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Abstract Recently a D-dimensional regularization approach
leading to the non-trivial (3 + 1)-dimensional Einstein–
Gauss–Bonnet (EGB) effective description of gravity was
formulated which was claimed to bypass the Lovelock’s the-
orem and avoid Ostrogradsky instability. Later it was shown
that the regularization is possible only for some broad, but
limited, class of metrics and Aoki et al. (arXiv:2005.03859)
formulated a well-defined four-dimensional EGB theory,
which breaks the Lorentz invariance in a theoretically consis-
tent and observationally viable way. The black-hole solution
of the first naive approach proved out to be also the exact
solution of the well-defined theory. Here we calculate quasi-
normal modes of scalar, electromagnetic and gravitational
perturbations and find the radius of shadow for spherically
symmetric and asymptotically flat black holes with Gauss–
Bonnet corrections. We show that the black hole is gravita-
tionally stable when (−16M2 < α � 0.6M2). The instabil-
ity in the outer range is the eikonal one and it develops at high
multipole numbers. The radius of the shadow RSh obeys the
linear law with a remarkable accuracy.

1 Introduction

Quasinormal modes and shadows of black holes are, appar-
ently, among the most interesting characteristics of black
holes in the gravitational and electromagnetic spectra. They
have been observed in the modern experiments, still, leav-
ing the wide room for interpretations and alternative theo-
ries of gravity [1–11]. A number of such alternative theories
appeared in attempts to answer a number of fundamental
questions which cannot be resolved with General Relativ-
ity, such as, for example, construction of quantum gravity or
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singularity problem. Many of these theories include higher
curvature corrections to the Einstein term and one of the
most promising approaches is related to the Einstein–Gauss–
Bonnet theory (quadratic in curvature) and its Lovelock gen-
eralization (for higher than the second order in curvature). In
four dimensions, the Einstein–Gauss–Bonnet theory leads to
non-trivial corrections of the equations of motion only if the
Gauss–Bonnet term is coupled to a matter field, for exam-
ple, to the dilaton. Various effects in such Einstein-dilaton–
Gauss–Bonnet theories were considered in [12–21]. recently
it has been claimed [22] that there is a non-trivial Einstein–
Gauss–Bonnet theory of gravity with no extra fields coupled
to curvature. There it is stated that there is a general covariant
modified theory of gravity in D = 4 space-time dimensions
in which only the massless graviton propagates and the the-
ory bypassing the Lovelock’s theorem [22] is defined as the
limit D → 4 of the higher dimensional case. In this sin-
gular limit the Gauss–Bonnet invariant produces non-trivial
contributions to gravitational dynamics, while preserving the
number of graviton degrees of freedom and being free from
Ostrogradsky instability. However, in a number of further
papers it was shown that the above regularization scheme
does not work for an arbitrary metric, so that the above reg-
ularization cannot have the status of a well-defined theory
[23–26].

It was observed the lack of the tensorial description [23]
for the original 4D approach [22] and found that in some
cases different types of regularization lead to the nonunique-
ness of some solutions, such as Taub-NUT black holes [24]. It
was pointed out that in four dimensions there is no four-point
graviton scattering tree amplitudes other than those leading
to the Einstein theory, so that additional degrees of freedom,
for instance, a scalar field (∂φ)4, should be added for con-
sistency [25]. In addition, it was shown that the nonlinear
perturbations of the metric cannot be regularized by taking
the limit D → 4 due to divergent terms appearing in the
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corresponding equations of the Gauss–Bonnet theory [26].
However, such a scalar–tensor approach is based on another
scaling limit of the coupling constant and their D → 4 limit
is different from the original proposal [22].

In order to solve the above problems another scalar–tensor
approach has been proposed by [27,28] and reproduced in
[29,30] from a different point of view. This approach implies
a four-dimensional Lagrangian and is in the spirit of original
proposal of [22]: the works [27,28] first assume a particular
ansatz in a higher dimensional spacetime and then take the
limit D → 4. However, the problem of this approach is
pointed out in [28] and discussed in [25]: the scalar field is
infinitely strongly coupled. These works clarify the essential
problem of the original regularization scheme as well as the
scalar–tensor approach of [27,28]. The essential problem of
the D → 4 limit is the infinitely strong coupling.

A consistent description of the 4D theory has been sug-
gested in [31], where, using the ADM decomposition, the
Hamiltonian theory was constructed which breaks the diffeo-
morphism invariance in an observationally viable way. This
well-defined theory does not have an extra scalar degrees
of freedom and therefore is free of the problem of infinite
coupling. It is essential for our consideration here that the
black-hole solution of the original proposal [22] also satis-
fies the field equations of the well-defined theory suggested
in [31]. Moreover, as was shown in a subsequent work by
Aoki, Gorji and Mukohyama [32] on the example of the cos-
mological solution, the dispersion relations for the gravita-
tional perturbations acquire modification in the UV regime.
Therefore one could expect that the gravitational spectra in
the IR regime, that is, for sufficiently large black holes should
be effectively described within the initial simplified proposal
of [22] once the higher dimensional perturbation equations
allow for the dimensional regularization.

An essential requirement for existence of a black hole
is its stability against small perturbations of spacetime. The
higher dimensional Einstein–Gauss–Bonnet theory is pecu-
liar in this respect: black holes suffer from gravitational insta-
bility unless the GB coupling constant is small enough [33–
42]. This instability develops at higher multipole numbers
and is called, therefore, the eikonal instability [33–43]. Usu-
ally the eikonal instability essentially constrains the allowed
parametric region of black holes. Therefore, it is interest-
ing to know whether such instability exist also for the novel
(3 + 1)-dimensional Einstein–Gauss–Bonnet black holes.

Having in mind, first of all, the well-defined 4D Einstein–
Gauss–Bonnet theory of Aoki–Gorji–Mukohyama [31] we
calculate the quasinormal modes of a scalar, electromag-
netic and gravitational perturbations with the help of the
WKB and time-domain integration methods and find radius
of the shadow of an asymptotically flat (3+1)-dimensional
Einstein–Gauss–Bonnet black hole. We show that the quasi-
normal modes are essentially affected by the Gauss–Bonnet

coupling. There is the eikonal instability of gravitational per-
turbations when the coupling constant is not small enough
and we find the threshold values of the coupling constant for
this instability. We also show that there is no such instability
for negative values of the coupling constant. In addition, we
discuss the breakdown of the correspondence between the
eikonal quasinormal modes and the parameters of the null
geodesics formulated in [44], which is valid here for test
fields, but, evidently, not for the gravitational one. We also
calculate the radius of a shadow of the 4D Gauss–Bonnet
black holes. Our results for the test fields, that is, for test scalar
and electromagnetic quasinormal modes as well as for the
radius of a shadow must be valid in the full, well-defined the-
ory of Aoki–Gorji–Mukohyama [31], because these effects
are essentially propagation of particles and fields in the back-
ground black hole metric, and, as such, unlike non-minimally
coupled fields, depend only on the form of the black-hole
metric, which is the same in all the approaches. The gravi-
tational perturbations studied here, are based on the regular-
ization scheme and, therefore, could only be considered as
an approximation which may be valid in the IR regime, but
strongly modified in the UV regime, as it takes place for the
cosmological perturbations [31].

The paper is organized as follows. In Sect. 2 we summa-
rize the basic information on the Einstein–Gauss–Bonnet the-
ory and the black hole solution therein. Section 3 is devoted
to quasinormal modes of test fields, while Sect. 4 discusses
the gravitational perturbations, the eikonal instability and the
breakdown of the correspondence between the eikonal quasi-
normal modes and null geodesics. In Sect. 5 we calculate the
radius of the shadow of the black hole. Finally, we summarize
the obtained results and discuss a number of open questions.

2 The novel four-dimensional Einstein–Gauss–Bonnet
theory and the black hole metric

In four dimensional space-time General Relativity is described
by the Einstein–Hilbert action,

SEH[gμν] =
∫
dDx

√−g

[
M2

P

2
R

]
, (1)

where D=4 and the reduced Planck mass MP characterizes
the gravitational coupling strength. According to the Love-
lock’s theorem [45–47] General Relativity is the unique four
dimensional theory of gravity if one assumes: (a) diffeomor-
phism invariance, (b) metricity, and (c) second order equa-
tions of motion. In higher than four dimensions the general
action satisfying the above conditions is

SGB[gμν] =
∫
dDx

√−g α̃ G , (2)

123



Eur. Phys. J. C (2020) 80 :1049 Page 3 of 13 1049

where α is a dimensionless (Gauss–Bonnet) coupling con-
stant andG is the Gauss–Bonnet invariant,G= Rμν

ρσ Rρσ
μν−

4Rμ
νRν

μ+R2 =6Rμν [μνRρσ
ρσ ]. The idea suggested in [22]

is to rescale the coupling constant,

α → α̃/(D−4) , (3)

of the Gauss–Bonnet term, and only afterwards to consider
the limit D → 4. This leads to the solution for a static and
spherically symmetric case in an arbitrary number of dimen-
sions dimensions D≥5,

ds2 = − f (r)dt2 + f −1(r)dr2 + r2d�2
D−2 (4)

which was already found in Ref. [48] (see also [49–52]). This
solution is extended to D = 4 solutions via the re-scaling
prescribed in [22], and then by taking the limit D→4,

f (r) = 1 + r2

32πα̃G

[
1±
(

1+ 128πα̃G2M

r3

)1/2]
. (5)

Here the Newton’s constant is G = 1/(8πM2
P) and M is a

mass parameter. A similar effective approach for constructing
the black-hole metric in the charged case and for higher order
Lovelock corrections have been recently suggested in [53,
54].

An essential moment for our future consideration is
that this solution is not only the result of the dimensional
regularization suggested in [22], but also an exact solu-
tion of the well-defined truly four-dimensional Aoki–Gorji–
Mukohyama theory [31], which allows for Hamiltonian
description and uses the ADM decomposition [31]. This the-
ory breaks the Lorenz invariance via modification of the
dispersion relations in the UV regime, making the whole
approach consistent with the current observations in the IR
regime.

Therefore, all the effects related to not strongly coupled
fields, but to fields propagating in the black hole background
can be safely studied independently of the incompleteness
of the theory suggested in [22], because the same black-hole
solution is valid also in the above well-defined theory [31].
In this approach there is no scalar propagating degree of free-
dom [55] and the dispersion relations obtain corrections in
the UV part of the spectrum, leaving the astrophysically rele-
vant IR limit of the spectrum unaffected [32]. Therefore, the
gravitational perturbations treated via the same dimensional
regularization as in [22], are expected be valid within the full
theory [32] for analysis of the IR part of the spectrum, that is,
when the black hole is of order of the radiation’s wavelength
or larger.

The solution of the field equations has two branches cor-
responding to different signs in front of the square root. Here
we will study “the minus” case of the above metric, as it

leads to the asymptotically flat solution, unlike “the plus”
case, which is effectively asymptotically de Sitter one in the
absence of the cosmological constant. If α̃ < 0, there is no
real solution for r3 <−128πα̃G2M , which means invalidity
of the solution in the central region at some distance from
the center which, anyway, is hidden under the event horizon
[56] for sufficiently small absolute values of the coupling
constant. Mostly, we will consider the α̃ > 0 case here. Nev-
ertheless, as the metric for negative α̃ is well-behaved outside
the event horizon, we will consider the form of the effective
potentials, stability regions and obtain some results on quasi-
normal modes, which are valid for negative α as well.

The event horizon is the larger root of the following ones:

r H± = GM

[
1 ±

√
1 − 16πα̃

GM2

]
. (6)

For negative values of α̃ there is only one horizon, corre-
sponding to the “the plus” sign in the above relation. Notice
also that the above black-hole metric was considered ear-
lier in the context of corrections to the entropy formula in
[57,58]. From here and on we will consider 32πα̃ as a new
coupling constant α

α = 32πα̃, (7)

and use the units G = 1 and M = 1/2. Now we are in
position to consider quasinormal modes and shadows of the
above black holes.

3 Quasinormal modes of scalar and electromagnetic
fields

Taking into account the re-definition of the coupling constant,
the metric function has the form

f (r) = 1 + r2

α

[
1−
(

1+ 4αM

r3

)1/2]
. (8)

The exterior black hole solution exists for values of the cou-
pling constant α being in the range

−16M2 < α < 2M2. (9)

Let us notice, that our α differs from those of [56,59] by a
factor 2. The general covariant equation for a massless scalar
field has the form

1√−g
∂μ

(√−ggμν∂ν

) = 0, (10)
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Fig. 1 The fundamental (n = 0) quasinormal mode computed by the WKB approach for � = 0 scalar perturbations as a function of α, M = 1/2

Fig. 2 The fundamental (n = 0) quasinormal mode computed by the WKB approach for � = 1 electromagnetic perturbations as a function of α,
M = 1/2

and for an electromagnetic field it has the form

1√−g
∂μ

(
Fρσ g

ρνgσμ√−g
) = 0 , (11)

where μ, ν = 0, 1, 2, 3 and Fρσ = ∂ρ Aσ − ∂σ Aρ and Aμ is
a vector potential.

Since the background is spherically symmetric, we can
expand Aμ in terms of the vector spherical harmonics (see
[60]):

Aμ(t, r, θ, φ)

=
∑
�,m

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

0
0

a�m(t,r)
sin θ

∂φY�m
−a�m(t, r) sin θ∂θY�m

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎣

f �m(t, r)Y�m
h�m(t, r)Y�m
k�m(t, r)∂θY�m
k�m(t, r)∂φY�m

⎤
⎥⎥⎦

⎞
⎟⎟⎟⎠ ,

(12)

where the first term in the right-hand side has parity (−1)�+1

and the second term has parity (−1)�, m is the azimuthal
number and � is the angular quantum number. If we put this

expansion into Maxwell’s equations (11) we get a second
order differential equation for the perturbation:

∂2(r)

∂r2∗
+
[
ω2 − V (r)

]
(r) = 0 , (13)

where the wavefunction (r) is a linear combination of the
functions f �m , h�m , k�m and a�m as appearing in (12). The
form of  depends on the parity: for odd parity, i.e, (−1)�+1,
 is explicitly given by  = a�m whereas for even parity

(−1)� it is given by  = r2

�(�+1)

(
−iωh�m − d f �m

dr

)
. It is

assumed that the time dependence is (t, r) = e−iωt(r).
The case of a scalar field is simpler and implies expansion

in terms of the standard spherical harmonics. Summarizing,
after separation of the variables equations (10,11) take the
following form

d2s

dr2∗
+
(
ω2 − Vs(r)

)
s = 0, (14)

where s = scal corresponds to a scalar field and s = em
to the electromagnetic field. The “tortoise coordinate” r∗ is
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Fig. 3 The time-domain profile of the � = 0 scalar perturbations,
α = 0.1, M = 1/2

Fig. 4 The effective potnetial for vector type of gravitational pertur-
bations � = 5, α = 0.45, M = 1/2

defined by the relation dr∗ = dr/ f (r), and the effective
potentials are

Vscal(r) = f (r)

(
�(� + 1)

r2 + 1

r

d f (r)

dr

)
, (15)

Vem(r) = f (r)
�(� + 1)

r2 . (16)

The effective potentials have the form of a positive definite
potential barrier with a single maximum. Quasinormal modes
ωn correspond to solutions of the master wave equation (14)
with the requirement of the purely outgoing waves at infinity
and purely incoming waves at the event horizon (see, for
example, [61,62]):

s ∼ ±e±iωr∗
, r∗ → ±∞. (17)

In order to find quasinormal modes we shall use the two
independent methods:

1. Integration of the wave equation (before introduction the
stationary ansatz) in time domain at a given point in space

Fig. 5 Time-domain profile for vector type of gravitational perturba-
tions � = 5, α = 0.45, M = 1/2

[63]. We shall integrate the wave-like equation rewritten in
terms of the light-cone variables u = t−r∗ and v = t+r∗.
The appropriate discretization scheme was suggested in
[63]:

 (N ) =  (W ) +  (E) −  (S)

−�2 V (W )  (W ) + V (E)  (E)

8

+O
(
�4
)

, (18)

where we used the following notation for the points: N =
(u + �, v + �), W = (u + �, v), E = (u, v + �) and
S = (u, v). The initial data are given on the null surfaces
u = u0 and v = v0.

2. In the frequency domain we will use the WKB method of
Will and Schutz [64], which was extended to higher orders
in [65–67] and made even more accurate by the usage of
the Pade approximants in [67,68]. The higher-order WKB
formula [69]:

ω2 = V0 + A2(K2) + A4(K2) + A6(K2)

+ . . . − iK
√−2V2

(
1 + A3(K2)

+A5(K2) + A7(K2) . . .
)

,

whereK takes half-integer values. The corrections Ak(K2)

of order k to the eikonal formula are polynomials of K2

with rational coefficients and depend on the values of
higher derivatives of the potential V (r) in its maximum.
In order to increase accuracy of the WKB formula, we
follow Matyjasek and Opala [67] and use Padé approxi-
mants.

As both methods are very well known [61,69], we will not
describe them in this paper in detail, but will simply show
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Fig. 6 Radius of the shadow as a function of α, r+ = 1

that both methods are in a good agreement in the common
range of applicability.

From the Table 1 and Fig. 2 one can see that when increas-
ing the coupling constant α, the real oscillation frequency of
� > 0 modes is monotonically increased, while the damping
rate is decreased. The behavior of the lowest scalar multi-
pole � = 0 is different according to the WKB data given on
Fig. 1 and one could suspect that there is lacking accuracy
of the WKB technique. However, the time-domain calcula-
tions show qualitatively similar behavior: the real oscillation
frequency begins to decrease at some value of α. In the next
section we will show that at these values of α when the Re(ω)

is non-monotonic, the gravitational instability develops, so
that no real black hole can exist. At the same time, even the
time-domain data cannot be fully trusted for � = 0, as the
extraction of the frequency is difficult in this case, because
the quasinormal ringing occurs only during a few oscillations
and then goes over into the asymptotic tails (see Fig. 3). When
using the WKB method we applied the Pade approximants as
prescribed in [67] and used the 6th WKB order with m̃ = 5
[69]. Unlike the lowest � = 0 case, quasirnomal modes for
higher multipoles calculated by the WKB and time-domain
integration methods are in a very good agreement, what will
be illustrated for gravitational perturbations in the next sec-
tion.

In the regime of high multipole numbers the WKB formula
of the first order can be applied

ω2 = V0 +
√

−2V ′′
0

(
n + 1

2

)
i,

where V0 is the peak of the effective potential and V ′′
0 its

second derivative at the peak. This formula can be expanded
in terms of 1/� (see [70] for a general approach). The peak
of the effective potential has the following form:

r0 = 3M − 2α

9M
+ O

(
α2
)

, (19)

while the quasinormal frequencies in this regime are

ω = 1

3
√

3M

(
� + 1

2
− i

(
n + 1

2

))

+ α

81
√

3M3

(
� + 1

2
+ i(2n + 1)

)
+ O

(
1/�, α2

)

(20)

Let us notice that the above eikonal formula is valid for both
positive and negative α, whenever the black-hole solution
under consideration is stable against gravitational perturba-
tions. When the coupling α vanishes, the above formula goes
over into the well-known expression for the Schwarzschild
limit [71].

4 Gravitational perturbations and the eikonal
instability

4.1 The perturbation equations

In [37] it was shown that after the decoupling of angular
variables and some algebra, the gravitational perturbation
equations of the higher dimensional Einstein–Gauss–Bonnet
theory can be reduced to the second-order master differential
equations

(
∂2

∂t2 − ∂2

∂r2∗
+ Vi (r∗)

)
i (t, r∗) = 0, (21)

where i are the wave functions, r∗ is the tortoise coordinate,

dr∗ ≡ dr

f (r)
= dr

1 − r2ψ(r)
, (22)

and i stands for v (vector), and s (scalar) types of grav-
itational perturbations. These perturbations transforms as
scalars and vector respectively the rotation group on a
(D − 2)-sphere. They should not be confused with the test
scalar or vector considered in the previous section. The vec-
tor type of gravitational pertubations is also called the axial
type, and the scalar is known as the polar type. From the
analysis of gravitational perturbations of the tensor type of
the cosmological solution in the full theory [32] we see that
only the tensor type of perturbations acquires corrections
in comparison with the result obtained via the naive regu-
larization scheme [22]. This correction is expressed in eq.
(33) of [32] and the correction is of the order αH2, where
H is inverse proportional to the characteristic length scale.
For the black hole case this means that the correction which
we possible neglect must of the order of α/M2, where M is
the black hole mass. Therefore, the equation (21) should be
a good approximation to the one for the full theory, when
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Table 1 The fundamental quasinormal mode of the scalar field (� = 1, n = 0, M = 1/2) as a function of α

α WKB (6th order, m̃ = 5) Time-domain

0.001 0.585950 − 0.195270i 0.587327 − 0.195509i

0.05 0.590797 − 0.192066i 0.592067 − 0.192181i

0.1 0.595897 − 0.188579i 0.597066 − 0.188587i

0.15 0.601189 − 0.184841i 0.602249 − 0.184756i

0.2 0.606692 − 0.180804i 0.607636 − 0.180642i

0.25 0.612426 − 0.176402i 0.613249 − 0.176179i

0.3 0.618405 − 0.171552i 0.619107 − 0.171282i

0.35 0.624629 − 0.166145i 0.625217 − 0.165835i

0.4 0.631108 − 0.160083i 0.631559 − 0.159674i

0.45 0.637965 − 0.152884i 0.638048 − 0.152586i

0.5 0.644336 − 0.144444i 0.644465 − 0.144330i

the Gauss–Bonnet coupling is much smaller than the typical
length scale, namely |α| 
 M2. Nevertheless, there remains
a chance that, as in the case of he cosmological background,
no new corrections will appear due the full theory, because
perturbation equations for the scalar and tensor modes of the
cosmological background in the well defined theory [32] are
the same as in the naive regularization scheme [22].

The explicit forms of the effective potentials Vs(r), Vv(r)
are given by

Vv(r) = (� − 1)(� + n) f (r)T ′(r)
(n − 1)rT (r)

+ R(r)
d2

dr2∗

(
1

R(r)

)
,

Vs(r) = 2�(� + n − 1) f (r)P ′(r)
nr P(r)

+ P(r)

r

d2

dr2∗

(
r

P(r)

)
,

where n = D − 2, � = 2, 3, 4, . . . is the multipole number,
T (r) is given in [37], and

R(r) = r
√|T ′(r)|,

P(r) = 2(� − 1)(� + n) − nr3ψ ′(r)√|T ′(r)| T (r).

For large � the effective potentials can be approximated as
follows:

Vi = �2
(

fi (r)

r2 + O
(

1

�

))
, (23)

where, i stands for vector (v) and scalar (s) types of gravita-
tional perturbations. Here, we have

fv(r) = f (r)rT ′(r)
(D − 3)T (r)

, (24)

fs(r) = r f (r)(2T ′(r)2 − T (r)T ′′(r))
(D − 2)T ′(r)T (r)

. (25)

One can see that the higher dimensional field equations
after the re-scaling α → α/(D−4) do not contain a singular
factor in the limit D → 4, so that not only for the background
black hole metric, but also the perturbation equations for the
time-dependent metric can be regularized in the same way
as in [22]. In other words, we can use the master equation
obtained for the higher dimensional Einstein–Gauss–Bonnet
case implying an arbitrary background metric function f (r)
and then perform the re-scaling α → α/(D − 4) in it.

The effective potentials have the form of the potential bar-
rier in this case, but, as in the higher dimensional EGB grav-
ity, with a negative gap near the event horizon at larger values
of the coupling constantα. This negative gap becomes infinite
when the multipole number � goes to infinity, which means
the so called eikonal instability [33–42]. Indeed, the effective
potential for the vector type of gravitational perturbations has
the following form in the eikonal regime:

Vv =
32K�2

(
r3 − 2Mα

) (
4Mα + r3

) (
r
√

4Mα
r3 + 1 − 4M + r

)

r3
(√

4Mα
r3 + 1 + 1

) (
r3
(√

4Mα
r3 + 1 + 1

)
+ 2Mα

)2 (
r3
(√

4Mα
r3 + 1 + 1

)
+ 4Mα

)4 + O
(

1

�

)
, (26)

where

K = 2M4α4 + 4M3r3α3

(√
4Mα

r3 + 1 + 4

)

+10M2r6α2

(√
4Mα

r3 + 1 + 2

)
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+r12

(√
4Mα

r3 + 1 + 1

)

+Mr9α

(
6

√
4Mα

r3 + 1 + 8

)
. (27)

The effective potential for the scalar type of gravitational
perturbations (see Fig. 8) is too cumbersome and, therefore,
we do not write it down here explicitly.

4.2 The (in)stability region

According to the analysis of the detailed eikonal instability
given in [34,35,37,39] for the higher-dimensional Einstein–
Gauss–Bonnet theory, once for some fixed α the negative
gap appears and becomes deeper at higher multipoles, there
is some sufficiently large � for which the bound state with
negative energy appears, which means the onset of instabil-
ity. Therefore, investigation of regions in which the effective
potential is positive definite not only at the lower, but also at
high multipoles is sufficient to determine the stability, while
the negative gap becoming deeper when � is increased signi-
fies the eikonal instability.

Thus, by looking at the parametric regions in which the
effective potentials are positive or negative, one can see that
the re-scaled potential has the following region of the eikonal
stability:

α � 1.57M2, (vector type) (28)

while for smaller α the black hole is stable against vector
perturbations. This type of instability was called the ghost
instability in [72]. The scalar type of gravitational perturba-
tions imposes even stronger bound on the coupling constant:

α � 0.6M2, (scalar type) (29)

The profile of the quasinormal ringing for gravitational
perturbations representing a typical time-domain evolution
of instability is shown on Fig. 5: as for the higher dimenaional
EGB theory [41] it develops after a long period of damped
quasinormal oscillations for every finite � and the eikonal
regime � → ∞ corresponds to the parametrically largest
region of instability.

For negative α the effective potential are positive definite
up to some moderately large absolute value of the coupling
constant. Thus the effective potential for the scalar type of
gravitational perturbations at � ≥ 2 is positive definite, when

α � −8M2 (scalar type), (30)

20 40 60 80
t

10 8

10 6

10 4

0.01

1

Fig. 7 Time-domain profile for the vector (axial) type of gravitational
perturbations � = 2 for α = −1.9. The two dominating modes are
ω0 = 0.676472−0.506277i and ω1 = 1.14419−0.549234i , M = 1/2

while for vector type of gravitational perturbations the effec-
tive potential acquires a negative gap near the event horizon
at α � −15.8M2. Nevertheless, the time-domain profiles
of near extremal states for sufficiently high multipoles up
to � = 10 show no instability. The stability of vector type
of gravitational perturbations can also be shown via the S-
deformations in a similar fashion with [72]. Therefore, we
conclude that the vector type of gravitational perturbations
is stable whenever

α � −16M2 (vector type). (31)

Examples of positive definite effective potential and poten-
tial with a negative gap near the potential barrier are given
on Fig. 8. Thus, we conclude that the black hole is stable
for 0 > α � −8M2. For α < −8M2 the effective potential
acquires the negative gap which, nevertheless, can sometimes
be remedied at higher multipoles �, so that the full analysis of
stability for α must be done via the through consideration of
the quasinormal spectrum for all negative values of α. Indeed,
as can be seen in Fig. 9 even the near extremal black hole
with negative coupling constant is gravitationally stable. In
addition, analysis of stability which was made after the first
version of our work appeared [73] comes to the same con-
clusion that there is no gravitational instability for negative
values of α in the scalar channel.

Summarizing all the regions of instability and restoring
the arbitrary M , we conclude that the black hole is stable
once

−16M2 < α � 0.6M2 (32)

and unstable for values of α larger than 0.6M2.
In Tables 2 and 3 one can see the fundamental (� = 2,

n = 0) quasinormal modes of vector (axial) and scalar (polar)
types of gravitational perturbations in the region which is
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Fig. 8 Effective potentials for the scalar type of gravitational pertur-
bations � = 2 for α = −3 (with a negative gap) and α = −2 (positive
definite); M = 1/2

Fig. 9 Time-domain profile for the scalar type of gravitational pertur-
bations, � = 10, α = −3.99. There are two concurrent modes, one
of which dominates at the beginning of the quasinormal ringing (ω =
8.25 − 6.12i) and the other one - at the final stage (ω = 1.12 − 1.77i);
M = 1/2. The initial outburst is prolonged because the spacial point
at which the time-domain profile is taken is at some distance from the
peak of the effective potential

proved to be free from instabilities. As one can see all the
data obtained by the WKB and time-domain integration are
in a very good agreement for small and moderate values of
α. When α is increasing, both the real oscillation frequency
and damping rate decrease. At α < −1.5 the discrepancy
between the time-domain integration and WKB approaches
slightly increases, because the second concurrent mode with
nearby damping rate appears in the spectrum and the time
domain profile consists from the two dominant modes (see
Fig. 7).When the negative coupling constant is close to its
extremal value allowing for the black-hole solution the two
modes have quite different damping rates and one of the
modes dominate in the beginning of the quasinormal ringing,
while the other one dominates in the end (see Fig. 9).

4.3 The correspondence between the eikonal QNMs and
null geodesics

It is worth mentioning that in the eikonal regime the quasi-
normal modes of test fields do not coincide with those for
the gravitational perturbations. This is reflected in the bro-
ken correspondence between eikonal quasinormal modes and
null geodesics. According to this correspondence (reported
in [44]) the real and imaginary parts of the eikonal quasi-
normal mode must be multiples of the frequency and insta-
bility timescale of the circular null geodesics respectively.
Following Cardoso et. al. [44], one can see that the princi-
pal Lyapunov exponent for null geodesics around a static,
spherically symmetric metric is

λ = 1√
2

√
− r2

c

fc

(
d2

dr2∗
f

r2

)
r=rc

. (33)

The coordinate angular velocity for the null geodesics is

�c = f 1/2
c

rc
, (34)

where rc is the radius of the circular null geodesics, fc is the
metric function taken at rc, satisfying the equation

2 fc = rc f
′
c . (35)

Then, in a similar fashion with [74], we observe that

2 fi (r0) = r0 f
′
i (r0), (36)

where fi is the function determined by (24, 25) taken at the
maximum of the effective potential r0. Thus, f (r) does not
coincide with fi (r), so that the position of the effective poten-
tial’s extremum r0 must not coincide with the location of the
null circular geodesic rc. The WKB formula for quasinormal
modes is also different from the Einsteinian ones, as now it
includes fi (r) instead of f (r):

ωQNMi =
(

� + 1

2

)√
fi0
r2

0

−i
(n + 1/2)√

2

√
− r2

0

fi0

(
d2

dr2∗
fi
r2

)
r0

.

(37)

Thus we conclude that the correspondence between gravi-
tational quasinormal modes in the eikonal regime and null
geodesics is not fulfilled in our case, but it does take place
for test fields, whenever the coupling constant α is small and
there is yet a point to consider the background metric as the
viable black-hole solution. This is a four-dimensional exam-
ple of the principle formulated in [74], but illustrated there
for D > 4 spacetimes: the eikonal quasinormal modes/null
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Table 2 Gravitational quasinormal modes the vector (axial) type for
various values of the coupling constant α in the stability sector; � = 2.
At α ≈ −1.5 and smaller there are two concurrent modes in the spec-

trum and the other mode (not shown in the table) is ω = 0.676472 −
0.506277i . The corresponding time-domain profile is shown on Fig. 7

α QNM (WKB) QNM (Time-domain)

−1.9 1.144885 − 0.528724i 1.14419 − 0.549234i

−1.5 0.977526 − 0.418250i 0.947443 − 0.420511i

−1.0 0.888974 − 0.270908i 0.875314 − 0.269414i

−0.9 0.865131 − 0.261466i 0.860759 − 0.250131i

−0.8 0.840979 − 0.247055i 0.846653 − 0.233332i

−0.7 0.820798 − 0.230881i 0.832837 − 0.218772i

−0.6 0.813614 − 0.212003i 0.819222 − 0.206298i

−0.5 0.805949 − 0.196027i 0.805771 − 0.195845i

−0.4 0.792742 − 0.188256i 0.792508 − 0.187443i

−0.3 0.780243 − 0.181006i 0.779553 − 0.181222i

−0.2 0.767666 − 0.177550i 0.767195 − 0.177412i

−0.1 0.756476 − 0.176684i 0.755645 − 0.176363i

−0.001 0.747334 − 0.177826i 0.747018 − 0.177986i

0.001 0.747146 − 0.177894i 0.74727 − 0.177938i

0.05 0.744343 − 0.179866i 0.744444 − 0.179523i

0.10 0.743063 − 0.181674i 0.742834 − 0.181299i

0.15 0.743022 − 0.182724i 0.742599 − 0.182762i

Table 3 Gravitational quasinormal modes of the scalar (polar) type
for various values of the coupling constant α in the stability sector;
� = 2, M = 1/2. At α ≈ −1.5 and smaller the two concurrent modes

appear, which makes the agreement between WKB and time-domain
integration worse

α QNM (WKB) QNM (Time-domain)

−1.9 1.65941 − 0.51949i 1.66368 − 0.522244i

−1.5 1.17625 − 0.31545i 1.47459 − 0.431442i

−1.0 .261665 − 0.345704i 1.26762 − 0.338142i

−0.9 1.219245 − 0.330473i 1.22271 − 0.334084i

−0.8 1.176251 − 0.315445i 1.17344 − 0.317964i

−0.7 1.132342 − 0.300441i 1.12973 − 0.299166i

−0.6 1.087276 − 0.285259i 1.0864 − 0.283879i

−0.5 1.041801 − 0.267132i 1.03887 − 0.269181i

−0.4 0.988244 − 0.251233i 0.988105 − 0.252275i

−0.3 0.934963 − 0.233770i 0.93482 − 0.233821i

−0.2 0.877534 − 0.214423i 0.877592 − 0.214429i

−0.1 0.815283 − 0.194448i 0.815284 − 0.194505i

−0.001 0.748051 − 0.178045i 0.747528 − 0.178118i

0.001 0.746635 − 0.177809i 0.746114 − 0.177876i

0.05 0.711526 − 0.174330i 0.711232 − 0.174252i

0.10 0.677977 − 0.177305i 0.677517 − 0.176864i

0.15 0.651891 − 0.184149i 0.651344 − 0.184509i
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geodesics correspondence is guaranteed only for the good,
from the WKB point of view, effective potentials, which are
provided for minimally coupled test fields.

