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Abstract We investigate the holographic subregion com-
plexity (HSC) and compare it with the holographic entan-
glement entropy (HEE) in the metal/superconductor phase
transition for the Born–Infeld (BI) electrodynamics with full
backreaction. Based on the subregion CV conjecture, we find
that the universal terms of HSC remain finite during phase
transitions, and the HSC is a good probe to the critical tem-
perature in the holographic superconducting system. Further-
more, we observe that for the operator O+, the HSC of the
superconducting phase decreases first and then increases as
the BI parameter increases, which is completely different
from that of HEE, and the value of the BI parameter corre-
sponding to the inflection point of HSC is larger than that of
HEE. But for the operator O−, the HSC increases monoton-
ically as the BI parameter increases, which is similar to that
of HEE.

1 Introduction

The anti-de Sitter/conformal field theories (AdS/CFT) cor-
respondence [1–4], as a concrete realization of the holo-
graphic principle [5,6], provides us a useful theoretical
method to study the strongly coupled systems in various
fields of physics. In the last decades, two of the most impor-
tant aspects that have received wide attention in the context
of the AdS/CFT correspondence are holographic supercon-
ductors [7–10] and holographic entanglement entropy (HEE)
[11,12]. The former exhibits many characteristic properties
shared by the real superconductor, which may be inspiring to
understand the mechanism of high temperature superconduc-
tors in condensed matter physics, see [13,14] for a review.
The latter is a holographic description of quantum entan-
glement, which might be eventually used to understand the
nature of the spacetime geometry.
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Following the Ryu–Takayanagi (RT) proposal, the entan-
glement entropy of CFT’s states living on the boundary of
an AdS spacetime corresponds to the area of a minimal sur-
face defined in the bulk of that spacetime. This is simply
summarized into the formula

S = Area(γA)

4GN
, (1)

where S is the entanglement entropy for the subsystem A
which can be chosen arbitrarily, GN is the Newton’s constant
in the dual gravity theory and γA known as the RT surface,
i.e., the minimal surface in the bulk, which was extended
into the bulk with the same boundary ∂A of subsystem A.
Since this proposal provides a simple and elegant way to
calculate the entanglement entropy of a strongly interacting
system from a weakly coupled gravity dual, it is widely used
to study various properties of holographic superconductors
at low temperatures [15–29]. These studies show that the
entanglement entropy is a good probe to the critical temper-
ature and the order of the phase transition in the holographic
superconductor system.

In addition, a new concept which is receving a wide atten-
tion of late is the holographic complexity. The (quantum)
complexity is an improtant notion in the quantum informa-
tion theory which has been recently included in the context of
holographic field theories. Roughly speaking, the quantum
complexity is the minimum number of elementary opera-
tions (quantum gates) needed to produce an arbitrary state
of interest from a fixed reference state. In the holographic
framework, there are two distinct proposals to evaluate the
complexity of a holographic boundary state, the first is CV
conjecture (complexity = volume) [30,31] and the second is
CA conjecture (complexity = action) [32,33]. The CV con-
jecture proposes that the holographic complexity is propor-
tional to the volume of the extremal codimension-one bulk
hypersurface which meets the asymptotic boundary on the
desired time slice, but the CV conjecture states that the holo-
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graphic complexity is proportional to the bulk action evalu-
ated in a particular spacetime region known as the Wheeler-
DeWitt patch. Based on the CV conjecture, the definition
of holographic complexity for subsystem is given in [34],
which shows that the holographic complexity of subsystem
A is proportional to the volume surrounded by the minimal
surface (RT surface) as follows

C = Volume(γA)

8πLGN
, (2)

where γA is the RT surface of the corresponding subregionA
and L is the AdS radius. This quantity is known as the holo-
graphic subregion complexity (HSC). It has been suggested
that the possible dual field theory quantity is the fidelity sus-
ceptibility in quantum information theory [35–37].

