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Abstract At the probe approximation, we construct a holo-
graphic p-wave conductor/superconductor model in the five-
dimensional Lifshitz black hole with the Weyl correction
via both numerical and analytical methods, and study the
effects of the Lifshitz parameter z as well as the Weyl
parameter γ on the superconductor model. As we take into
account one of the two corrections separately, the increas-
ing z (γ ) inhibits(enhances) the superconductor phase tran-
sition. When the two corrections are considered compre-
hensively, they display the obviously competitive effects
on both the critical temperature and the vector condensate.
In particular, the promoting effects of the Weyl parameter
γ on the critical temperature are obviously suppressed by
the increasing Lifshitz parameter. Meanwhile, in the case
of z < 2.35(z > 2.35), the condensate at lower tempera-
ture decreases(increases) with the increasing Weyl param-
eter γ . What is more, the difference among the conden-
sate with the fixed Weyl parameter(γ = − 6

100 , 0, 4
100 )

decreases(increases) with the increasing Lifshitz parameter z
in the region z < 2.35(z > 2.35). Furthermore, the increas-
ing z obviously suppresses the real part of conductivity for
all value of the Weyl parameter γ . In addition, the analytical
results agree well with the ones from the numerical method.

1 Introduction

The AdS/CFT correspondence which maps a gravity in a
(d+1)-dimensional AdS spacetime to a conformal field the-
ory on the d-dimensional boundary opens up a new window
to investigate the strongly coupled gauge field theory [1,2].
In the recent years, the AdS/CFT correspondence (and its
generalized version, gauge/gravity duality) has been applied

a e-mail: lujunwang.2008@163.com (corresponding author)
b e-mail: ybwu61@163.com

extensively to study many strong correlated systems [3–6],
especially the high temperature superconductor [7,8].

In 2008, the authors in Ref. [7] constructed numerically
a holographic s-wave conductor/superconductor model in
the Einstein–Abelian–Higgs system within the probe limit.
The model displays that the scalar field begins to condense
as the temperature drops below the critical point, which is
accompanied by spontaneous breaking of the U (1) symme-
try. Meanwhile, the infinite DC conductivity can be observed
by studying the fluctuations of the vector potential Ax in
the bulk [7], following which the authors in Ref. [9] mod-
eled the Meissner effect and argued that the holographic
superconductor behaves as a type II superconductor. Sub-
sequently, Ref. [10] constructed the vortex lattice solution
in a (2+1)-dimensional holographic superconductor model.
What is more, Refs. [11,12] studied the holographic super-
conductor by the analytical Sturm–Liouville (S–L) eigen-
value method and obtained the critical temperature as well
as the critical exponent of the condensate which uphold the
numerical results.

Due to the fact that series of main properties of supercon-
ductors have been realized successfully by the gauge/gravity
duality, holographic superconductors became the most inter-
esting topic and were studied widely from various aspects
in the past decade. One of the main developing direction
is naturally to construct the superconductor model much
closer to the real superconductor in the condensed physics.
For example, superconductor models were extended to the
SU(2) Yang–Mills p-wave model [13], the d-wave model
[14,15], the superfluid model [16,17], the coexistence and
competition of multiple orders as well as the intertwined
order [5,18–23], the lattice [24–26] and their correspond-
ing insulator/superconductor phase transition model [27].
In particular, considering that the phase transitions in many
condensed matter systems exhibit the anisotropic scaling of
spacetime, the authors in Refs. [28,29] proposed a (d + 2)-
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dimensional non-relativistic gravity with the Lifshitz fixed
point, t → bzt, �x → b�x (z �= 1) as

ds2 = L2

(
−r2z f (r)dt2 + dr2

r2 f (r)
+ r2

d∑
i=1

dx2
i

)
,

f (r) = 1 − r z+d+
r z+d

, (1)

where r+ denotes the event horizon and the Hawking tem-

perature reads T = (z+d)r z+
4π

and also the dynamical critical
exponent z represents the anisotropy of the spacetime. Obvi-
ously, the geometry (1) reduces to the AdS spacetime for
z = 1, while it is a gravity dual with the Lifshitz scaling as
z > 1.1 Based on the Lifshitz background (1), s-wave and
p-wave superconductor models were constructed [30–36].
It was shown that for both s-wave and p-wave supercon-
ductors, the increasing Lifshitz parameter inhibits the phase
transition and suppresses the conductivity and also softens
the energy gap. Meanwhile, imitating the holographic s-wave
superconductor model, a magnetic-field-induced vector con-
densate was realized via a Maxwell-complex-vector (MCV)
field with a mass [37], which was verified to be a general-
ization of the SU (2) p-wave model with a mass [38–40].
The MCV model was then used to construct the electric-
field-induced superconductor model [41–43]. By considering
the backreaction from MCV field to the gravitational back-
ground, the model showed the abundant phase structure, such
as “zero-order phase transition” and “the retrograde conden-
sate” in the four-dimensional AdS black hole [21,22,44–46].
Furthermore, the stronger backreaction inhibits the super-
conductor phase transition in the three-dimensional BTZ
(Bandos–Teitelboim–Zanelli) black hole [44]. What is more,
we constructed the MCV p-wave superconductor model in
the Lifshitz gravity, and found that the increasing Lifshitz
parameter makes the vector condensate more difficult to form
[47].

The other developing direction is to improve the basic
framework of the gauge/gravity duality by investigating the
influences of the 1/λ(λ is the ’t Hooft coupling) corrections
on the holographic models. Concretely, the related works
involve the high curvature corrections such as the Gauss–
Bonnet gravity [20,39,48–51], Quasi-topological gravity
[52], Horava–Lifshitz gravity [53] and nonlinear electrody-
namics, for example, Born–Infeld correction [54], exponen-
tial correction [55], Logarithmic correction [56]. The above
two kinds of corrections were found to inhibit the phase tran-
sition. The third kind of interesting correction composes of
the curvature tensor and the gauge field strength, such as
the RF2 correction, especially the Weyl correction made up

1 It should be noted that at present we only focus on the discussion of
the Lifshitz black hole, but not take into account the following curvature
correction (i.e., the Weyl term) from the matter field part.

of the Weyl tensor and the Maxwell field strength, which
was firstly introduced to realize the breakdown of the elec-
tromagnetic self-duality from a holographic perspective [57].
Concretely, the holographic s-wave and MCV p-wave super-
conductor models were constructed with the Weyl correction
in Refs. [58–60]. It was followed that the Weyl correc-
tion does not influence the properties of the p-wave insu-
lator/superconductor phase transition but enhances both s-
wave and MCV p-wave conductor/superconductor phase
transitions. Subsequently, a general high derivative theory
was proposed in Ref. [61], which extends the works in Refs.
[58–60]. By considering the six derivative term in Ref. [61],
the authors in Refs. [62–64] constructed the s-wave and MCV
p-wave conductor/superconductor phase transition models
via the numerical and analytical methods, respectively, and
found that the increasing six derivative correction enhances
the superconductor phase transition.

Given by the opposite effects between the Lifshitz scaling
and the Weyl correction, it is natural to ask whether we can
see the interesting competition on the Lifshitz superconduc-
tor model with the Weyl correction. Meanwhile, in order to
further understand the influences of the 1/λ correction on the
holographic model, in this work, we are going to study sys-
tematically the effects of the Lifshitz dynamical exponent z
and the Weyl parameter γ on the holographic MCV p-wave
superconductor in the five-dimensional Lifshitz black hole
with Weyl correction. The results show that both the Lifshitz
parameter z and the Weyl parameter γ together control the
critical temperature and the vector condensate as well as the
frequency dependent conductivity.

This paper is planed as follows. In Sect. 2, we real-
ize numerically the p-wave conductor/superconductor phase
transition and then study the frequency dependent conduc-
tivity, following which the superconductor model is recon-
structed by the analytical method. The final section is devoted
to the conclusions and discussions. In the appendix, we list
the concrete coefficients (Ci ) about the equations in Sect. 2.

2 Holographic superconductor model

In this section, we firstly construct the holographic p-wave
superconductor model in the five-dimensional Lifshitz black
hole with Weyl correction via the numerical method. To ver-
ify that below the critical temperature the hairy state is indeed
stable, we compare the grand potential of the hairy state with
the no hairy state. So as to investigate the influences of the
Lifshitz parameter as well as the Weyl correction, we also
study the frequency dependent conductivity, following which
we restudy the superconductor model by the analytical S-L
method to testify the numerical results.

To introduce the massive MCV field in the five-dimensional
Lifshitz black hole with Weyl correction [28,29,37,45,46,
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61,63], we take the full action as

S = 1

16πGd+2

∫
dd+2x

√−g
(Lg + Lm

)
,

Lg = R − 2� − 1

2
∂μϕ∂μϕ − 1

4
eιϕFμνFμν,

Lm = −1

8
FμνX

μνρσ Fρσ − 1

2
ρ†

μνρ
μν

−m2ρ†
μρμ + iqγ0ρμρ†

ν F
μν, (2)

where the gravitational part Lg is made up of the Ricci scalar
R, the cosmological constant �, the massless scalar field ϕ

and an abelian gauge field characterized by Fμν with the
parameter ι depending on the Lifshitz parameter z and the
dimension of spacetime d. By considering only this part Lg ,
one can obtain the (d + 2)-dimensional Lifshitz black hole
solution (1). The second partLm is used to describe the vector
condensate with the Weyl correction. Concretely, the matter
part Lm consists of a vector field ρμ and a Maxwell field
Fμν coupled to the Weyl tensor C ρσ

μν , where the antisym-
metry tensor ρμν = Dμρν − Dνρμ and Dμ = ∇μ − iq Aμ,
Fμν = ∇μAν − ∇ν Aμ and m (q) is the mass (charge) of ρμ.
Meanwhile, the tensor X ρσ

μν is an infinite family of high
derivative terms, i.e.,

X ρσ
μν = I ρσ

μν − 8γ1,1L
2C ρσ

μν − 4L2γ2,1C
2 I ρσ

μν

− 8L4γ2,2C
αβ

μν C ρσ
αβ

− 4L6γ3,1C
3 I ρσ

μν − 8L6γ3,2C
2 I ρσ

μν

− 8L6γ3,3C
α1β1

μν C α2β2
α1β1

C ρσ
α2β2

+ · · · , (3)

where I ρσ
μν = δ

ρ
μ δ σ

ν − δ σ
μ δ

ρ
ν is an identity matrix and

Cn = C α1β1
μν C α2β2

α1β1
· · ·C μν

αn−1βn−1
. In the remainder of

this paper, we focus on the Weyl correction and thus only
turn on the first two terms in Eq. (3), i.e.,

−1

8
Fμν

(
I ρσ
μν − 8γ1,1L

2C ρσ
μν

)
Fρσ

= −1

4
FμνF

μν + γ1,1L
2FμνC ρσ

μν Fρσ (4)

with other γi, j terms in Eq. (3) vanishing, which clearly
restores to the case in Refs. [58–60]. For simplicity, we
will take L = 1 and rename γ1,1 = γ throughout the
paper and further restrict the range of the Weyl parameter
as γ ∈ [− 6

100 , 4
100 ] following Refs. [57–59]. In addition, by

rescaling Aμ → Ãμ/q and ρμ → ρ̃μ/q, a factor 1/q2 will
appear in front of the matter part Lm . Naturally, by taking the
limit q → ∞ with Ãμ and ρ̃μ fixed, the backreaction of the
matter fields on the Lifshitz geometry (1) will be suppressed
so that we can work in the so-called probe limit. Thus, vary-
ing the action (2) with respect to the vector field ρμ and the
gauge field Aμ, respectively, we read off the equations of

motion

Dμρμν − m2ρν + iγ0ρμF
μν = 0, (5)

1

2
∇μ(Xμνρσ Fρσ ) − iγ0∇μ(ρμ(ρν)† − ρν(ρμ)†)

+i((ρμ)†ρμν − ρμ(ρμν)†) = 0. (6)

To build the p-wave superconductor induced by the electric
field, the ansatzs for the vector field ρμ and the gauge field
Aμ can be taken as the following form [37,45,46],

ρνdx
ν = ψx (r)dx, Aνdx

ν = φ(r)dt, (7)

with other components vanishing.
Thus Eqs. (5) and (6) in the background (1) with d = 3

reduce to

ψ ′′
x (r) +

(
z + 2

r
+ f ′(r)

f (r)

)
ψ ′
x (r)

+
(

φ2(r)

r2z+2 f 2(r)
− m2

r2 f (r)

)
ψx (r) = 0, (8)

C1φ
′′(r) + C2φ

′(r) − 2ψ2
x (r)

r4 f (r)
φ(r) = 0, (9)

where the prime stands for the derivative with respect to r .
In particular, as z = 1 Eqs. (8) and (9) restore to the pure
Weyl case in Ref. [59], and if one requires further γ = 0,
the current model returns back to the p-wave superconductor
model in the standard AdS black hole [46].

To solve the above coupled differential equations, we usu-
ally impose the boundary conditions. At the horizon r = r+,
we require φ(r+) = 0 to satisfy the finite norm of Aμ,
while ψx (r+) needs to be regular. At the infinite boundary
(r → ∞), ψx (r) and φ(r) behave as

ψx (r) = ψ1

r�− + ψ2

r�+ + · · · , (10)

φ(r) = μ − ρ

r3−z
+ · · · (z < 3), (11)

where �± = z+1±
√

(z+1)2+4m2

2 . It is worth noting that the
asymptotical solution for φ(r) behaves as μ−ρ ln r +· · · in
the case of z = 3 andμ−ρr z−3+· · · for z > 3, which is obvi-
ously divergent at infinity. Similar divergent phenomenon
also exists in the four-dimensional Lifshitz black hole with
z ≥ 2. Although there are some works investigating the Lif-
shitz effects on the critical behavior with z ≥ 3 (z ≥ 2) in the
five (four)-dimensional Lifshitz black hole [65,66], we still
wish that the gauge field decays at infinity and has the falling
off form. Therefore, we focus on the superconductor model
with the Lifshitz parameter space z < 3 in the present paper.
Meanwhile, the constants ψ1 (ψ2),μ (ρ) are interpreted as the
source (the vacuum expectation value) of the dual operator Ĵx
and the chemical potential (the charge density) of dual field
theory, respectively. By requiring that the U(1) symmetry is
broken spontaneously, we impose the source-free condition
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ψ1 = 0. We take � = �+ = 2 throughout the paper, which
implies that the mass squared of the vector fieldm2 = 2−2z.
For the above coupled equations and the asymptotical behav-
iors of ψx and φ, there exists an important scaling symmetry,
such as r → ξr, (T, μ) → ξ z(T, μ), (ψ2, ρ) → ξ3(ψ2, ρ)

with ξ a constant, by using which we can fix the chemical
potential μ and thus work in the grand canonical ensemble.

2.1 Numerical part

In the current paper, we will do the numerical calculations on
the Mathematica software by means of the shooting method.
In particular, we numerically solve Eqs. (8) and (9) with the
given boundary conditions by modifying and improving the
numerics developed by the authors in Ref. [7]. During the
calculation, we set the Working precision of the Mathemat-
ica program to be 30 but only record four significant digits of
numerical results in the work, which guarantees our results
to be reliable. Meanwhile, as mentioned above, the Lifshitz
scaling and the Weyl correction are introduced in the super-
conductor model from the different points of view, therefore,
we can study the effects of the Lifshitz parameter z and the
Weyl parameter γ on the superconductor model separately.

After numerical calculations, we obtain the vector con-
densate as a function of the temperature for various Lifshitz
parameter z and Weyl parameter γ . To see clearly the effect of
the Weyl correction parameter γ on the vector condensate, we
typically display the condensate for γ = − 6

100 , 0, 4
100 with

the fixed Lifshitz parameter z = 1 (left panel) and 5
2 (right

panel) in Fig. 1. It is observed that there always exists a crit-
ical temperature below which the vector hair starts to con-
dense. From the analysis and fitting of the condensate curve
near the critical point, we find all curves of condensate versus
the temperature have a square root behavior near the criti-
cal value, which indicates that the system might suffer from
a second-order phase transition at the critical temperature.
Meanwhile, at the lower temperature, the vector condensate
approximates a stable value in the case of z = 1, which
decreases with the increasing Weyl correction parameter γ .
However, at the lower temperature, the condensate for z > 1
shows an obvious increasing trend rather than a steady value
with the decreasing temperature, for example, the case of
z = 5

2 in the right panel of Fig. 1, which is quite different from
the case of z = 1 and might be the universal characters for
the Lifshitz superconductor [34]. The most interesting thing
is that the condensate decreases with the increasing Weyl
parameter for small enough Lifshitz parameter and increases
with the increasing Weyl parameter for large enough Lifshitz
parameter(for example the case in the right panel of Fig. 1
with z = 5

2 ). By careful calculation, the point of demarca-
tion of the Lifshitz parameter is about zd ≈ 2.35, where the
condensate is almost independent of the Weyl parameter γ .

In other words, the difference among the condensate curves
for the fixed Weyl parameter (γ = − 6

100 , 0, 4
100 ) decreases

with the increasing Lifshitz parameter z when z < zd and
vanishes at z = zd and then increases with the increasing
Lifshitz parameter when z > zd . Furthermore, we also con-
sider the case for other value of γ and z, the results show
that the effects of the Weyl parameter on the condensate in
the presence of Lifshitz correction is qualitative the same.
Especially, in the case of z = 1, the result restores to the
pure Weyl superconductor [59].

In order to disclose sufficiently the interaction between the
Weyl correction and the Lifshitz correction, we also display
the condensate for z = 1, 3

2 , 5
2 with the fixed Weyl correc-

tion parameter γ = − 6
100 (left panel) and 4

100 (right panel) in
Fig. 2. It is obviously observed that at the lower temperature
the condensate for z > 1 does not become stable like the
z = 1 case but still increases with the decreasing tempera-
ture, especially for the case of γ = 4

100 in the right panel
of the figure. Furthermore, the condensate grows faster with
the increasing Lifshitz parameter z at the lower temperature.
However, the vector condensate grows more slowly with the
increasing Lifshitz parameter z near the critical temperature.
Comprehensively speaking, it is quite reasonable that the
condensate curves intersect with each other for different Lif-
shitz parameter. In particular, we take the value of T

Tc
as the

horizontal coordinate, which suggests that we have moved
the starting location of the condensate to the same point in
the figure.

To obtain synthetically the Lifshitz and Weyl effects on the
critical temperature, we show the critical temperature versus
the Weyl parameter γ for different Lifshitz parameter z in
the left panel of Fig. 3 and list the related results in Table 1,
from which we can see that both the Weyl correction and
the Lifshitz parameter affect obviously the critical tempera-
ture. In particular, for all values of the Lifshitz parameter z,
the critical temperature increases with the larger Weyl cor-
rection parameter γ , which means that the larger Weyl cor-
rection enhances the conductor/supercondcutor phase transi-
tion. While for the fixed Weyl correction, the critical temper-
ature decreases with the Lifshitz parameter z, which means
that the stronger anisotropy of the spacetime makes the con-
ductor/superconductor phase transition more difficult. Com-
prehensively speaking, the curve of the critical temperature
versus the Weyl correction becomes flatter with the increas-
ing Lifshitz parameter z, which means that the promoting
effect of Weyl correction on the phase transition is suppressed
by the increasing Lifshitz correction. We attribute this phe-
nomenon to the competition between the Lifshitz scaling and
the Weyl correction. Additionally, after rescaling the vec-
tor field and the gauge field by the charge density, we can
switch the superconductor model from the grand canonical
ensemble to the canonical ensemble. Especially, the values
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Fig. 1 The condensate versus the temperature with γ = − 6
100 (black solid), γ = 0 (red dashed), γ = 4

100 (blue dotdashed)for the fixed value

z = 1 (the left panel) and z = 5
2 (the right panel)

Fig. 2 The condensate versus the temperature with z = 1 (black solid), z = 3
2 (red dashed), z = 5

2 (blue dotdashed) for the fixed value
γ = − 6

100 (the left panel) and γ = 4
100 (the right panel)

Fig. 3 The critical temperature versus the Weyl parameter γ for z = 1 (black solid), z = 3
2 (red dashed),z = 2 (blue dotdashed), z = 5

2 (purple
dotted) (left) and the grand potential about the normal state(red dashed) and the superconducting state (black solid) in the case of z = 6

5 and
γ = − 1

20 (right)

of the critical temperature for z = 1 and γ = −0.02, 0, 0.02
listed in Table 1 are rewritten as Tc

ρ1/3 = 0.18767(γ =
−0.02), 0.20052(γ = 0), 0.22244(γ = 0.02), which obvi-
ously return to the Weyl superconductor in Ref. [59].

To check that below the critical point the superconducting
state is indeed thermodynamically favored compared with the
normal state, it is helpful to calculate the grand potential of

the system, which is defined by the Euclidean on-shell action
SE timing the temperature of the black hole, i.e., � = T SE .
Integrating the Minkowski action (2) by parts yields the on-
shell part of action as
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Table 1 The critical temperature in unit of chemical potential μ from the numerical method (Tcn) and the analytical method (Tca) for different
value of γ and z

γ −0.06 −0.04 −0.02 0 0.02 0.04

Tcn(z = 1) 0.06846 0.07111 0.07459 0.07958 0.08819 0.12503

Tca(z = 1) 0.07045 0.06904 0.07225 0.07779 0.08706 0.10682

Tcn(z = 3/2) 0.04954 0.05271 0.05649 0.06133 0.06827 0.08114

Tca(z = 3/2) 0.04982 0.05204 0.05583 0.06088 0.06801 0.07974

Tcn(z = 2) 0.03087 0.03480 0.03865 0.04266 0.04709 0.05236

Tca(z = 2) 0.03063 0.03456 0.03848 0.04256 0.04703 0.05229

Tcn(z = 5/2) 0.00993 0.01648 0.01996 0.02240 0.02441 0.02603

Tca(z = 5/2) 0.01196 0.01655 0.01992 0.02241 0.02437 0.02595

Sos =
∫ √−gd5x

(
2γ∇μ(AνC

μνρσ Fρσ )

− 1

2
∇μ(AνF

μν) − ∇μ(ρ†
ν ρμν)

− i

2
Aν(ρ

†
μρμν − ρμ(ρμν)†)

)
= V3

T

√
h

(
2γ nr AνC

rνρσ Fρσ − 1

2
nr AνF

rν − nrρ
†
ν ρrν

) ∣∣∣
r→∞

−V3

T

i

2

∫ √−gAν(ρ
†
μρμν − ρμ(ρμν)†)dr,

where we have taken into account
∫
d3x = V3,

∫
dt = 1

T
and also Eqs. (5) and (6). Reminding that SE = −Sos , we
obtain the density of the grand potential as

