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Abstract Vector boson fusion proposed initially as an alter-
native channel for finding heavy Higgs has now established
itself as a crucial search scheme to probe different properties
of the Higgs boson or for new physics. We explore the merit
of deep-learning entirely from the low-level calorimeter data
in the search for invisibly decaying Higgs. Such an effort
supersedes decades-old faith in the remarkable event kine-
matics and radiation pattern as a signature to the absence of
any color exchange between incoming partons in the vector
boson fusion mechanism. We investigate among different
neural network architectures, considering both low-level and
high-level input variables as a detailed comparative analysis.
To have a consistent comparison with existing techniques, we
closely follow a recent experimental study of CMS search on
invisible Higgs with 36 fb−1 data. We find that sophisticated
deep-learning techniques have the impressive capability to
improve the bound on invisible branching ratio by a factor of
three, utilizing the same amount of data. Without relying on
any exclusive event reconstruction, this novel technique can
provide the most stringent bounds on the invisible branching
ratio of the SM-like Higgs boson. Such an outcome has the
ability to constraint many different BSM models severely.

1 Introduction

With the emergence of deep learning frameworks, a plethora
of machine learning applications have gained immense
importance in high-energy physics (HEP) recently, in col-
lider and neutrino physics [1–3]. Supported by substan-
tial multilateral developments in this field, efforts are being
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poured in to explore different aspects of HEP phenomenol-
ogy, especially in the context of the Large Hadron Collider
(LHC) [4–9]. In recent years, deep learning applications have
been widely explored to understand hadronic jets’ formation
and properties, the most common structured object found
in any event at LHC, created from QCD fragmentation and
hadronization of fundamental quarks and gluons. More inter-
estingly, boosted heavy particles like Higgs, top or massive
gauge bosons can also produce similar jet objects after the
hadronization of their decay products. Prior to the advent
of deep-learning approaches, the realization that the inter-
nal dynamics of different jet objects are dissimilar received
intense scrutiny [10–15] looking into the underlying struc-
tures as probes for new physics [16–23]. For jet substructure
studies, the primary deep-learning approach is to employ
calorimeter energy deposits of a jet in η − φ pixel tower
converted into the pictorial description of such ‘jet-images’
[24] as input to Convolutional Neural Network (CNN) [25–
27]. Very successful n-prong taggers are developed for Z /W
bosons [28] and the top tagging [29–31] by utilizing this idea,
which is further extended to discriminate between quark and
gluons [27]. Contrary to jet-images, various other approaches
have also been explored for the input space. These include
looking for the optimal basis of substructure variables in N-
body phase space [32], forming the jet-spectra with two-
point correlations at different angular ranges [33,34], and
making an analogy of collider events with natural language
thereby using recursive neural networks for feature extraction
[35]. Deep Neural Networks (DNN) have established their
importance for classification of signal and background using
low/high-level variables [36–45]. Although there are some
studies [46–49] of utilizing the inclusive event information at
hadron colliders as input for deep-learning neural networks,
their full potential are yet to be explored extensively. For the
benefit of the readers, many more such exciting approaches
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Fig. 1 The figure shows a 3D depiction of a prototype signal event
originated from an electroweak VBF Higgs production in a naive detec-
tor geometry in left plot. The same event is flattened in a convenient
η−φ plane in right plot, where the transverse projection of calorimeter
energy deposits in different pixels are drawn. Two reconstructed pri-
mary jets are shown with color circles, and corresponding transverse
energy deposits are visible from height of the bars

in the machine learning framework can be followed in the
recent review [50–52] and references therein.