Because the complexity measures the difficulty of turning
one state into another, it is expected that the HSC should cap-
ture the behavior of the phase transition and can provide use-
ful information as well. In fact, some authors have recently
discussed the holographic complexity in different types of
holographic superconducting models where the backreac-
tion is taken into account [38–43]. Reference [38] discussed
the HSC for two dimensional holographic superconductor
with backreactions and argued that extra divergence terms are
generated at critical points. However, the numerical results
in [39] show that the universal terms of HSC remain finite
during the phase transition for one-dimensional holographic
superconductors, and the HSC does not behave in the same
way as the HEE. Moreover, Ref. [42] has studied the prop-
erties of the HEE crossing both first and second order phase
transitions in the Stückelberg superconductor, which sug-
gests that the holographic complexity can be probe to the
type of superconducting phase transition. It is worth noting
that Ref. [43] has investigated the HSC of a 2 + 1 dimen-
sional holographic superconductor, which is very similar to
the set up in [42] (involves the first order phase transition
and second order phase transition), the results of HSC of the
superconducting phase during the second order phase transi-
tion are opposite to what is found in [42]. For the holographic
metal/superconductor phase transition, the HEE in the super-
conducting case is always less than that in the normal phase
[15]. Nevertheless, there are still many ambiguities about the
behavior of holographic complexity in holographic super-
conducting systems. Thus, it is interesting to further analyze
the holographic complexity in other holographic supercon-
ducting models and to investigate the difference from the
HEE.

It’s interesting to consider holographic superconductors in
the Born–Infeld (BI) electrodynamics. As one of the impor-
tant nonlinear electrodynamics theories, the BI electrody-
namics, which was proposed in 1934 to avoid the infinite self-
energies for charged point particles arising in Maxwell the-
ory, displays good physical properties including the absence

of shock waves and birefringence [44–46]. In order to under-
stand the influences of the 1/N or 1/λ (λ is the ’t Hooft
coupling) corrections on the holographic superconductors,
when considering the high order correction of the gauge
field, the BI electrodynamics is introduced into the study of
holographic superconductors. Researches found that the BI
electrodynamics can hinder the formation of the scalar hair
so that the holographic superconductor becomes difficult to
form [47,48].

In this paper, we would like to investigate the behavior
of HSC in the metal/superconductor phase transition with
BI electrodynamics, and examine whether the HSC is still
useful in describing properties of the phase transition sys-
tem. We will focus on the time-independent subregion holo-
graphic complexity, and compare it to the behavior of HEE.
The subregion we choose here is an infinitely long strip with
the width � . We will see that the universal terms of HSC
remain finite during phase transitions, just like the HEE, and
the critical temperature at which a normal phase turns into a
superconducting phase is exactly the same in both the HSC
and the HEE computation. However, the behavior of HSC is
different from that of HEE. Moreover, for the two operators,
the HSC exhibits very different behaviors. In particular, in
the superconducting phase, with the increase of the BI factor,
the HSC of the operator 〈O−〉 increases monotonously but
the HSC first decreases and then increases for the operator
〈O+〉.

This paper is organized as follows. In Sect. 2, we will
introduce the holographic superconductors in the BI electro-
dynamics. In Sect. 3, we study the phase transition with BI
electrodynamics in four-dimensional AdS black hole space-
time. In Sect. 4, we first review the holographic setup of the
entanglement entropy and subregion complexity for a strip
subregion, and then numerically evaluate them in the super-
conducting model. In Sect. 5, we summarize our results.

2 Holographic superconductor in BI electrodynamics

The action for the d-dimensional gravity and BI electro-
magnetic field coupling with a charged scalar field can be
expressed as

S =
∫

dd x
√−g

×
[

1

2κ2 (R − 2�)−|∇	 − iq A	|2 − m2|	|2+LBI

]
,

(3)

where g is the determinant of the metric, ψ represents a
scalar field with charge q and mass m, κ2 = 8πGd is the
d-dimensional gravitational constant, � = −(d − 1)(d −
2)/2L2 is the cosmological constant, A is the gauge field,
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and LBI is Lagrangian density of the BI electrodynamics