4.4 Consistency of the obtained gravitational perturbations
in various approaches to constructing the 4D theory

Here we studied the linear stability of spherically symmetric
black holes within the initial regularization approach [22].
We hope that this approach could be applied for effective
description of sufficiently large black holes, when the grav-
itational wavelength is of the order of the black-hole size
and the latter is much larger than the Plank length, that is,
the quantum effects can be safely neglected. The black hole
solution found in [22] is unambiguous since the Weyl part of
the corresponding equations vanishes,

CμρλσCνρλσ − 1

4
δμ
ν C

τρλσCτρλσ = 0, (38)

where Cνρλσ is the Weyl tensor [31].
The consistent Hamiltonian theory implies that the gravi-

tational perturbations gain a correction to the dispersion rela-
tion in the ultraviolet regime due to counter terms, appear-
ing in order to cancel divergences of the Weyl pieces [31].
Although the linear perturbation equations for the full theory
have not been derived yet, we notice that the Weyl tensor on
the (D−2)-sphere does not appear in scalar-type and vector-
type perturbation equations [75], indicating that the counter
terms do not change the angular parts of the equations, which
were used for our eikonal stability analysis. It is worth men-
tioning here that although eikonal instability of the Gauss–
Bonnet black holes manifests itself first at large multipole
number, the similar unstable behavior is observed for lower
� as well [41], corresponding to the low-energy perturbations
at the threshold of instability, for which the ultraviolet cor-
rections can be neglected. Therefore, linear and higher-order
perturbation analysis in the full theory could further limit the
parametric region of stability of the 4D-Gauss–Bonnet black
holes.

5 Radius of the black-hole shadow

Theoretical analysis of shapes of the black hole shadows have
been recently considered in a great number of papers (see,
for example, [76–83] and references therein). The radius of
the photon sphere rph of a spherically symmetric black hole
is determined by means of the following function: (see, for
example, [84,85] and references therein)

h2(r) ≡ r2

f (r)
, (39)

as the solution to the equation

d

dr
h2(r) = 0. (40)

Then, the radius of the black-hole shadow Rsh as seen by a
distant static observer located at rO will be

Rsh = h(rph)rO
h(rO)

= rph
√

f (rO)√
f (rph)

≈ rph√
f (rph)

, (41)

where in the last equation we have assumed that the observer
is located sufficiently far away from the black hole so that
f (rO) ≈ 1.

One can easily see that in the units of the event horizon
radius r+ = 1, the radius of the shadow can be very well
approximated by the following linear law:

Rsh ≈ 3
√

3

2
+ 0.94α, (42)

where the first term is for the Schwarzschild’s radius of the
shadow. Thus, the radius of the shadow is always larger when
the GB coupling is turned on.

6 Discussion

It is generally accepted that the Einstein–Gauss–Bonnet the-
ory is nontrivial only in higher than four dimensional space-
times. However, the re-scaling of the coupling constant prior
to the dimensional reduction [22] leads to the novel regular-
ization method leading to the effective solutions represent-
ing the Gauss–Bonnet correction in 4D. Despite the regular-
ization [22] is possible not for every kind of metric, it was
shown that the black-hole solution obtained in [22] via regu-
larization is also an exact solution of the well-defined theory
which introduces the Gauss–Bonnet correction at a cost of
the broken diffeomorfism [31], in the full agreement with the
Lovelock theorem.

In the well-defined formulation of [31], and in a subse-
quent paper [32] it was shown that the dispersion relation
will be modified in the UV regime, which means that one
could expect that our analysis of gravitational perturbation
could be a reasonable approximation in the IR part of the
quasinormal spectrum, which is of primary interest in astro-
physics. Our calculations of the effects for test fields (such
as quasinormal modes of test fields and shadows) must be
valid, because the background black-hole metric which we
used is the exact solution in the well-defined theory. The high
frequency spectrum of gravitational quasinormal modes will
be modified in [32] owing to the modified dispersion rela-
tions for gravitons. However, the threshold of instability may
be considerably affected in the full theory [32], because the
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equation (21) for gravitational perturbations must be a good
approximation when the Gauss–Bonnet coupling is much
smaller than the typical length scale, namely |α| 
 M2.

Here we have also studied quasinormal modes of scalar,
electromagentic and gravitational perturbations of asymptot-
ically flat black hole in the (3 + 1)-dimensional Einstein–
Gauss–Bonnet black hole. We have shown that as to the
change of the coupling constant α, the damping rate is more
sensitive characteristic than the real oscillation frequency. In
addition, we have shown that unless the coupling constant is
small enough, a dynamical eikonal instability occurs in the
vector (axial) and scalar (polar) types of gravitational pertur-
bations. This is similar to the instability observed for the
higher dimensional Einstein–Gauss–Bonnet and Lovelock
theories (see, for example, [33–36] and reference therein).
The branch with negative α allows for stable black holes at
much larger absolute values of the coupling constant than
the branch with positive α. In the regime of large negative
α there appear two concurrent modes with close damping
rates. The radius of the shadow is remarkably well described
by the linear law.

Our paper can be extended in a number of ways. The 4D
Einstein–Lovelock solution obtained as a result of the dimen-
sional regularization [54] could be tested for its spectrum,
stability and shadows in a similar fashion. The quasinormal
modes and stability of an asymptotically de Sitter branch can
be considered in a similar manner. The stability and gravi-
tational quasinormal spectrum must also be studied in the
full theory [31,32] taking into account the corrections to the
dispersion relations owing to additional degrees of freedom
in the UV regime. In the forthcoming paper we will study
the grey-body factors and Hawking radiation of the asymp-
totically flat 4D Einstein–Gauss–Bonnet black holes [86].
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