Taking an analogy from jet-image classification, we use
the full calorimeter image to study the invisible Higgs pro-
duction in association with a pair of jets. Vector-boson fusion
(VBF) production of color singlet particles provide a unique
signature in hadron colliders. First studied in reference [53–
55], they are characterized by the presence of two hard jets in
the forward regions with a large rapidity gap, and a relative
absence of hadronic activity in the central regions, when the
singlet particle decays non-hadronically. For illustration, the
left panel of Fig. 1 shows an event of a Higgs produced in
VBF channel decaying invisibly in a simplistic tower geom-
etry, while the same event is mapped in a flattened (η, φ)

plane by rolling out the φ-axis, with the height of the bars
corresponding to the magnitude of the transverse projec-
tion of calorimeter energy deposits in each pixel. In order
to highlight the differences with non-VBF processes, it is
instructive to show one such example in Fig. 2. This is a
representative event from Z(νν̄) + jets background, where
the jets arise from QCD vertices, which inherently has a
much higher hadronic activity in the central regions between
the two leading jets. Even though the rapidity gap vanishes
when the singlet particle decays hadronically, the absence
of color connection between the two forward jets and the
central region persists and has been used in the experimen-
tal analysis [56], in searches of the Higgs boson decaying
to bottom quarks. The VBF process was proposed as the
most important mechanism for heavy Higgs searches [57]
thanks to a much slower fall in cross-section compared to
the s-channel mediated process. Usefulness for intermediate
to light mass scalar was also subsequently realized [58] due to
its unique signature at the collider. VBF process holds great
importance to measure Higgs coupling with gauge bosons
and fermions as it allows independent observations of Higgs

Fig. 2 Same as Fig. 1, but for a prototype background event originated
from a Z(νν̄) + jets production, where the jets originate from QCD
vertices

decay like h0 → WW [59], h0 → ττ [60]. Therefore, it
also plays a vital role in determining anomalous coupling
to vector boson [61,62] or the CP properties of the Higgs
[63,64]. Its clean features make it the most sensitive channel
for searching invisible decay of the Higgs boson [65] and
in search for physics beyond the standard model [66–68].
As the Higgs can decay invisibly only through a pair of Z
bosons producing neutrinos with minuscule branching ratio
in the Standard Model (SM), observation of any significant
deviation can provide a strong indication towards a theory
beyond the Standard Model (BSM) [69]. Hence, this search
plays a crucial role to constrain many BSM scenarios, like
dark-matter [70–74], massive neutrinos [75,76], supersym-
metric [77,78], and extra-dimensional models [79,80].

Although being one of the most promising channels, the
production of invisible Higgs is challenging to probe as only
a few observables can be constructed over the unique fea-
tures of VBF. Ensuring a color quiet central region by so-
called ‘central jet veto,’ and rather specific choices related
to the jets, the separation in pseudorapidity |Δη j j | and the
dijet invariant mass m j j are the significant ones. A central
jet veto essentially discards events with additional jets in the
region between the two forward tagging jets. Electroweak
VBF production of Higgs can satisfy such criteria naturally
with excellent efficiency. These same criteria can also ensure
the elimination of vast QCD backgrounds up to a large extent,
where jets are produced with a massive W or Z boson decay-
ing (semi)invisibly. Finally, the much weaker electroweak
backgrounds coming in the form of VBF production of W
or Z , become the dominant factor for such study. However,
we must note at the same time that there is a significant drop
in signal contribution from other dominant non-VBF Higgs
production modes, such as higher-order in αs correction to
gluon fusion initiated processes for Higgs productions [81].

A natural order of inquiry, therefore, calls for the investi-
gation of whether deep machine learning vision in the form
of CNN, together with other neural networks, can have the
ability to recognize the characteristics of VBF by learning
from the data itself. Networks would map the probability dis-
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tribution functions to characterize each process by utilizing
low-level or high-level variables. Moreover, we would like to
understand how useful these learned features are or how they
correlate with our traditional characteristics of VBF. Finally,
there can be enough scope to engage this very sophisticated
tool to get some hybrid output in terms of maximizing the
efficiency in selecting signal events, rather than classifying
in separate clusters as VBF and non-VBF types.

While the present study can easily be extended for other
decay modes of Higgs, we choose the invisible channel for
our study to showcase the importance of deep learning quanti-
tatively using different neural network architectures. We pro-
pose to study the full event topology of VBF by examining the
calorimeter tower-image using CNN, which utilizes the low-
level variables. We also consider the performance of event
classification using dense Artificial Neural Networks (ANN),
which employ high-level variables. In total, we investigate
seven different neural network architectures and provide a
comparative study of the performance of networks. The per-
formance of networks is quantified in terms of expected con-
straints on the invisible branching ratio (BR (h0 → inv)) of
the Higgs boson.

