 0 shows the non-spherically symmetric
wormhole geometry

• For the combinations R∗ < 0, μc > 0 and R∗ > 0, μc >

0, we found that F < 0 and WEC is at the throat. This
shows the existence of an attractive wormhole geometry
whose vicinity of the throat is filled with ordinary matter.

Therefor, it can be seen from the Fig. 7, for the chosen combi-
nation of parameters, we get the violation for non-existence
theorem i.e., F < 0. ρ+ pr and ρ+ pt both are positive at the
wormhole throat therefore NEC is respected which shows the
absence of exotic matter at the throat. Moreover, ρ > 0 also
reduces the presence of exotic matter and provides stable and
traversable wormhole structure.

4 Concluding remarks

In recent years, different researchers proposed WSF that are
either ansatz or based on specific theory. Main purpose of
this article is to construct a shape function by employing the
KMc. This condition is mandatory for the spacetime of class
I . Several authors extensively consider the KMc to discuss
the configurations of spherically symmetric compact objects.
In Sect. 2, we discuss the construction of shape function in
detail. Our proposed WSF fulfils all necessary requirements
and provide a viable relativistic configuration for wormhole
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Fig. 7 The both terms of NEC
ρ + pr (upper left) and ρ + pt
(upper right) are respected at the
throat for wormhole geometry
for all the considering
combinations of free parameters.
The first term of WEC ρ (lower
left) also shows the validation at
the throat. While, we get the
violation of non-existence
theorem when R∗ < 0 and
μc > 0 (lower right)

geometry. We have shown the graphical behaviour of shape
function and its properties in Figs. 1 and 2. Further, we dis-
cuss embedded diagram to represent the wormhole structure.
We consider equatorial slice θ = π

2 , and a fixed moment of
time i.e., t = constant for spherical symmetry, and for the
visualization we embed it into three dimensional Euclidean
space. Moreover, one can visualize the upper universe for
h > 0 and the lower universe h < 0 in Figs. 3 and 4.

Further, we investigate exact solutions for static spher-
ically symmetric traversable wormhole geometry in the
framework of f (R) gravity. For this purpose, we consider
four viable f (R) gravity models named as exponential grav-
ity model, Starobinsky gravity Model and Tsujikawa f (R)

gravity model to discuss energy conditions and violation of
non-existence theorem for wormhole geometry.

• Firstly, we consider exponential gravity model which
shows the possibility of static spherically symmetric
traversable wormhole with violation of non-existence
theorem. Figure 5 have shown that WEC is respected at
the throat. Further we investigate that with the variation of
μ either we get the violation of WEC and non-traversable
wormhole structure i.e., d f/dr > 0. Thus we conclude
that μ > 0, R∗ > 0 is the appropriate combination to
get wormhole solution which violates the non-existence
theorem with the presence of negligible amount of exotic
matter.

• Secondly, we discuss wormhole structure using Starobin-
sky f (R) gravity model. We discuss different combina-
tions of free parameters in detail and investigate that for
the maximum range of free parameters, non-spherically
symmetric wormhole geometry is respected the WEC at

the vicinity of the throat, such solutions may be inter-
esting for non-static or thin-shell wormholes due to its
stable spherically symmetric perturbations [26].

• Finally, we consider Tsujikawa gravity model. It can be
seen from Fig. 7, for the chosen combination of param-
eters, we get the violation for nonexistence theorem i.e.,
F < 0. ρ + pr and ρ + pt both are positive at the worm-
hole throat therefore NEC is respected which shows the
absence of exotic matter at the throat. Moreover, ρ > 0
for larger range of radial coordinate r which also reduce
the presence of exotic matter and provides stable and
traversable wormhole structure.

Thus, in comparison with Fayyaz and Shamir [44], dis-
cussed the WSF Eq. (7) in the context of GR and investigated
the presence of exotic matter in the formulation of wormhole.
While in the framework of f (R) theory of gravity our results
respects NEC and even WEC not at the throat but the larger
values of radial coordinate r . So, our proposed WSF shows
the formation of wormhole geometry with negligible amount
of exotic matter. In future, it would be interesting to check
the stability of wormhole solution in other modified gravities
for this suggested shape function. As a first step, the study of
wormhole geometries using KMc in modified theories with
matter coupling is under process.
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