�

V3
= −T Sos

V3
= 1

2
(z − 3)(1 − 4γ z + 4γ z2)μρ

+
∫ ∞

r+

φ2ψ2

r z f
dr. (12)

Intuitively, both the Lifshitz parameter z and the Weyl param-
eter γ will affect the grand potential. Especially, in the case
of z = 1 and γ = 0, Eq. (12) returns to the pure Weyl cor-
rection [59] and the Lifshitz case [47], respectively. Next,
we typically display the grand potential as a function of the
temperature for the case of z = 6

5 , γ = − 1
20 in the right

panel of Fig. 3. Near the critical temperature, the black solid
curve corresponding to the superconducting state stretches
out from the red dashed curve corresponding to the nor-
mal state smoothly with the decreasing temperature, which
means that at the critical temperature the system indeed suf-
fers from a second-order phase transition, and thus agrees
with the behavior of the condensate in Figs. 1 and 2. Most
importantly, the value of the grand potential of the super-
conducting state is always lower than that of the normal
state, which means that below the critical temperature, the
superconducting state is indeed thermodynamically stable. In
addition, we also consider the other parameter cases, such as
(z = 5

2 , γ = − 6
100 ), (z = 5

2 , γ = 4
100 ), (z = 1, γ = − 6

100 )

and (z = 1, γ = 4
100 ) as well as the case (z = 3

2 , γ = 0) and
obtain the similar results to the case of (z = 6

5 , γ = − 1
20 ).

As a result, it is believed our numerical results are reliable in
the parameter space (1 ≤ z ≤ 5

2 , − 6
100 ≤ γ ≤ 4

100 ).
As we all know, the infinite DC conductivity is one typi-

cal characteristic of superconductors. Meanwhile, the energy
gap of the electric conductivity can help us to estimate how
strong the interaction involves in the superconductor. As a
result, it is useful to compute the AC conductivity of the
superconductor model. From the AdS/CFT correspondence,
to calculate the conductivity in the boundary field theory,
we study the perturbation of the gauge field in the bulk. For
simplicity, we turn on the perturbation along the y direction
with the ansatz δAy(t, r)dy = Ay(r)e−iωt dy. Considering
the matter field ψx (r) and the time component of gauge field
φ(r) in Eq. (7) and substituting the perturbed gauge field
ansatz δAy(t, r)dy into Eq. (6), we can derive the linearized
equation of Ay(r) in the superconducting background, which
is

C3A
′′
y(r) + C4A

′
y(r) + C5Ay(r) = 0. (13)

At the horizon, we impose the ingoing wave condition

Ay(r) = (r − r+)−iω/(3+z)(1 + Ay1(r − r+)

+ Ay2(r − r+)2 + Ay3(r − r+)3 + · · · ). (14)

While at the infinite boundary, the asymptotical solution of
Ay(r) is of the form

Ay(r) =
{
A(0) + A(2)

r2 + A(0)ω2

2r2 ln ηr + · · · , z = 1,

A(0) + A(z+1)

r + · · · , 1 < z < 3,

(15)

where A(i), and η are all constants. Combining with Eqs. (2)
and (15), we can obtain the retarded Green’s function as

G(ω) =
{

2 A(2)

A(0) − 1
2ω2, z = 1,

(z+1)(3+4γ z−4γ z2)
3

A(z+1)

A(0) , 1 < z < 3.
(16)

According to the Kubo formula, the AC conductivity reads

σ(ω) = − i

ω
G(ω). (17)
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To study the Weyl effect on the conductivity, we plot the
AC conductivity at T

Tc
≈ 1

2 for z = 3
2 with γ = − 6

100 (black),

γ = 0 (red), γ = 4
100 (blue) in the left panel of Fig. 4. It is

observed from the imaginal part of conductivity at the lower
frequency there is an obvious pole for all values of the Weyl
parameter γ , which corresponds to a delta function of the
DC conductivity as expected from condensed physics. Dif-
ferent from the z = 1 case displayed in the right panel of
Fig. 4, there does not exist the minimum for the imaginal
part of the conductivity with z = 3

2 at the intermediate fre-
quency in the left panel of Fig. 4. In fact, this result can be
analyzed from the formula of the conductivity. According to
Eq. (16), a frequency squared term appears for the z = 1 case,
which leads to the increasing behavior for the large enough
frequency and thus produces a minimum at the intermediate
frequency. However, as for the z > 1 case, the frequency
squared term vanishes, which results in the monotonically
decreasing behavior for the imaginal part of conductivity.
Correspondingly, the real part of conductivity becomes very
soft. Nevertheless, if we define the location where the real
part of conductivity grows the most rapidly as the energy gap,
we can observe from the left panel of Fig. 4 that the energy
gap decreases with the increasing Weyl correction parameter
and is always larger than the value in the BCS superconduc-
tor, which is consistent with the effect of the Weyl correction
on the condensate in Fig. 1. Meanwhile, in the large frequency
region, the real part of conductivity increases monotonically,
which seems to be the universal behavior for the holographic
superconductor model in the five-dimensional gravitational
spacetime [34,36,51]. In addition, we also calculate the con-
ductivity for other values of the Lifshitz parameter, for exam-
ple, z = 5

2 . The results show that the energy gap becomes
much softer than the case with z = 3

2 .
In order to study the effect of the Lifshitz effects on the

conductivity, we also calculate the AC conductivity for vari-
ous value of z with fixed Weyl parameter γ . Typically, we plot
frequency dependent conductivity at T

Tc
≈ 1

2 for γ = − 6
100

with z = 1, 3
2 , 5

2 in the right panel of Fig. 4. It follows that
the behaviors of the conductivity are similar to the case with
fixed Lifshitz parameter (the left panel in Fig. 4) in the region
for both low and high frequency. What is more, at the inter-
mediate frequency region, there is not the minimum for the
imaginal part of conductivity corresponding to the energy
gap except the z = 1 case. Furthermore, the real part of con-
ductivity in the intermediate frequency is suppressed with the
increasing Lifshitz parameter z, which is the typical effect of
the Lifshitz correction on the conductivity and similar to the
one on the conductivity for the s-wave case [34].

2.2 Analytical part

To check further the reliability of the numerical results in
the previous subsection, especially the critical temperature,
in what follows, we resolve the coupled equations (8) and
(9) via the S-L eigenvalue method [11,59,62]. It should be
mentioned that almost all the previous literature in terms
of the analytical S-L superconductor model worked in the
canonical ensemble [11,59,62], where the charge density is
fixed. However, as for the present work calculated in the
grand canonical ensemble with the fixed chemical potential,
we should redefine the boundary condition of Eq. (9).

Introducing a new variable u = r+
r , Eqs. (8) and (9) can

be expressed as

ψ ′′
x (u) − 3uz+3 + z

u − uz+4 ψ ′
x (u)

+m2
(
uz+3 − 1

) + u2zφ(u)2

u2
(
uz+3 − 1

)2 ψx (u) = 0, (18)

φ′′(u) + C6φ
′(u)

+ 2ψ(u)2(
uz+3 − 1

) (
6γ (z − 5)uz+3 + 4γ (z − 1)z + 1

)φ(u) = 0,

(19)

where the prime denotes the derivative with respect to u. As
T = Tc, the condensate vanishes, i.e., ψ(u) = 0, so we can
rewrite Eq. (19) as

φ′′(u) + C6φ
′(u) = 0. (20)

Due to the existence of the Weyl correction parameter γ , in
general, it is difficult to give the exact solution to Eq. (20).
However, by regarding the Weyl parameter γ as a small quan-
tity, we can solve Eq. (20) perturbatively order by order. Up
to the fourth order of γ , the solution to φ(u) can be expressed
as

φ(u)

r z+c
= λφ1(u)

= λ
(

1 − u3−z + C7γ + C8γ
2 + C9γ

3 + C10γ
4
)

, (21)

where r+c is the location of the horizon at T = Tc.
Comparing the above solution of φ(u) with Eq. (11), we

can derive the constant λ as

λ = μ

r z+c
. (22)

Defining the vector field ψx (u) by a trial function F(u) as

ψx (u) = 〈 Ĵx 〉
r�+

u�F(u), (23)

with the boundary condition F(0) = 1 and F ′(0) = 0 [11,12,
49,51,59,62]. Substituting Eqs. (21) and (23) into Eq. (18)
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Fig. 4 The real part (solid) and imaginal part (dashed) of the AC conductivity at T
Tc

≈ 1
2 as a function of the frequency for fixed z = 3

2 with

γ = − 6
100 (black), γ = 0 (red),γ = 4

100 (blue) in the left panel, while the conductivity for fixed γ = − 6
100 with z = 1 (black), z = 3

2 (red) and

z = 5
2 (blue) in the right panel

yields

F ′′(u) + z − 2� + (2� + 3)uz+3

u(uz+3 − 1)
F ′(u)

+m2 + �(1 − � + z + (� + 2)uz+3)

u2(u3+z − 1)
F(u)

+λ2 u
2z−2φ1(u)2

(u3+z − 1)2 F(u) = 0. (24)

According to the condition of F(u), we further take the
ansatz of F(u) as

F = Fα(u) ≡ 1 − αu2, (25)

with the parameter α to be determined. Therefore, Eq. (24)
can be transformed to the S-L eigenvalue equation

(KF ′)′ − PF + λ2QF = 0, (26)

where the coefficients are respectively

K = 1 − u3+z

uz−2�
,

P = m2 + �(1 − � + z + (� + 2)u3+z)

u2−z−2�
,

Q = u2�+z−2φ1(u)2

1 − u3+z
. (27)

The eigenvalue of λ2 minimizes the expression with respect
to the parameter α as

λ2(z, γ, α, u) =
∫ 1

0 (KF ′2 − PF2)du∫ 1
0 QF2du

. (28)

The critical temperature reads

Tc = 3 + z

4πλ
μ. (29)

We plot the analytical critical temperature as a function of
the Weyl parameter γ in the left panel of Fig. 3 in the form
of solid point and also list the analytical results in Table 1

for comparison with the numerical results, from which we
can see clearly that the analytical results agree well with
the numerical ones. In particular, the difference between the
analytical and numerical values are within 4% except the case
of the boundary of the parameter space (z = 1, γ = 0.04 and
z = 5

2 , γ = − 0.06), which indicates that the analytical S-L
method is still powerful in the grand canonical ensemble.

Next, we manage to obtain the critical exponent of the
vector condensate. Below (but close to) the critical tempera-
ture, the vector condensate is very small. Thus we can expand
φ(u) in the small parameter (〈 Ĵx 〉/r�+1+ )2 as

φ(u)

r z+
= λφ1(u) +

(
〈 Ĵx 〉
r�+1+

)2

χ(u). (30)

At the boundary (u → 0), the function χ(u) can be expanded
in Taylor series as χ(u) = χ(0) + χ ′(0)u + · · · , and then
matching Eq. (30) with Eq. (11), we can obtain

λ + χ(0)

(
〈 Ĵx 〉
r�+1+

)2

= μ

r z+
. (31)

From Eq. (31), it is clear that the important thing is to derive
the value of χ(0). Substituting Eqs. (30) and (23) in Eq. (19)
yields the equation of χ(z) at the order of 〈 Ĵx 〉2 as

χ ′′(u) + C11χ
′(u)

+ 2λF(u)2u2�φ1(u)

(uz+3 − 1)(6γ (z − 5)uz+3 + 4γ z2 − 4γ z + 1)
= 0.

(32)

Usually, we still take the boundary conditions as χ(1) = 0 =
χ ′(1) [11,12,51,62]. Multiplying the factor uz−2(6γ (z −
5)uz+3 + 4γ z2 − 4γ z + 1) to Eq. (32), we can read off

(uz−2(6γ (z − 5)uz+3 + 4γ z2 − 4γ z + 1)χ ′(u))′

= −2λ
F(u)2φ1(u)u2�+z−2

uz+3 − 1
. (33)

123
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Integrating Eq. (33) with the condition χ ′(1) = 0, we get

uz−2(6γ (z − 5)uz+3 + 4γ z2 − 4γ z + 1)χ ′(u)

= 2λ

∫ x=1

x=u

F(x)2φ1(x)x2�+z−2

xz+3 − 1
dx

= 2λM(z, γ, α, u), (34)

where M(z, γ, α, u) is the function of the Lifshitz param-
eter z and the Weyl correction parameter γ as well as the
parameter α and can be given in the explicit form by analyt-
ical integration. Integrating further the above equation with
χ(1) = 0, the value of χ(0) reads

χ(0) = 2λ

∫ u=1

u=0

M(z, γ, α, u)

uz−2(6γ (z − 5)uz+3 + 4γ z2 − 4γ z + 1)
du

= 2λN (z, γ, α), (35)

where N (z, γ, α) depends on the parameters z and γ as well
as α. Considering Eqs. (22) and (31) as well as (35), the
condensate near the critical temperature can be expressed as

〈 Ĵx 〉
r�+1+

= 1√−2N (z, γ, α)

√
Tc
T

√
1 − T

Tc
. (36)

It is clear that the condensate has a square root behavior
near the critical temperature, which agrees with the numerical
analysis about the condensate, especially, the grand poten-
tial and also indicates a second-order phase transition at the
critical point expected from the mean-field theory.

To compare the behavior of condensate for the analytical
results with the one of the numerical results in detail, we
further process Eq. (36) as

〈 Ĵx 〉 z
3

Tc
= 4π

3 + z

1

(−2N (z, γ, α))
z
6

(
1 − T

Tc

) z
6

= C(z, γ, α)

(
1 − T

Tc

) z
6

, (37)

where we have taken into account � = 2 and the
approximation T ≈ Tc. After some calculation, we have
C( 3

2 ,− 1
25 , 6571

10000 ) = 7.16813, C( 3
2 , 1

25 , 509
1000 ) = 5.55683,

C( 5
2 ,− 1

25 , 5701
10000 ) = 7.70244, C( 5

2 , 1
25 , 2239

5000 ) = 9.18543.
It follows that the vector condensate grows faster with the
decreasing Weyl parameter γ for z = 3

2 and slower with
the decreasing Weyl parameter for z = 5

2 , which is again
consistent with the behavior of the condensate in Fig. 1.

3 Conclusions and discussions

In this paper, we have constructed the holographic p-wave
conductor/superconductor model in the five-dimensional
Lifshitz black hole with the Weyl correction via both numer-
ical and analytical methods. We mainly studied the effects of

the dynamical critical exponent z as well as the Weyl param-
eter γ on the superconductor model. Main conclusions are
as follows.

Firstly, for all values of the Lifshitz parameter z (1 ≤ z ≤
5
2 ) and the Weyl parameter γ (− 6

100 ≤ γ ≤ 4
100 ) consid-

ered in the present paper, there always exists a critical tem-
perature below which the vector hair starts to condense. The
thermodynamical analysis showed that the system undergoes
a second-order phase transition at the critical point and the
superconducting state is more stable than the normal state
below the critical temperature. Meanwhile, at the lower tem-
perature, the difference among the condensate in terms of
the fixed Weyl parameters (γ = − 6

100 , 0, 4
100 ) decreases

with the increasing Lifshitz parameter for 1 ≤ z < 2.35
and then increases with the increasing Lifshitz parameter z
for 2.35 < z ≤ 2.5. This means that the large enough Lif-
shitz correction can qualitatively alter the effects of the Weyl
correction on the condensate. From this perspective, there
exists the obvious competition between the Lifshitz correc-
tion and the Weyl correction. Furthermore, according to the
phase diagram about the critical temperature, when either
of two corrections is studied separately, the Lifshitz correc-
tion inhibits the phase transition while the Weyl correction
enhances the condensate to form. When the two corrections
are considered comprehensively, the promoting effects of the
Weyl correction are clearly suppressed by the increasing Lif-
shitz correction, which again reflects the competition of the
two corrections to some extent. In addition, the analytical
results agree well with the ones from the numerical method,
which not only upholds the reliability of the numerical results
but also confirms the reasonability of the choice of the present
parameter space, especially the Weyl correction parameter γ .

Secondly, for all value of the Lifshitz parameter z, there
is always an obvious pole for the imaginal part of conduc-
tivity at the lower frequency, which corresponds to a delta
function of the DC conductivity as expected from condensed
physics. Meanwhile, at the high frequency, the real part of
conductivity increases monotonically, which seems to be the
universal behavior for the holographic superconductor model
in the five-dimensional gravitational spacetime [34,36,51].
What is more, with the increasing Lifshitz parameter from
z = 1, the minimum of the imaginal part of the conductiv-
ity vanishes and the energy gap of the conductivity becomes
softer and softer at the intermediate frequency. Furthermore,
the real part of conductivity is suppressed with the increasing
Lifshitz correction. In addition to the above behavior of the
conductivity observed at T

Tc
≈ 0.5, we also calculated the

conductivity at or slightly below the critical temperature. It
followed that unlike the case for the six order derivative term
C2F2 in Refs. [35,63,64], we observed neither the Drude-
like peak near the zero-frequency nor the pronounced peak
at the intermediate frequency.
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It should be noted that even we have read off the rea-
sonable results in the current region of Weyl parameter γ

by both numerical and analytical methods, the range of γ is
insufficiently rigorous. To obtain the strict range of the Weyl
parameter γ in the Lifshitz gravity, it is meaningful to con-
sider the causality violation for the boundary field theory or
the superluminal velocity problem in the bulk. Meanwhile,
we restricted the present superconductor model in the Lif-
shitz parameter range 1 ≤ z ≤ 5

2 . In principle, so long
as z < 3, we can always read off the regular asymptoti-
cal solution from Eq. (11) and thus obtain the critical tem-
perature, the vector condensate as well as the conductivity.
However, as we considered the case of z = 13

5 , it is difficult
to calculate the conductivity at the low frequency for small
Weyl correction. In the case of z = 14

5 , even the conden-
sate for small Weyl correction takes too long time to read
numerically. However, following the phase diagram about
the critical temperature, it is expect that we might observe
the obvious competing phenomenon between the two correc-
tions at large enough Lifshitz parameter, for example, z = 29

10 ,
i.e., the non-monotonic (or monotonic decreasing) trend of
the critical temperature with respect to the Weyl parameter
γ . Therefore, it is interesting to extend the parameter space
about the Lifshitz parameter for the superconductor model
by optimizing the numerical calculation or improving the
performance of the equipment. On the other hand, analog to
the current coupling between the Weyl tensor and the gauge
field, we can also couple the Weyl tensor to the complex
vector field, such as the term γρ†

μνC
μν

αβραβ . Considering
the ansatzs of the gauge field and the vector field (7) in the
five-dimensional Lifshitz black hole (1), we have found pre-
liminarily that both the Weyl correction γ and the Lifshitz
parameter z are included in the scaling dimension �± of the
vector field, which suggests that the new coupling form will
develop much richer effects on the superconductor model.
As a result, it is useful and meaningful to investigate the
effect of the new coupling correction (γρ†

μνC
μν

αβραβ ) on
the superconductor models. In the near future, we will try
to solve some of the above problems, which will shed light
on the understanding of the effect of Weyl correction on our
superconductor model in Lifshitz gravity.
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Appendix: All coefficients denoted by Ci in Sect. 2

In our work, due to the fact that we considered both the high
order derivative correction and the Lifshitz spacetime, all the
equations of motion(such as the ones for the vector field ρμ,
the perturbative gauge field Ay(t, r), especially the solution
of the gauge field of φ) are quite long and complicate. In
order for the train of thought on the paper to be more clear,
we represent the coefficients by the sign Ci , the concrete
forms of which are listed as follows.

C1 = 2γ r(r f ′′(r) + (3z − 1) f ′(r)) + 4γ (z − 1)z f (r) + 1

C2 = 2γ r2 f (3)(r) + 2γ r(2z + 5) f ′′(r)

− 2γ (z2 − 14z + 5) f ′(r) − 4γ z(z2 − 5z + 4) f (r)

r

+ 4 − z

r
C3 = −2γ r2 f ′′(r) − 2γ r(3z − 1) f ′(r) − 4γ (z − 1)z f (r) + 3

C4 = f ′(r)
(

3

f (r)
− 2γ (7z2 + 4z − 3)

)

− (z + 2)(4γ (z − 1)z f (r) − 3)

r
− 2γ r2 f (3)(r)

+ 2γ r(1 − 3z) f ′(r)2

f (r)

+ f ′′(r)
(

−2γ r2 f ′(r)
f (r)

− 2γ r(4z + 3)

)

C5 = r−2(z+2)( f (r)(−6ψ(r)2r2z − 4γ r2ω2(z − 1)z) + 3r2ω2)

f (r)2

− 2γω2r−2z f ′′(r)
f (r)2 − 2γω2(3z − 1)r−2z−1 f ′(r)

f (r)2

C6 = (6γ (z − 5)(2z + 1)uz+3 + 4γ (z − 2)(z − 1)z + z − 2)

/u/(6γ (z − 5)uz+3 + 4γ (z − 1)z + 1)

C7 = (z2 − 8z + 15)(−u3−z)(uz+3 − 1)

C8 = (z2 − 8z + 15)u3−z((5z3 + 33z2 − 93z + 135)uz+3

+ 36(z − 5)u2z+6 − 5z3 − 33z2 + 57z + 45)/(z + 9)

C9 = u3−z(z − 3)((5 − z)(z + 6)(z(z(5z(z(5z + 21) − 150)

+ 1818) − 1035) − 675)uz+3 − 36(z − 5)2(z + 6)

× (z(9z − 16) + 15)u2z+6 − 108(z − 5)3(z + 9)u3z+9
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+ (z − 5)(z(z(z(z(5z(5z + 51) + 204) − 2826) + 9)

+ 3915) + 4050))/(6 + z)/(9 + z),

C10 = (z − 3)u3−z((z − 5)(z + 5)(z + 9)

× (z(z(z(z(z(z(25z(5z + 39) − 2961) − 10881)

+ 75897) − 105579) − 15795) + 42525) + 60750)uz+3

+ 432(z − 5)4(z + 6)(z + 9)2u4(z+3) + 36(z − 5)2

× (z + 5)(z + 6)(z(z(z(z(61z + 329) − 1526) + 2874)

− 1575) − 675)u2z+6 + 108(z − 5)3(z + 5)

× (z + 9)2(z(13z − 20) + 15)u3z+9

+ (5 − z)(z(z(z(z(z(z(z(5z(5z(5z + 109) + 3702)

+ 17964) − 231930) − 454626) + 1110456)

+ 1906092) − 77355) − 4088475) − 3462750))

/(5 + z)/(6 + z)/(9 + z)2

C11 = (12γ z2(uz+3 − 1) − 30γ uz+3

+ z(γ (8 − 54uz+3) + 1) + 4γ z3 − 2)

/u/(6γ (z − 5)uz+3 + 4γ z2 − 4γ z + 1)
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