The latest report from ATLAS collaboration [82] puts an
upper limit on BR(h0 →inv) at 95% confidence level (CL)
to 0.13, from an integrated luminosity of 139 fb−1 at the
LHC. The CMS analysis also puts an upper limit at 95%
CL to 0.19 for combined data set of 7, 8 and 13 TeV for 4.9
fb−1, 19.7 fb−1 and 38.2 fb−1 integrated luminosities respec-
tively [83]. These bounds still allow the significant presence
of BSM physics. Our principal aim, therefore, is to study the
viability of CNNs to improve these results using low-level
variables in the form of the entire calorimeter image, as well
as to compare its performance to DNN/ANN architecture
with high-level variables as input. We find that the bounds
on the BR(h0 →inv) can indeed be significantly improved
using these networks.

The rest of this paper is organized as follows. In Sect. 2,
we discuss the Higgs production mechanism via the VBF
channel and different SM backgrounds contributing to this
process. We also discuss the generation of simulated data
consistent with the VBF search strategy. In Sect. 3, we
describe the details of the data representation used in the
present study. Here, different classes of high-level variables
are also defined. Preprocessing methods of feature spaces
are addressed in Sect. 4. We discuss the seven different neu-
ral network architecture and its performance in Sect. 5. The
results, interpreted in terms of expected bounds on the invis-
ible branching ratio, for all the architectures are presented in
Sect. 6. There, we also discuss the impact of pileup on the
result of our analysis. Finally, we close our discussion with
the summary and conclusion in the last section.

Fig. 3 Representative diagrams for production of Higgs signal through
(left) electroweak VBF channel and (right) a higher-order QCD process
in gluon fusion where two QCD jets can be detected along with a sizable
missing transverse-energy from invisible Higgs decay

2 Vector boson fusion production of Higgs and analysis
set-up

VBF production of the SM Higgs has the second-highest pro-
duction cross-section after gluon-fusion at the LHC. Loop
induced Higgs production and decay depend on the presence
of contributing particles and different modifiers in fermions
and gauge boson coupling with the scalar. Hence, both pro-
duction cross-section and decay branching ratios are mod-
ified in the presence of new physics. In this present work,
we consider the production of SM like Higgs boson and con-
strain its invisible decay width. Such constraint is essential in
many new physics scenarios, such as Higgs portal dark matter
[70–74], where new particles do not modify their couplings
with SM particles.

The electroweak production of Higgs is dominated by
the fusion of two massive vector bosons, which are radi-
ated off two initial (anti-)quarks, as represented in Fig. 3
(left plot). This exchange of color singlet state between
two quarks ensures no color connection between two final
jets, typically produced in a forward (backward) region
of the opposite hemisphere. The central region – between
these two jets remain color quiet, lacking any jet activity
even after radiation and fragmentation of the two scattered
quarks while looking at the hadronic final states. As we have
already discussed, an agnostic viewpoint requires a serious
re-examination after the inclusion of all other processes, such
as non-VBF Higgs signal from gluon fusion. One such sam-
ple diagram is shown in Fig. 3 (right plot). Additional radi-
ation from gluons can provide a typical VBF type signal,
once again, in the absence of the key attributes like color-
quiet central region, etc.

Another interesting feature of VBF Higgs production is
that the corresponding cross-section has very modest correc-
tion under higher-order QCD, which has been known for a
long time [84,85]. Integrated and differential cross sections
for VBF Higgs production have now been calculated up to
very high levels of accuracy. QCD corrections are known
up to N3LO [86], reducing the scale-uncertainty up to 2%,
while Electroweak corrections are known up to NLO [87].
Moreover, non-factorizable contributions have also been cal-
culated for the first time [88], and show up to percent level
corrections compared to the leading order (LO) distributions.
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At hadron colliders, traditional searches [89–92] of non-
hadronically decaying color-singlet particles in the VBF pro-
duction channel focus on rejecting the large QCD back-
grounds from Z + jets, and W + jets background via a
central jet-veto, after a hard cut on the separation of the two
forward jets in pseudorapidity |Δη j j |, and the dijet invariant
mass m j j . This opens up the possibility of using inclusive
event-shape variables like N-jettiness [93], to improve the
selection efficiency [94]. In this study, we explore the fea-
sibility of using deep-learning techniques instead of event-
shape variables. We study the invisible decay of the Higgs
boson as a prototype channel for gauging the power of deep-
learning methods in VBF since there is no contamination on
the radiation patterns between the two forward jets from the
decay products. We closely follow the shape-based analy-
sis performed by the CMS experiment at CERN-LHC [83].1

As already commented, the central jet veto played a critical
role in the usual searches of VBF to control the vast QCD
background. The role of additional information from QCD
radiation between the tagging jets and within the jet itself was
explored in references [96,97]. It was found that relaxation
of the minimum pT requirement of the central jet improved
the sensitivity, and the inclusion of subjet level information
resulted in further suppression of backgrounds. However, the
present analysis does not rely on a central jet veto, as the
main aim is to study the VBF topology with the low-level
data, made possible with modern deep-learning algorithms.
Therefore, with the relaxed selection requirements on |Δη j j |
and m j j , the selected signal gets a significant contribution
from the gluon-fusion production of Higgs on top of VBF
processes. Due to the relaxed selection criteria, we also get
a substantial contribution from QCD backgrounds.

2.1 Signal topology

The present study relies on all dominant contributions to
Higgs coming both from electroweak VBF processes and also
higher-order in QCD gluon fusion processes. Here at least
two jets should be reconstructed along with sizable missing
transverse-energy from invisible decay of Higgs. Hence, we
classify the full signal contribution in two channels:

– SQCD: Gluon-fusion production of Higgs with two hard
jets, where the Higgs decays invisibly.

– SEW : Vector-Boson fusion production of Higgs decaying
invisibly.

The subscript EW (QCD) denotes the absence (presence) of
strong coupling αS , at leading order(LO) for the interested
topology. This also segregates the channels with absence or

1 For ATLAS analysis with similar data, see Ref. [95].

Fig. 4 Representative diagrams for dominant background processes
through (left) VBF type weak production and (right) QCD production
of massive vector-bosons V , such as W or Z which decay invisibly by
producing undetected lepton or neutrinos

presence of color exchange between the two incoming par-
tons at LO. Figure 3 shows a representative Feynman diagram
of the signal channels in each class.

2.2 Backgrounds

The major backgrounds contributing to the invisible Higgs
VBF signature can come from the different standard model
processes. Among them, VBF type electroweak, and QCD
production of massive vector-bosons (W or Z ) contribute
copiously. All these processes ensure a pair of reconstructed
jets along with considerable missing transverse energy from
invisible decay of these gauge bosons. A substantial frac-
tion of W and Z can produce neutrinos or a lepton which
remain undetected at the detector. We consider the following
backgrounds in all our analyses:

– ZQCD : Z(νν̄) + jets process contributes as the major
SM background due to high cross section.

– WQCD : W±(l±ν) + jets process also contribute to the
SM background when the lepton is not identified.

– ZEW : Electroweak production of Z decaying invisibly
along with two hard jets is topologically identical with
the electroweak signal and contributes significantly to the
background.

– WEW : Electroweak production of W± with two hard jets
can also produce an identical signal when the lepton does
not satisfy the identification criteria.

Similar to the signal processes, the subscript EW (QCD)

denotes the absence (presence) of strong coupling αS , at LO
for the interested topology having at least two reconstructed
jets in the final state. Figure 4 shows representative Feyn-
man diagrams of the background channels divided into four
different classes.

There are also other background processes like top-quark
production, diboson processes, and QCD multijet back-
grounds whose contribution would be highly suppressed
compared to these four backgrounds. The top and diboson
backgrounds would contribute to leptonic decay channels
where charged leptons, if present, are not identified, while
the QCD multijet background would contribute when there
is severe mismeasurement of the jet energies.
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2.3 Simulation details

We used MadGraph5_aMC@NLO(v2.6.5) [98] to generate
parton-level events for all processes at 13 TeV LHC. These
events are then showered and hadronized with Pythia(v8.243)
[99]. Delphes (v3.4.1) [100] is used for fast-detector simula-
tion of the CMS working conditions. Jets are clustered using
the FastJet(v3.2.1) [101] package. The signal processes are
generated using a modified version of the Higgs Effective
Field Theory (HEFT) model [102–104], where the Higgs
boson can decay to a pair of scalar dark matter particle
at tree level. We are interested in probing high transverse
momentum of Higgs, where the finite mass of top quark in
gluon fusion becomes essential. Hence, we have taken into
account such effect by reweighting the missing transverse
energy (met) distribution of the events with recommenda-
tions from reference [105]. The parton level cross-sections of
ZQCD and WQCD were also matched up to four and two jets,
respectively, via the MLM procedure [106]. Since the W±
backgrounds contribute when the leptons are missed within
the range of tracker or when they are not reconstructed at the
detector, the parton level cuts on the generated leptons are
removed to cover the whole range in pseudorapidity (η).

For a consistent comparison with current experimental
results, we repeat the shape-analysis of reference [83] with
our simulated dataset. The met cut for the deep-learning
study is relaxed from 250 to 200 GeV.
Baseline selection criteria: We apply the following pre-
selections:

– Jet pT : At least two jets with leading (sub-leading) jet
having minimum transverse momentum pT > 80 (40)

GeV.
– Lepton-veto: We veto events with the reconstructed

electron (muon) with minimum transverse momentum
pT > 10 GeV in the central region, i.e. |η| < 2.5 (2.4).
This rejects leptonic decay of single W±, and semi-
leptonic t t̄ backgrounds.

– Photon-veto: Events having any photon with pT > 15
GeV in the central region, |η| < 2.5 are discarded.

– τ and b-veto: No tau-tagged jets in |η| < 2.3 with pT >

18 GeV, and no b-tagged jets in |η| < 2.5 with pT > 20
GeV are allowed. This rejects leptonic decay of single
W±, semi-leptonic t t̄ and single top backgrounds.

– MET: Total missing transverse momentum for the event
must satisfy met > 200 GeV for all our deep-learning
study, whereas we compared CMS shape-analysis con-
sistent with met > 250 GEV.

– Alignment of MET with respect to jet directions:
Azimuthal angle separation between the reconstructed
jet with the missing transverse momentum to satisfy
min(Δφ(pmetT ,p j

T )) > 0.5 for up to four leading jets with
pT > 30 GeV and |η| < 4.7. QCD multi-jet background

that arises due to severe mismeasurement is reduced sig-
nificantly via this requirement.

– Jet rapidity: We require both jets to have produced with
|η j | < 4.7, and at least one of the jets to have |η ji | < 3,
since the L1 triggers at CMS do not use the information
from the forward regions.

– Jets in opposite hemisphere: Those events which have
the two leading jets reside in the opposite hemisphere in
η are selected. This is done by imposing the condition
η j1 × η j2 < 0.

– Azimuthal angle separation between jets: Events with
|Δφ j j | < 1.5 are selected. This helps in reducing all
non-VBF backgrounds.

– Jet rapidity gap: Events having minimum rapidity gap
between two leading jets |Δη j j | > 1 are selected.

– Di-jet invariant mass: We required a minimum invari-
ant mass of two leading jets, m j j > 200 GeV. Note that,
this along with the previous selection requirements are
relatively loose compared to traditional selection criteria
of VBF topologies, which result in significant enhance-
ment of the signal from SQCD , although at the cost of
increased QCD backgrounds (ZQCD and WQCD).

Interestingly, one can notice that a relaxed selection require-
ment may give rise to additional contamination from Higgs-
strahlung type topologies to the SEW channel, which is
included in our EW generation of events. However, these
events are not expected to survive a selection of di-jet invari-
ant masses of more than 200 GeV. After extracting the events
passing the above selection requirements and the respec-
tive selection efficiency (calculated from the weights) for
SQCD , the pre-selected events are unweighted again so that
we get equal weights for individual events.2 The background
and signal classes are formed by mixing the channels with
the expected proportions using appropriate k-factors, cross-
sections, and the baseline selection efficiencies. We use cross-
sections quoted in reference [105] for both signal processes.
For instance, the SQCD is calculated up to NNLL +NNLO
accuracy [107], while for SEW it is calculated up to NNLO
[108] in QCD and NLO in electroweak. We use the LO distri-
butions with their overall normalizations increased to accom-
modate the total cross-section at higher perturbative accura-
cies without accounting for the possible change in shape.
Similarly, all background cross sections are calculated by
scaling the LO result with global NLO k-factors [109,110].
We generated 200,000 training and 50,000 validation bal-
anced dataset of events for the deep-learning classifier. The
signal class consists of 44.8% SEW and the 55.2% SQCD

channels; while the background class consists of 51.221%

2 See Appendix A, for distribution of the important kinematic-variables
and details of the re-weighting and unweighting of events.
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Fig. 5 Distribution of (left)m j j and (right) Δη j j of events passed after
the passing the tighter selection requirement (met > 250 GeV). The
contribution of each channel to its parent class has been weighted by

their cross-sections and the baseline efficiency at 13 TeV. The signal
and backgrounds are then individually normalized, and the lines/color
show the contribution of each channel to its parent class

ZQCD , 44.896% WQCD , 2.295% ZEW and 1.587% WEW

channels.
We also extract event sample for all channels with the

harder selection requirement on missing transverse momen-
tum (met > 250 GeV), the value used in reference [83], from
the same set of generated events used for the deep-learning
analysis. The extracted dataset contains: 39% SEW and the
61% SQCD channels for the signal class; and 54.43% ZQCD ,
40.92% WQCD , 3.05% ZEW and 1.58% WEW channels for
the background class. The bin-wise stacked histogram of all
channels for m j j and |Δη j j | are shown in Fig. 5. The proper-
ties of the EW and the QCD subsets are evident from these
distributions: EW contribute more at higher m j j and |Δη j j |,
while the opposite is true for QCD.

3 Data representation for the network

Neural network architectures for deep-learning are mostly
designed with two blocks. The first stage generally consists
of locally-connected layers (with or without weight shar-
ing) with some particular domain level specifications which
extract the features. The second stage consists typically of
densely connected layers, whose function is to find a direc-
tion in the learned feature-space, which optimally satisfies the
particular target of the network locally by learning its pro-
jections in different representations at each subsequent layer.
For instance, in classification problems, it finds the decision
boundary between different classes. At the same time, in
an unsupervised clustering, it compresses the feature-space
so that the modes become localized in a smaller volume.
A synergy between the representation of data and the net-
work architecture is a must for efficient feature extraction.
This is evident from the fact that convolutional neural net-
works perform best with data structures that have an underly-

ing Euclidean structure, while recurrent networks work best
with sequential data structures. In the context of classifying
boosted heavy particles like W , Higgs, top quark or heavy
scalars decaying to large-radius jets from QCD background,
a lot of efforts [24,25,27–29,111] went into representing the
data like an image in the (η, φ) plane to use convolutional
layers for feature extraction, while some others [112,113],
use physics-motivated architectures. Convolutional architec-
tures work in these cases because the differences between the
signal jet and the background (QCD) follows a Euclidean
structure.3 The Minkowski structure of space-time prohibits
a direct use of convolutional architectures. Although geo-
metric approaches [114] exist to counter the non-Euclidean
nature, the number of dimensions makes it computationally
expensive. Graph neural networks [115–118] provide a pos-
sible workaround which is computationally less intensive,
for feature learning in non-Euclidean domains.

In the present work, we want to study the difference in
radiation patterns between the two forward jets for signal
and background events; hence, we primarily choose a convo-
lutional architecture for automatic feature extraction. There-
fore, the low-level feature space we prefer is the tower-image,
in the (η, φ)-plane, with the transverse energy ET , as the
pixel values. One can take into account the different res-
olutions in the central and forward regions of calorimeter
towers in LHC detectors. For simplicity, and also to demon-
strate the resolution dependence, we construct two images -
a high-resolution image with bin size 0.08×0.08, and a low-
resolution image with bin size 0.17 × 0.17, in the full range
of the tower, [−5, 5] for η and while [−π, π) for φ. Convolu-
tional neural-networks, in general, look at global differences,
and increasing the resolution does not play as important a

3 Most high-level variables designed from QCD knowledge are func-
tions of ΔR = √

Δη2 + Δφ2.
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Fig. 6 Similar to Fig. 5, some of the basic input high-level kinematic variables used for our analysis (met > 200 GeV) are shown for signal and
background

role. We examine CNNs in these two different resolutions to
inspect this for our particular case. The procedure of forming
a tower-image does not naturally take the periodicity of the
φ axis into account. In order to let the network know this
inherently, we expand the image obtained after binning, in
the φ axis such that the connectivity between the two edges is
not broken. This is done by taking a predetermined number
of φ-rows from each edge of the original image and forming
a new image where these rows are padded [46,49] in their
corresponding opposite sides, thereby mimicking the period-
icity. This is similar to cutting the cylinder at two different
points in φ for each edge, such that there is an overlapping
region in the final image. Taking the jet radius R = 0.5,
which have a regular geometry since they are clustered with
anti-kt algorithm [119], we choose the number of rows to be
4 (8) for the low (high)-resolution images, with one bin as
a buffer. This gives a low-resolution (LR) image of 59 × 45
and a high-resolution (HR) one of 125 × 95.

A significant difference between low-level and high-level
feature spaces is that the modes of the data in low-level
representations are not distinct. Although this is marginally
enhanced by preprocessing, high-level features derived from
the said low-level features have distinctly localized modes
in their distribution. An exemplary ability of deep-learning

algorithms is to by-pass this step and learn their own rep-
resentations which perform better than the high-level vari-
ables developed by domain-specific methods. To analyze the
relative performance of physics-motivated variables derived
from the calorimeter deposits, we consider two classes of
high-level variables. The first one consists of the following
kinematic variables:

K ≡ ( |Δη j j |, |Δφ j j | , m j j , met , φmet , Δφ
j1
met ,

Δφ
j2
met , Δφ

j1+ j2
met ) (1)

φmet is the azimuthal direction of met in the lab-frame.
Δφ

j1
met, Δφ

j2
met and Δφ

j1+ j2
met are the azimuthal separation

of met with the direction of the leading, sub-leading and
the vector sum of these two jets, respectively. Clearly, these
do not contain any information about the radiation pattern
between the tagging jets. The second class of variables: the
sum of ET of the tower constituents in the interval [−ηC , ηC ],
incorporates this information:

R ≡ (HηC
T |ηC ∈ E) , HηC

T =
∑

η<|ηC |
ET . (2)
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Fig. 7 The separation of the 7 highest performing variables (given in
percentage)

E denotes the set of chosen ηC ’s. We vary ηC uniformly in
the interval [1,5]:

E = {1, 1.27, 1.53, 1.8, 2.07, 2.33, 2.6, 2.87, 3.13,

3.4, 3.67, 3.93, 4.2, 4.47, 4.73, 5}, (3)

to get 16 such variables. Their inclusion helps us to provide a
thorough comparison of the high-level and low-level feature
spaces. Figure 6 shows the signal vs background distribu-
tion of some important kinematic-variables. The channel-
wise contributions to the parent class are also stacked with
different colors/lines. We see that the characteristics of the
m j j and |Δη j j | are the same with Fig. 5, with the electroweak
processes contributing more at higher values. A feature seen
for |Δφ j j | is the shape of the signal and background distribu-
tions. Clearly, the difference is due to the SEW contribution
since SQCD has a very similar shape as that of the back-
ground. This is another characteristic of VBF processes that
the leading jets, originating from electroweak vertices, have
lower separation in φ compared to those originating from
QCD. Similar plots for the remaining four kinematic vari-
ables and the R set of variables are shown in Figs. 19 and 17
in Appendix B. A brief discussion of the two feature spaces
(mainly R) is also presented. We denote the combined high-
level feature-space as H, which is 24-dimensional.

In order to gauge the discriminating power of each feature
x , we determine the separation [120] defined as,

〈S2〉 = 1

2

∫
(pS(x) − pB(x))2

pS(x) + pB(x)
dx . (4)

pS(x) and pB(x) denote the normalized probability distribu-
tion of the signal and background classes. It gives a classifier-
independent discrimination power of the feature x . A value of
zero (one) denotes identical (non-overlapping) distributions.
We plot the separation (in percentage) of the seven highest
important variables out of the 24 features in Fig. 7. It is inter-
esting to note that out of these, there are five variables from

R, even though the first and the second are from K, and they
are much greater in magnitude.

4 Preprocessing of feature space

Preprocessing of features is indispensable for shallow machine
learning as it helps maximize the statistical output from
smaller data sizes. In deep-learning applications, it helps in
faster convergence of the training and in approaching optimal
accuracy with a lesser amount of data using simpler architec-
tures. Even though the primary aim of our model is to learn
the differing QCD radiation patterns, we can only devise pre-
processing operations that preserve the Lorentz symmetries
of the event. The spatial orientation of the events, in general,
can be regularized by the following procedure:

1. Identify principal directions: Choose three final-state
directions {n̂1, n̂2, n̂3}. These can be any three final state
objects, which are the interest of our studies like pho-
tons, leptons, and jets, or they can be chosen to be generic
directions in the lab frame.

2. First Rotation: Rotate the event such that:

n̂1 → n̂′
1 = (0, 0, 1) ≡ n̂a , n̂2 → n̂′

2 , n̂3 → n̂′
3 .

After this operation, the orientation of n̂1 is the same for
all events.

3. Second Rotation: Rotate the event along n̂a such that:

n̂′
2 → n̂′′

2 = (0, nby, n
b
z ) ≡ n̂b , n̂′

3 → n̂′′
3 .

The plane formed by n̂1 and n̂2 has the same orientation
for all events after this operation.

4. Reflection: Reflect along yz-plane such that:

n′′
3 → (|ncx |, ncy, ncz) ≡ n̂c .

The half-space containing n̂3 becomes the same for all
events after this step.

These are passive operations which affect the orientation
of the reference frame without changing the physics. For most
event topologies, we can see that there will be better feature
regularisation when n̂2 and n̂3 are equal. In hadron colliders,
due to the unknown partonic center-of-mass energy

√
ŝ, we

set the z-axis as n̂1, preserving the transverse momentum of
all final state particles. We choose two different instances
of n̂2 ∈ {n̂met, n̂ j1}. For our choice of n̂1, the z-direction
of n̂2 does not matter and we can take its value for n̂met to
be zero. However, the z-direction becomes important for the
third operation and we choose n̂3 = n̂ j1 . This translates to
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Fig. 8 Scatter plot of tower constituents of an event in the (η, φ)-plane
showing: (a) the raw event; and the effects of (b) rotation (φ j1 = 0), and
(c) reflection (η j1 > 0) operations. The pseudorapidity of met has been

set to zero for illustration. It is important to note that the points here are
not binned into pixels and the values are the ones extracted from the
Delphes Tower constituents

applying the following operations to the four-momenta of
each events:

1. Rotate along z-axis such that φ0 = 0. We choose two
instances of φ0 ∈ {φmet, φ j1}.

2. Reflect along the xy-plane, such that the leading jet’s η is
always positive.

After these two steps, the tower-constituents are binned in
the resolutions as mentioned earlier and then padded on the
φ-axis. We denote the feature-spaces obtained after prepro-
cessing with the two instances of φ0 asPmet andPJ . Figure 8
shows the different steps of preprocessing steps for an event
taking φ0 = φ j1 . Averaged low-resolution image of the val-
idation dataset of each class without preprocessing, and for
both instances of φ0 are shown in Fig. 9. As emphasized
earlier, it is seen that there is a better regularization when
n̂2 = n̂3 (φ j1 = 0, η j1 > 0). Clearly, the dominant features
are the jets, and while for PJ , these lie in the center; for
Pmet they lie at the φ-boundary. Thus, the effect of padding
is much more pronounced in Pmet. In analogy, it becomes
crucial when the Higgs boson decays in a hadronic channel
(say h0 → bb̄ or even h0 → τ+τ−), where we would desire
the jets arising from Higgs – be it normal or large-radius,
to be at the center of the image. