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Abstract We consider Lifshitz-type scalar theories with
explicit breaking of the Lorentz symmetry that, in addition,
exhibit anisotropic scaling laws near the ultraviolet fixed
point. Using the proper time regularization method on the
spatial coordinates only, we derive the regularized form of
the one-loop effective potential in such theories. We study the
main features of the one-loop effective potential and, also,
the RG flow of the scale-dependent potential both in the IR
and UV regimes. The beta functions for the couplings are
derived.

1 Introduction

Phase transitions associated to Lifshitz points, with their
peculiar anisotropic scaling, were introduced and studied
long ago, for the first time in [1] and essentially applied to
condensed matter problems [2–4]. More recently the pres-
ence of Lifshitz points was investigated in the high-energy
realm, such as the electromagnetic field theory [5], or the
ultraviolet (UV) behavior of scalar fields [6–8], or the more
renowned Hořava–Lifshitz formulation of the gravitational
theory [9], subsequently generalized to black hole physics
(see e.g. [10,11]) and cosmology (e.g. [12,13]).

The central issue related to the anisotropic Lifshitz points
is the non-uniform scaling of the time and space coordinates,
that can be summarized as

t → bz t, xi → b xi , (1)

where b is the rescaling parameter and z is the critical scaling
exponent. This leads to the following non-uniform scaling
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dimensions [t]s = −z and [xi ]s = −1 and to the peculiar
derivative sector, for instance in the action of a generic scalar
field:

S =
∫
d3x dt

(
1

2
φ̇2 − 1

2
α2(∂ zi φ)2 − V

)
, (2)

where the dot indicates derivative with respect to the time
variable, the index i refers to the spatial coordinates, V (φ)

is the potential depending on the field φ only, and α is a
dimensionful constant. Moreover, by the symbol ∂ zi we shall
understand the z

2 -th power of the spatially covariant Lapla-
cian operator ∂2

i . The different scaling dimension of space
and time coordinates requires a different number of deriva-
tives with respect to these variables, while the correct dimen-
sion is guaranteed by the constant parameter α.

The relative weight between the two derivative terms in
(2) (which is regulated by the parameter α) can generate a
Lifshitz point that rules the UV physics of the model. In par-
ticular, the value of the index z, being related to the power of
the spatial momentum in the propagator, is crucial to establish
the degree of divergence of the various diagrams and there-
fore the UV structure of the model. On one side, a larger value
of z does soften the UV behavior, on the other side it produces
a larger violation of the Lorentz symmetry which is instead
fully realized when z = 1. So, for instance, the Hořava–
Lifshitz formulation of gravity requires z = 3 [9], and one
expects that the Renormalization Group (RG) flow towards
the infrared (IR) region would modify z, so that z → 1 and in
the IR one eventually recovers a Lorentz invariant effective
theory.

Incidentally, there is another way to treat all variables
on the same footing in order to recover a Lorentz invari-
ant action, that is to require the same non-standard scaling
dimension for both time and space variables, which is known
as isotropic Lifshitz scaling [1,14]. Thus, for instance, the
simplest isotropic Lifshitz scaling is realized for a (Lorentz
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invariant) action containing terms quadratic in the field with
four derivatives both in space and time. Isotropic Lifshitz
points show interesting properties according to the number
of dimensions [15–19], yet maintaining the same number of
space and time derivatives of the field.

Actually, in general the explicit violation of Lorentz sym-
metry has an immediate drawback related to the regulariza-
tion scheme, which, in general, is constructed accordingly to
this symmetry, in such a way to exploit its properties, thus
resulting in a simple and elegant procedure. If z �= 1, Lorentz
symmetry is lost and one has to choose a suitable regulariza-
tion scheme to deal with the divergent integrals that appear
both in the perturbative computations and also in the devel-
opment of the RG flow equations within this approach. For
instance, in [8], the effective potential of Eq. (2) with z = 2 is
computed by making the most straightforward choice for the
UV regulator, i.e. a sharp cutoff on the spatial 3-momentum
variable.