LBI = 1

b2

⎛
⎝1 −

√
1 + b2FμνFμν

2

⎞
⎠ . (4)

Here Fμν is the strength of the BI electrodynamic field F =
d A, and b is the BI coupling parameter. In the limit b → 0,
the BI field will reduce to the Maxwell field. Including the
backreaction, we consider the metric ansatz

ds2 = − f (r)e−χ(r)dt2 + dr2

f (r)
+ r2hi j dx

i dx j . (5)

Then the Hawking temperature of the black hole is expressed
as

TH = f ′(r+)e−χ(r+)/2

4π
, (6)

where r+ is the horizon of black hole. We need χ(r → ∞) =
0 to recover the AdS boundary. The electromagnetic field and
the scalar field can be taken as

A = φ(r)dt, ψ = ψ(r). (7)

From above assumptions, we can obtain the equations of
motion as

ψ ′′ +
(
d − 2

r
− χ ′

2
+ f ′

f

)
ψ ′ + 1

f

(
q2eχφ2

f
− m2

)

ψ = 0, (8)

φ′′ +
(
d − 2

r
+ χ ′

2

)
φ′ − (d − 2)b2eχ

r
φ′3

− 2q2ψ2(1 − b2eχφ′2) 3
2

f
φ = 0, (9)

χ ′ + 4rκ2

d − 2

(
ψ ′2 + q2eχφ2ψ2

f 2

)
= 0, (10)

f ′ −
(

(d − 1)r

L2 − (d − 3) f

r

)

+ 2rκ2

d − 2

[
m2ψ2 + f

(
ψ ′2 + q2eχφ2ψ2

f 2

)

+1 − √
1 − b2eχφ′2

b2
√

1 − b2eχφ′2

]
= 0, (11)

where the prime denotes the derivative with respect to r . At
the horizon r+, the regularity condition gives the boundary
conditions φ(r+) = 0 and f (r+) = 0. Near the AdS bound-
ary (r → ∞), the asymptotic behaviors of the solutions are

χ → 0, f ∼ r2, φ ∼ μ − ρ

rd−3 , ψ ∼ ψ−
r�−

+ ψ+
r�+ , (12)

with �± = ((d−1)±√
(d − 1)2 + 4m2)/2, where μ and ρ

are interpreted as the chemical potential and charge density
in the dual field theory respectively. The coefficients ψ+ and
ψ− correspond to the vacuum expectation values 〈O−〉 and
〈O+〉 of an operator O dual to the scalar field [8,9].

Considering the Breitenlohner–Freedman bound [49,50],
the mass of the scalar field must be restricted as m2 >

−(d − 1)2/4. In addition, it should be noted that provided
�− is larger than the unitarity bound, both ψ− and ψ+ can be
normalizable where −(d − 1)2/4 < m2 < −(d − 1)2/4 + 1
[10]. This means that ψ− or ψ+ can either be identified as a
source or an expectation value. In the following calculation,
we impose boundary condition that either ψ− or ψ+ van-
ishes. From the equations of motion for the system, we can
get the useful scaling symmetries in the forms

r → αr, (x, y, t) → (x, y, t)/α, φ → αφ, f → α2 f,

(13)

L → αL , r → αr, t → αt, q → α−1q, (14)

eχ → α2eχ , φ → α−1φ, t → tα. (15)

Using the scaling symmetries (13) we can take r+ = 1, and
the symmetries (14) allow us to set L = 1.

3 Phase transition with BI electrodynamics

In this part, we concretely consider the four-dimensional AdS
black hole spacetime. We will investigate the physical prop-
erties of phase transition in this model through the behaviors
of the scalar condensation. For the normal phase, the metric
becomes the Reissner–Nordström AdS black hole as the BI
parameter approaches to zero. Thus, we have

χ = ψ = 0, φ = ρ

(
1

r+
− 1

r

)
, f = r2+ ρ2

4r2 −r3+
r

− ρ2

4r+r
.

(16)

However, if the BI parameter is not equal to zero, the solution
is the BI AdS black hole.

For purpose of getting the solutions in the superconducting
phase where ψ(r) 
= 0, we make a coordinate transformation
from r -coordinate to z-coordinate by defining z = r+/r .
Then, the equations of motion can be rewritten as

ψ ′′ −
(

χ ′

2
− f ′

f

)
ψ ′ − 1

z4 f

(
m2 − eχq2φ2

f

)
ψ = 0,

(17)

φ′′ + 1

2
χ ′φ′ + 2z3b2eχφ′3

−2q2ψ2(1 − b2eχ z4φ′2) 3
2

z4 f
φ = 0, (18)
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χ ′ − 2κ2
(
zψ ′2 + eχq2φ2ψ2

z3 f 2

)
= 0, (19)

f ′ − f

z
+ 3

z3

−κ2

z3

[
m2ψ2 + f

(
z4ψ ′2 + 1

f 2 e
χq2φ2ψ2

)

+1 − √
1 − b2z4eχφ′2

b2
√

1 − b2z4eχφ′2

]
= 0, (20)

where the prime now denotes the derivative with respect to z.
Since the equations are nonlinear and coupled to each other
in the superconducting phase, we will solve these equations
by using the numerical shooting method. Considering the
Breitenlohner–Freedman bound, we setm2 = − 2 and q = 1
without loss of generality, and we set the strength of back-
reaction 2k2 = 16πG4 = 1 in our following study. Since
there are scaling symmetries described by Eq. (13) for the
equations of motion, the following quantities can be rescaled
as

μ → αμ, ρ → α2ρ, 〈O+〉 → α2

〈O+〉, 〈O−〉 → α〈O−〉. (21)

The condensates of the scalar operators as a function of
temperature with different values of the BI parameter are
shown in Fig. 1. The left panel is the case of condensate
〈O+〉 and right panel shows the case of condensate 〈O−〉. It
can be easily seen from the pictures that when the temper-
ature is higher than the critical temperature Tc, there is no
condensation and it can be regarded as a metal phase. How-
ever, the condensation occurs when the temperature is below
the critical temperature Tc, which corresponds to a supercon-
ducting phase. In Table 1, we list the critical temperature for
the condensation of two operators for different BI parame-
ters. Obviously, the critical temperature Tc decreases as the
BI parameter b increases, which means that the effect of the
BI correction to the usual Maxwell field is to make it harder
for the scalar hair to form. This result is consistent with Ref.
[21] and the same as the result in [9] as the BI parameter b
approaches to zero.

4 HEE and HSC of the holographic model

We consider the subsystem A with a straight strip geometry
which is described by − �

2 ≤ x ≤ �
2 and − R

2 < y <
R
2 (R → ∞), where � is defined as the size of region A and
R is a regulator which can be set to infinity. In order to use
the z-coordinates form we choose a time slice in the metric
(5) and replace the coordinate r by r+/z. Note that we take
r+ = 1 there. The hypersurface surface γA starts from z = ε

at x = �
2 , then extends into the bulk until it reaches z = z∗,

and returns back to the AdS boundary z = ε at x = − �
2 ,

where ε is UV cutoff. Therefore, we may obtian the induced
metric on the minimal surface as follow

ds2
induced = 1

z2

{[
1 + 1

z2 f

(
dz

dx

)2
]
dx2 + dy2

}
. (22)

By using the proposal given by Eq. (1), the entanglement
entropy in the strip geometry is

S = 2R

4G4

∫ �/2

−�/2

dx

z2

√
1

z2 f

(
dz

dx

)2

+ 1. (23)

The minimality condition implies

dz

dx
= 1

z

√
(z4∗ − z4) f , (24)

in which the constant z∗ satifies the stationary condition
dz
dx |z=z∗ = 0. Integrating the condition gives us

x(z) =
∫ z∗

z
dz

z√
(z4∗ − z4) f (z)

, (25)

which satisfies, with a UV cutoff ε,

x(ε → 0) = �

2
. (26)

Using Eq. (24), the HEE can be rewritten as

S = 2R

4G4

∫ z∗

ε

dz
z2∗
z3

1√(
z4∗ − z4

)
f (z)

= 8πR

(
s + 1

ε

)
,

(27)

where s is a finite term which is physically important and the
term 1/ε is divergent.