However, this sharp cutoff is known not to be suitable in
the case of gauge and gravity theories, as it conflicts with
the symmetries of the corresponding actions. Therefore, it is
convenient to resort to a more flexible regularization method
that could preserve such symmetries. To this purpose, we
shall consider the proper time regulator [20] that has been
widely used both in the computation of the effective potential
and of its RG improvements in the case of standard scaling
[21–28], and that has been recently revisited in [29,30] and,
also, turns out to be more appropriate to treat gauge theories
[23]. This kind of regulator was used as well to evaluate the
RG flow of a scalar theory in the case of isotropic Lifshitz
scaling [15], and we expect that it can be suitably adapted to
the anisotropic case. In fact, an approach to the computation
of the effective potential similar to the one we shall discuss
in this paper is presented in [31], although in our opinion not
thoroughly elaborated.

In what follows, we will consider the toy model analyzed
in [8], i.e. the action in (2) with z = 2. In the action, in addi-
tion to the full potential V that includes all higher order terms
in the field φ (which, in this framework, has scaling dimen-
sion [φ]s = 1/2 ), we retain the marginally deformed kinetic
term only and neglect other renormalizable derivative oper-
ators that would pointlessly complicate our analysis. Since
the theory naturally splits space and time, we shall deal with
them separately.

In Sect. 2, we construct a proper time representation
specifically for this case and compute the one-loop effective
potential. In Sect. 3, we analyze some details of the renormal-
ized one-loop effective potential, while in Sect. 4 we deter-
mine the RG flow that gives access to the β-functions of the
various couplings. Our conclusions are reported in Sect. 5.

2 Regularization scheme

As a first step we compute the one-loop effective potential
of the action (2) with the tree potential

V = m2

2
φ2 +

4∑
n=1

λn

(2n + 2)!φ
2n+2, (3)

that contains only the relevant (and marginal) powers of the
field φ, according to the non-standard scaling dimensions
outlined above.

The one-loop computation involves integrals over the four
momentum components, but the different scaling of the space
and time variables implies the breaking of the full Lorentz
symmetry. Therefore, in the loop integrals it is convenient to
first perform the integral over p0, which resembles the same
integral in the standard case, and only later the integral over
the spatial momenta pi .

In our case of modified kinetic term, to the one-loop accu-
racy and up to a field independent infinite constant, the quan-
tum effective potential in Minkowski spacetime takes the fol-
lowing form

V1l = −i h̄
1

2

∫
d4 p

(2π)4 ln
δ2S

δφ2

= −i h̄
1

2

∫
d4 p

(2π)4 ln
[
p2

0 − α2( �p 2)2 − V ′′ + iε
]
, (4)

whereV ′′ is the second derivative of the potential with respect
to the field φ and ε is a positive constant which should be
sent to zero in the end. After performing the p0 integral we
are left with the spatial integral

V1l = 1

2

∫
d3 �p

(2π)3

√
α2( �p 2)2 + V ′′, (5)

which, formally, is the same result of the standard approach,
provided one defines the energy E in this case through the
modified dispersion relation E2 = α2( �p 2)2+V ′′. Then, on a
vanishing background the second derivative of the potential
V ′′ is a constant and the UV divergences in our problem
appear in the resolution of the integral in (5). The latter shows
an O(3) symmetry that can be used to integrate over the
angular variables, to obtain

V1l = 1

4π2

∫
dp p2

√
α2 p4 + V ′′. (6)

At this point, instead of treating the UV divergences by
cutting off the UV modes by means of an upper extremum

 in the integral (6), as done in [8], we resort to the more
suitable regularization method known as proper time [20],
and adapt it to the specific form of the integral (6). Namely,
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we use the following integral representation of the square
root appearing above:

∫ ∞

0
ds Ae−s

√
A = √

A, (7)

which is valid for any A > 0. This assumption is clearly
satisfied in the case of Euclidean version of the Lifshitz-type
model, provided V ′′ > 0, i.e. we are in the symmetric phase.
We can take

A = p4 + α−2V ′′, (8)

where we rescaled for our convenience the whole kinetic
term by powers of the dimensionful α parameter. We remind
here that we have [α] = −1. Moreover, we notice that the
dimension of the regulator in the proper time is [s] = −2.
Then, by combining (7) with (8) and plugging this in the
integral (6), we get

V1l = α

4π2

∫ ∞

0
ds

∫ ∞

0
dp p2

(
p4 + V ′′

α2

)
e−s

√
p4+α−2V ′ ′

,

(9)

which is the proper time representation of the integral for the
one-loop potential of our model. We multiplied the integrand
by additional power of the α parameter to comply with the
energy dimension of the potential (in d = 4 we have [V ] =
[V1l] = 4). It is important to notice that, for the success of
the proper time regularization program, the integral over the
proper time parameter s must be done at last, not to interfere
with the integration over spatial momentum.

The momentum integral in (9) can be done in an ana-
lytic compact form, for a general Lifshitz tree-level potential
V = V (φ) taken as a general function of the background
scalar field, through a clever change of integration variable.
The rough idea is to remove the square root from the expo-
nent and the price is that it (and its derivatives) will appear in
the numerator and also in the denominator of the integrand
expression. We introduce a dimensionless integration vari-
able y (instead of the dimensionful p, with [p] = 1) defined
by the equation

y4V ′′

α2 = V ′′

α2 + p4, (10)

where we retain only real positive p, so that we can rewrite
Eq. (10) as p = α−1/2 4

√
y4 − 1 4

√
V ′′. We also assume that

the allowed range for the y variable is 〈1,+∞) and that V ′′
and α are naturally positive. By inserting into the momen-
tum integral the Jacobian J of this change of integration
variables, J = dp/dy = α−1/2y3 4

√
V ′′(y4 − 1)−3/4, we

get

∫ ∞

0
dp p2α

(
p4 + V ′′

α2

)
e−s

√
p4+α−2V ′ ′

=
∫ ∞

1
dy

y7V ′′7/4 exp
(
− sy2

√
V ′ ′

α

)

α5/2 4
√
y4 − 1

. (11)

By recalling that the integral

F(a) =
∫ ∞

1
dy

y7 exp(−ay2)

4
√
y4 − 1

(12)

is expressible in a compact form through the combination of
Gamma, �, and Bessel functions, I , as

F(a) =
√

π�
( 7

4

) (
3I− 9

4
(a) − 2aI− 5

4
(a) + 6I 9

4
(a) + 2aI 13

4
(a)

)

3 4
√

2 a5/4
,

(13)

we write the final results for the one-loop effective potential
in the form (a = s

√
V ′′/α ≡ s v > 0)

V1l = 1

4π2

∫ ∞

0
ds

V ′′7/4

α5/2
F

(
s
√
V ′′
α

)

= v9/4α�
( 3

4

)
8 4
√

2 π3/2

∫ ∞

0
ds s−5/4

[
3

2
I− 9

4
(sv)

+3I 9
4
(sv) + sv

(
I 13

4
(sv) − I− 5

4
(sv)

) ]
. (14)

Now, the UV divergence is contained in the proper time s
integral and it can be regularized by simply putting a lower
cut-off sUV:

∫ ∞

0
ds →

∫ ∞

sUV

ds =
∫ ∞

Bk−2
ds. (15)

This cutoff does not act directly on the momentum, but on the
proper time s, and this allows to bypass the various drawbacks
related to the momentum cut-off. Also, in the right hand side
of (15) we redefine the cutoff sUV in terms of a (running) scale
k, by also including a free constant dimensionless parameter
B, to be adjusted later, namely sUV = Bk−2.

The introduction of the cutoff sUV, makes it possible to
single out the divergent part (in the limit sUV → 0) of the
potential, which has the structure of a sum of inverse powers
of sUV. Then, the simplest renormalization scheme corre-
sponds to the plain subtraction of the divergent terms only,
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Fig. 1 The effective potential at
the classical, (upper blue curve)
V , and one-loop level, (lower
red curve) Vtot = V1l + Vct + V ,
plotted for values of the field φ

around the classical minimum at
φ = 0. A field-independent
constant is subtracted in Vtot , in
order to get Vtot(φ = 0) = 0.
The values of the parameters are
m2 = λ = 1 and α = 0.1

via the inclusion of suitable counterterms. Namely, we per-
form the following subtraction

V1l + Vct = α

∫ ∞

0
ds

v9/4�
( 3

4

)
16 4

√
2π3/2

s−5/4
[
3I− 9

4
(sv) + 6I 9

4
(sv)

+2sv
(
I 13

4
(sv) − I− 5

4
(sv)

)]

−α

∫ ∞

0
ds

(
15

64π3/2

1

s7/2 + 1

64π3/2

v2

s3/2

)
. (16)

The difference of integrals in Eq. (16), generated by our
specific renormalization scheme, can be performed analyti-
cally, and the output is (see also [31])

V1l + Vct = α�
(− 1

4

)
v5/2

64
√

2π3/2�
( 9

4

) . (17)

3 Analysis of the effective potential

The result obtained in Eq. (17) directly yields the full renor-
malized one-loop effective potential that, in the original vari-
ables and after some manipulation of the Gamma functions,
reads

Vtot = V + V1l + Vct = V − �
( 3

4

)2

10 π5/2 α3/2
V ′′5/4

. (18)

Clearly, Vtot is real only for field values φ such that V ′′ � 0,
and it precisely reproduces Eq. (29) of [8].
Now we show in three elucidatory, numerical examples the
comparison of the tree potential

V = 1

2
m2φ2 + λ

4!φ
4 (19)

with the renormalized one-loop potential Vtot, and we notice
that, because of the minus sign in front of the loop contribu-
tion in Eq. (18), the quantum corrections to V are negative
at any value of the field φ. This is observed in Fig. 1, where
V (upper blue curve) and Vtot (lower red curve) are plot-
ted in a typical configuration with no spontaneous symmetry
breaking (SSB), m2 = λ = 1, and α = 0.1. (In order to see
appreciable differences between the two curves with m2 and
λ set at 1, it must be α 
 1.)

In addition, for convenience, we subtracted from Vtot its
value at φ = 0:

Vtot(φ = 0) = − m5/2�
( 3

4

)2

10 π5/2 α3/2
, (20)

which, for the choice of the parameters used in Fig. 1, is
about Vtot(φ = 0) � −0.2715, so that for the red curve one
observes Vtot(φ = 0) = 0.

For a smaller value of α we observe the generation of new
SSB minima via quantum corrections, for the same tree-level
potential. This is illustrated in the example in Fig. 2 where,
as in Fig. 1 m2 = λ = 1, while α = 0.04. Again, for the sake
of the comparison, Vtot(φ = 0) � −1.0730 is subtracted
from the one-loop effective potential, so that the two curves
coincide at φ = 0. Here the full one-loop curve shows two
degenerate absolute minima at non-vanishing values of the
field φ (and therefore SSB), while φ = 0 turns out to be a
local maximum. Other details of the onset of SSB will be
discussed below.

Finally, the plot in Fig. 3 compares the tree-level potential
specified by λ = 1 and m2 = −0.2, and therefore displaying
SSB at tree level, with the real part of the full one-loop poten-
tial at α = 0.1, which shows even deeper minima at non-
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Fig. 2 The effective potential
at the classical, (upper blue
curve) V , and one-loop level,
Vtot (lower red curve). As in Fig.
1, m2 = λ = 1 and a constant is
subtracted from Vtot , so that
Vtot(φ = 0) = 0. The value of
the remaining parameter is
α = 0.04 and in this case Vtot
shows SSB

Fig. 3 The real part of effective
potential at the classical, (upper
blue curve) V , and one-loop
level, Vtot (lower red curve) with
parameters m2 = −0.2, λ = 1
and α = 0.1. The real part of the
effective potential at φ = 0 is
subtracted from Vtot in order to
obtain the lower red curve. In
this case both curves show SSB

vanishing φ. It must be remarked that in this case, with neg-
ative m2, quantum corrections are real at large values of the
field, but become complex for |φ| <

√−2m2/λ = √
2/5 ≈

0.6325, and therefore, in this region of small field, we plot
only the real part of the complex total potential Vtot. In addi-
tion, even in Fig. 3 the one-loop potential curve is adjusted
to have a vanishing effective potential at the origin and this
means that we subtracted the real value of Eq. (20), which
for our choice of the parameters is approximately 0.0257.

After having shown in the figures the realization of three
representative configurations of the effective potential, we
will point out a few properties of Vtot that are strictly related

to the peculiar form of the action (2) which generates the
one-loop effective potential in Eq. (18).

The first issue concerns the behaviour of Vtot at large val-
ues of the field. We notice that, for a generic tree potential
(i.e. not for the particular potential in Eq. (19)) whose lead-
ing term at large φ is (gq/q!)φq (with gq > 0), the power q
must fulfill the condition

q = 5

4
(q − 2) , (21)

i.e. q = 10, in order to balance the tree potential and the
quantum corrections in Eq. (18), that appear with differ-
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ent sign. If q > 10, Vtot goes negative at large φ, thus
showing instability; if q < 10, Vtot grows positive at large
φ, while if q = 10 one has the critical value g10cr =
4480π10α6/(729 � (3/4)8) ≈ 1.13 × 105α6 above which
the effective potential is negative and below which it is posi-
tive. At g10 = g10cr, the large field behavior of the potential
is ruled by powers of the field that are smaller than 10, and
therefore it is positive. Remarkably, as indicated in Eq. (3),
φ10 corresponds to the marginally scaling operator according
to the Lifshitz scaling.

Now we investigate on the condition of masslessness of
the effective potential at φ = 0, which is specified by the
condition (the subscript 0 means that it is evaluated at φ = 0)

m0
2
eff = d2Vtot

dφ2

∣∣∣∣
φ=0

= 0 . (22)

This issue is strictly related to the presence of a non-trivial
minimum at φ �= 0, as it is clear that a negative curvature
(mass square parameter) at φ = 0 for a well-behaved effec-
tive potential that diverges positively at large φ, indicates the
presence of minima at φ �= 0.

We start by considering a simple monomial tree poten-
tial V = (gq/q!)φq with q > 2, so that we assume for the
moment a zero tree mass in our problem. By looking at the
structure of Vtot in Eq. (18), we immediately realize that we
getm0

2
eff �= 0 only if (5/4)(q−2) = 2, that selects the partic-

ular value q = 18/5. Instead, if we take a monomial potential
with q > 18/5, we find m0

2
eff = 0 and, if q < 18/5, the cur-

vature at the origin diverges. If we limit ourselves to integer
q, then the first value that does not generate singularities at
the origin is q = 4. In general, integer q, with 4 � q � 10
generate regular effective potentials with m0

2
eff = 0.

We go one step further and search for non-trivial minima of
the effective potential in the case of monomial tree potential
V = (gq/q!)φq and, with the help of Eq. (18), we find in
this case

Vtot = gq
q! φ

q − γ

(
gq

(q − 2)!φ
q−2

)5/4

, (23)

where, for the sake of simplicity, we defined

γ = �
( 3

4

)2

10π5/2α3/2
(24)

and the extremum condition V ′
tot = 0 admits, besides φ = 0,

the non-zero solution

φmin =
(

5(q − 1)!γ g1/4
q

4((q − 2)!)1/4(q − 3)!

) 4
10−q

, (25)

provided that 4 � q < 10. This solution, as discussed above,
must be a minimum, in opposition to the maximum at the ori-
gin. The negative value of the effective potential at φmin can
be straightforwardly computed and, in particular, we display
the results for q = 4

φmin =
(

15γ g1/4
4

25/4

) 2
3

=
(

3�
( 3

4

)2
g1/4

4

29/4π5/2α3/2

) 2
3

(26)

and

Vtot(φmin) = − 45 52/332/3

32 21/3 g
5
3
4 γ

8
3 . (27)

Therefore the structure of Eq. (18) with a monomial tree
potential with 4 � q < 10 and vanishing tree mass, m2 = 0,
yields a double well effective potential with zero curvature at
the origin. One should be aware that this picture is somehow
different from the one of the Coleman–Weinberg one-loop
scalar potential, where the only dimensionful scale is gen-
erated by the radiative corrections, while in our case (even
when q = 4 and the coupling g4 is dimensionless) we start
with at least one dimensionful input parameter, namely α.

At this point we go back to the study of the curvature of
the effective potential at φ = 0, but now we allow for a finite
tree mass term, i.e. we take the tree potential as

V = 1

2
m2φ2 + gq

q! φq (28)

with m2 > 0, and expand the second derivative of the effec-
tive potential in Eq. (18) as

m0
2
eff = d2Vtot

dφ2

∣∣∣∣
φ=0

= m2−γ

(
5

16m3/2 lim
φ→0

V ′′′2 + 5m1/2

4
lim
φ→0

V ′′′′
)

.

(29)

Then, if 2 < q < 3 or 3 < q < 4, a singularity shows up
in the right hand side of Eq. (29) and therefore, in order to
have a regular effective potential, we must take either q = 3
or q � 4. In addition, when q = 3 and q = 4, there is a finite
quantum correction to m2 while, if q > 4, the correction
vanishes and m0

2
eff = m2. For q = 3 we get

m0
2
eff = m2 − �

( 3
4

)2

32π5/2α3/2

g2
3

m3/2 (30)

but, as we are mainly interested in even potentials, we do not
further analyze the case q = 3 and we look instead at q = 4,
where we get, according to the definition (24),

m0
2
eff = m2− �

( 3
4

)2

8π5/2α3/2
m1/2g4 = m2− 5 γ m1/2 g4

4
. (31)
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Equation (31) shows that the sign ofm0
2
eff is determined by

the relative size of the parameters m2, α and g4. In particular,
by defining

C(m2) = 5 γ g4

4m3/2 , (32)

we find that m0
2
eff = 0 occurs both at m2 = 0 and at m2 =

m2, where m2 is such that C(m2) = 1.
For large positivem2, the tree mass is dominant in Eq. (31)

and therefore m0
2
eff > 0 and it corresponds to 0 < C < 1.

Conversely, for small positive m2, i.e. C > 1, the negative
quantum correction is dominant in Eq. (31) and we have
m0

2
eff < 0.
Therefore, for large m2 ( 0 < C < 1) the curvature at the

origin, as expected, is positive (a particular example of this
configuration is given in Fig. 1) but, more interestingly, we
find a full interval of m2, from m2 = 0 (C → ∞) to the
critical value m2 associated to C = 1, that yields negative
curvatures at φ = 0 (with vanishing curvature at the two
endpoints of the interval) and consequently implies the onset
of a new couple of minima at φ �= 0.

In fact, the case with m2 = 0 has been discussed before
in the context of monomial potentials and the correspond-
ing minima associated to SSB have been determined. When
m2 grows from zero, the curvature at the origin diminishes
from zero and becomes negative, and the corresponding SSB
minima can be determined numerically (Fig. 2 is an example
of this kind). The location of these minima approaches zero
when m2 → m2 and they disappear for m2 > m2, which
marks the transition to the symmetric phase with the only
minimum of the effective potential located at φ = 0.

In summary, the picture observed for this Lifshitz-type
action is rather different from that of the simple scalar effec-
tive potential, as in the former case there is a finite range of
values of m2 > 0 that produces negative curvature at φ = 0
and SSB with non-trivial minima, while in the latter case the
negative curvature is obtained only form2 < 0. In addition, in
the former case there are two different values, namelym2 = 0
and m2 = m2, associated to zero curvature m0

2
eff = 0. As

already noticed, these differences are essentially due to the
presence of more than one dimensionful parameter in our
problem that give origin to a richer structure.

Finally, the case with m2 < 0, that corresponds to a SSB
tree level potential, presents the problem of complex quantum
corrections (at least for small values of the field φ), due to the
term V ′′5/4 in Eq. (18). In this case, as expected, a couple of
minima at φ �= 0 is always present and Vtot(φmin) has zero
imaginary part. In our analysis, we focused only on the real
part of Vtot and a specific example of this kind is displayed
in Fig. 3.

4 Flow of the effective potential and beta-functions

After analysing the renormalized one-loop effective poten-
tial, we now turn to the issue of determining the flow equa-
tion for the scale-dependent potential. To this purpose, we
recall that the standard procedure is obtained by applying
kIR d/dkIR to the effective potential regulated by an infrared
scale kIR and, in our case, it is easy to realize that this is
equivalent to applying −k d/dk to Eq. (14), properly reg-
ularized in accordance to Eq. (15), and the factor (−1) is
introduced to compensate the exchange of the UV and IR
cutoff. Therefore, we get

k
d

dk
V1l(k) = − V ′′9/8

4 4
√

2π3/2α9/4

k1/2

B1/4

[
2α�

(
7

4

)

×
(
I− 9

4

(
B

√
V ′′

αk2

)
+ 2I 9

4

(
B

√
V ′′

αk2

))

+ B

k2 �

(
3

4

) √
V ′′

(
I 13

4

(
B

√
V ′′

αk2

)

− I− 5
4

(
B

√
V ′′

αk2

))]
. (33)

From the above expression one could get the naive expec-
tation that the flow of the potential is always proportional to
the square root

√
k. However, this is not true, because, for

example, in the large k regime we also have to expand in
series the dependence on k in the argument x of the Bessel
functions. It is known that when x → 0, one has

Ib(x) ∼
x→0

1

�(1 + b)

( x
2

)b + O(xb+2) (34)

and Eq. (34) allows to establish the UV regime (x =
B

√
V ′′/(αk2) → 0) of the RG flow of the potential, where

it is assumed k � α−1 and only the two leading powers of k
are retained:

k
d

dk
V1l(k) =

UV
− 15

32π3/2

α

B5/2
k5− V ′′k

32π3/2α
√
B

+O(k−3/2).

(35)

The flow in the IR regime can be obtained similarly:

k
d

dk
V1l(k) =

I R
−

�( 3
4 )B1/4V ′′11/8 exp

(
− B

√
V ′ ′

αk2

)

4π2 4
√

2 α7/4
√
k

. (36)

This flow is a non-analytic function of k and goes to zero like
exp(−1/k2), so that the running is exponentially dumped at
low momenta.

Now, we derive the β-functions of some relevant cou-
plings from Eq. (33). The couplings are defined by the
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parametrization of potential in (3) and this time, for illustra-
tive purposes, we focus on the first three parameters, namely
m2(k), λ(k) ≡ λ1(k) and g(k) ≡ λ2(k). Their β-functions
are obtained by projecting the flow of the potential onto the
specific subspace of each coupling through successive dif-
ferentiation of the right hand side of Eq. (33) with respect to
the field.

Then, for the square mass parameter we find (w ≡
(Bm)/(αk2) )

βm2 = λB
7
4

32 π
3
2 α

13
4 k

7
2

(m
2

) 1
4

[
2�

(
3

4

)

×
(

27α2k4

B2 + 2m2
)
I− 9

4
(w) + m�

(
−1

4

)

×
(

3αk2

B

(
I 5

4
(w) − I− 13

4
(w)

)
+ m I 9

4
(w)

)]

=
UV

− kλ

32 π
3
2 α

√
B

, (37)

where the right hand side shows the result obtained in the
UV regime, i.e. with k � α−1,m. In fact, in this limit many
irrelevant details associated to the particular nature of the IR
regulator become negligible. We observe that βm2 is linearly
proportional to the quartic coupling λ.

We also notice that βm2 corresponds to a dimensionful
parameter ([m2] = 2), while the β-function of the asso-
ciated dimensionless coupling m̃2 = m2B/k2 is: βm̃2 =
−2m̃2 + B k−2βm2 , where the first term is generated from
the dimension of the original coupling m2.

Similarly, one derives βλ of the dimensionless quartic cou-
pling λ, displayed below only in its simplified form in the UV
regime. It turns out to be proportional to the sextic coupling
g ≡ λ2:

βλ =
UV

− gk

32 π
3
2 α

√
B

= − g̃

32 π
3
2 α̃

(38)

and, in the right hand side of (38), βλ is expressed in terms of
dimensionless variables g̃ = gk2/B and α̃ = αk/

√
B. The

same procedure, carried out for the other relevant couplings,
shows again that βλ2 ∝ λ3 and βλ3 ∝ λ4.

Note that we retained the factor B, introduced in Eq. (15),
into the definition of running scale and in the consequent
definition of the above dimensionless variables, as B is an
indispensable element in the rescaling procedure. Then, only
within this scheme and in the UV limit, one recovers universal
expressions (i.e. independent of the details of the IR regulator,
such as B) for the one-loop β-functions of the dimensionless
couplings.

5 Conclusions

In conclusion, we developed a new regularization scheme,
suitable for studying the physics around anisotropic Lifshitz
points, by a standard treatment of the time coordinate and by
adapting the proper time regulator to the three-dimensional
subset of space coordinates, by means of the integral repre-
sentation of the square root in (7). Then, the UV divergences
are regulated by a sharp cutoff on the proper time variable
s. With the help of this scheme, we computed the one-loop
effective potential, by determining the correct counterterms
to get finite quantum corrections, which turn out to decrease
the value of the tree potential at each value of the field φ,
as shown in the three figures. We also pointed out that the
presence in our problem of two or more dimensionful scales
gives origin to a rich structure of the phase diagram, which
allows for a full interval of positive values of the tree level
square mass that are associated to a negative curvature at the
origin, with consequent onset of SSB at the one-loop level.

Then, from the dependence of the potential and its cou-
plings on the cutoff scale, we derived a flow equation for the
effective potential and the β-functions for the couplings m2

and λ, and we found that βλn is proportional to the subsequent
coupling λn+1, in agreement with the findings of [8].

The β-functions, are rather different from those calcu-
lated for the theory in proximity of the Gaussian fixed point,
because they are a consequence of the nature of the ultra-
violet divergences associated to a Lifshitz point. In fact, an
inspection of the diagrams within the Lifshitz scaling indi-
cates only one divergent one-loop diagram for each (2n+2)-
point Green’s function, namely the tadpole generated by the
coupling λn+1.

Moreover, a comparison with the counterterms deter-
mined in [8], allows us to select a particular value of the
parameter B, i.e. the proportionality constant between the
proper time cutoff sUV and the inverse square running scale
k−2. Actually, by choosing

√
B = √

π/4 in (37) and (38), we
get, βm2 = −kλ/(8π2α), βλ = −kg/(8π2α), that reproduce
the results obtained with a sharp 3-momentum UV cutoff in
[8].
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