By using the proposal given by Eq. (2), the HSC in the
strip geometry is

C = 2R

8πLG4

∫ z∗

ε

x(z)dz

z4
√

f
= R

4πLG4

[
c + F(z∗)

ε2

]
, (28)

where c is a universal term and F(z∗)/ε2 is a diverging term
[39]. Since the value of universal term should not change for
different cutoffs, for two different values of cutoff ε1 and ε2,
the value of F(z∗) in different situations can be found numer-
ically. For more details on the regularization of holographic
complexity, see [51,52].

Under the scaling symmetries of Eq. (13), we can rescale
the �, s and c as

� → α−1�, s → αs, c → αc. (29)

Therefore, in the following calculation we can use these
dimensionless quantities

�
√

ρ,
s√
ρ

,
c√
ρ

. (30)
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Fig. 1 The condensates of the scalar operators O+ (left) and O− (right) versus temperature for different values of the BI parameter. The colored
curves correspond to b = 0 (red), b = 0.2 (blue) and b = 0.4 (purple), respectively

Table 1 The critical temperature for the phase transition with different values of the BI parameter b

b 0 0.2 0.4

〈O+〉 Tc/
√

ρ 0.035891 0.033127 0.026864

〈O−〉 Tc/
√

ρ 0.208017 0.207326 0.205301

Next, we will study the behaviors of HSC and HEE for two
operators numerically.

4.1 The results of operator O+

We present the HEE and HSC of the operatorO+ as a function
of temperature T and the BI parameter b in Fig. 2. The left
panel is the case of HEE and right panel shows the case of
HSC. It can be seen from the right panel that the points, where
the curves of HSC for the normal phase (solid) intersect with
those of the superconducting phase (dashed), occur at critical
temperatures Tc/

√
ρ = 0.035891, Tc/

√
ρ = 0.033127 and

Tc/
√

ρ = 0.026864, for BI parameters b = 0, b = 0.2 and
b = 0.4, respectively. The discontinuous change of HSC at
the critical point indicates that the system has undergone a
phase transition from a normal state to a superconducting
one. Moreover, we can also see that the critical temperature
Tc of the phase transition decreases as the BI parameter b
increases. The information is consistent with the results in
left panel, which is obtained by analyzing the behavior of
HEE. This means the HSC can be used to search for the
critical temperature of the phase transition, just as the HEE.

It can be seen from the left plot in Fig. 2 that the HEE
in the superconducting phase is always less than the one
in the normal case and drops as the temperature decreases.
This property holds for different values of the BI parameter.
This behavior of the HEE is due to the fact that the conden-
sate turns on at the critical temperature and the formation of
Cooper pairs makes the degrees of freedom decrease in the

superconducting phase. However, as shown in right plot of
Fig. 2, the values of HSC for the superconducting state is
always larger than that for the normal state and increases as
the temperature decreases. This result is in agreement with
that reported in [39,43].

We also show the behaviors of the HEE and HSC with
respect to the BI parameter b for different widths � at a
fixed temperature T/

√
ρ = 0.015 below the phase transi-

tion temperature in Figs. 3 and 4 respectively. Obviously, for
a given BI parameter b, both the HSC and HEE increase as the
width � increases. Furthermore, as shown in the Fig. 3, with
increase of the BI parameter b for the fixed belt width � and
temperature T , the HEE in the superconducting phase first
increases and reaches the maximum value at some thresh-
old, then decreases monotonically. This feature is the same
as reported in [21]. However, we find that the dependence of
HSC in the superconducting phase on BI parameters b is also
non-monotonic, but it is the opposite of the behavior of the
HEE. As shown in the Fig. 4, for the fixed belt width � and
temperature T , the HSC in the superconducting phase first
decreases and reaches its minimum at some threshold and
then increases monotonically as the BI parameter b increases.
It should be noted that the BI parameter corresponding to the
HSC reaching the inflection point is always greater than that
of HEE. As pointed out in [53], the entanglement entropy is
usually not enough to describe the rich geometric structure
because it grows in a very short time during the thermaliza-
tion process of a strongly coupled system. The information
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Fig. 2 The HEE (left) and HSC (right) of the O+ as a functions of the temperature T and BI factor b for a fixed �
√

ρ = 1. The solid and dashed
curves indicate the normal and surperconducting phases. The colored curves correspond to b = 0 (red), b = 0.2 (blue) and b = 0.4 (purple),
respectively

reflected by the HSC may be different from the information
captured by the HEE.

4.2 The results of operator O−

For the operator O−, we show the behaviors of HEE and
HSC with respect to the temperature T and BI parameter b
at a fixed strip width �

√
ρ = 1 in Fig. 5. The left panel is the

case of HEE and right panel shows the case of HSC. We find
that both the HSC and HEE have discontinuous slopes near
the same critical temperatures, which implies the non-trivial
reorganization of the degrees of freedom in the system. This
indicates that the system has undergone a phase transition
from the normal state to the superconducting one. From the
plot of HSC, we can see that the critical temperatures consis-
tently drop when the BI parameter grows, which shows that
the operator O− condenses more difficult when the BI elec-
trodynamics correction becomes stronger. This result once
again indicates that the HSC can be a possible probe of phase
transition in the holographic superconducting system.

As can be seen from the left panel of Fig. 5, the HEE in
the superconducting phase is always less than the one in the
normal case and drops as the temperature decreases, which
is consistent with the results of operator O+. This is reason-
able because the cooper pairs form in the superconducting
state which suppress of the degree of freedom of the system.
From the right panel in Fig. 5, we can see that the HSC in the
normal phase increases as the temperature decreases. How-
erver, different from the results found in O+, the HSC in the
superconducting phase drops as the temperature decreases
and is always less than the one in the normal phase. This phe-
nomenon does not only appear in this system. In fact, the HSC
of two different operators also exhibit different behaviors in
2+1 dimensional holographic superconductor, see [43], but
the underlying mechanism remains mysterious.

To get further understanding of the effect of BI parameter
on the HEE and HSC of the operator O−, we plot the corre-
sponding results in Figs. 6 and 7 with a fixed temperature
T/

√
ρ = 0.15, which is below the transition temperature Tc.

Obviously, for a given BI parameter b, both the HSC and
HEE increase with the increase of the width �, which is con-
sistent with the case of operatorO+. We find that the behavior
of HSC is quite similar to that of HEE in the superconduct-
ing phase, i.e., the effect of BI parameters on the HEE and
HSC is monotonic, which is different from the case in the
operator O+. For a fixed width � (a given parameter b), the
HSC and HEE increase monotonously with the increase of
BI parameter b (width �) in the superconducting phase.

5 Summary and discussion

In this paper, we conducted a numerical analysis of HSC and
HEE in the metal/superconductor phase transition for the BI
electrodynamics with full backreaction by using the subre-
gion CV conjecture. We calculated the HSC of a strip sub-
region for two operators and compared it with the results of
HEE. Our analysis shows that the HSC remains finite during
phase transitions and the temperature where a normal phase
turns into a superconducting phase is exactly the same in both
the HSC and HEE computation, which corresponds exactly to
the critical temperature Tc of phase transition. Moreover, by
calculating the HSC of the system, we noted that the critical
temperature of the condensation for the operators becomes
smaller with the increase of the BI parameterb, which implies
that the stronger BI correction makes the scalar condensa-
tion harder to form. Our results indicates that the HSC can
be a probe of phase transition in holographic superconductor
models.
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Fig. 3 The HEE of the operator O+ as a function of the BI factor b for different widths � at T/
√

ρ = 0.015. The left plot (red) is for �
√

ρ = 0.8,
the middle one (blue) for �

√
ρ = 1.0, and the right one (black) for �

√
ρ = 1.2

Fig. 4 The HSC of the operator O+ as a function of the BI factor b for different widths � at T/
√

ρ = 0.015. The left plot (red) is for �
√

ρ = 0.8,
the middle one (blue) for �

√
ρ = 1.0, and the right one (purple) for �

√
ρ = 1.2

Fig. 5 The HEE (left) and HSC (right) of the O− as functions of the temperature T and BI factor b for a fixed �
√

ρ = 1. The solid and dashed
curves correspond to the normal and surperconducting phases, and the colored curves correspond to b = 0 (red), b = 0.2 (blue) and b = 0.4
(purple), respectively

Fig. 6 The HEE of the operator O− as a function of the BI factor b for different widths � at T/
√

ρ = 0.15. The left plot (red) is for �
√

ρ = 0.8,
the middle one (blue) for �

√
ρ = 1.0, and the right one (purple) for �

√
ρ = 1.2
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Fig. 7 The HSC of the operator O− as a function of the BI factor b for different widths � at T/
√

ρ = 0.15. The left plot (red) is for �
√

ρ = 0.8,
the middle one (blue) for �

√
ρ = 1.0, and the right one (purple) for �

√
ρ = 1.2

It has been reported that the behavior of HSC mimics
that of HEE for a thermodynamical phase transition of AdS
black holes [54], but our results demonstrated that the HSC
behaves in the different way with the HEE in the holographic
superconducting phase transition. Concretely, for two oper-
ators, the HEE in the superconducting phase is always less
than the one in the normal phase, and drops as the temper-
ature decreases. This is due to the fact that the formation of
Cooper pairs makes the degrees of freedom decrease in the
superconducting phase. However, for the operator O+, we
found that the HSC in the superconducting phase is always
larger than the one in the normal phase, and increases as
the temperature decreases. This result is in agreement with
that reported in [39,43]. But for the operator O−, we found
that the HSC in the superconducting phase is always less
than the one in the normal phase. The HSC in the normal
phase increases as the temperature decreases, while that in
the superconducting phase is reversed. In other words, the
behaviors of the HSC for two operators are also different.
Similar phenomena have been found in Ref. [43]. This dif-
ference should, of course, not be confused with the difference
caused by different orders of phase transition systems, but the
underlying mechanism is still unclear. It does not contradict
the results in [42], where the authors argued that the HSC can
be a possible probe to the type of the superconducting phase
transition. Because for the second order phase transition, its
most notable feature is that, at the phase transition point the
HSC is continuous and the slopes in terms of the temperature
have a jump, which is consistent with our results. While in
the first order superconducting phase transition, there exists
the jump for the complexity at the critical temperature.

Furthermore, we found that the BI parameter b has dif-
ferent effects on the HSC in the superconducting phase for
the two operators. For the operator O−, the HSC increases
monotonously with the increase of BI parameter, which is
quite similar to that of HEE in the superconducting phase.
Howerver, for the operatorO+, the HSC in the superconduct-
ing phase first decreases to its minimum at some threshold
and then increases as BI parameter b increases, which is the
opposite of the case of HEE. It should be noted that under
the same conditions, the BI parameter corresponding to the

HSC reaching the inflection point is always greater than that
of HEE. This implies that we may obtain richer physical
information by using the HSC as a probe to study the phase
transition. We noticed that, based on the definition of the
subregion CV conjecture, the time evolution of HSC under a
quench in the normal state has been studied in [55–59].

We note that the subregion complexity is deeply con-
nected with the fidelity susceptibility. Therefore, studying the
fidelity sensitivity of holographic superconducting systems
from the dual field theory may provide a profound physical
insights. In addition, since our results are based on the CV
conjecture, an important question involved is whether the
physical features we found depend on the chosen conjecture.
Thus, it would be interesting to study the subregion com-
plexity in the holographic superconducting system by using
the CA conjecture. We will try to compute the complexity
in the holographic superconducting model by using the CA
conjecture and compare the results of the two conjectures in
future work.
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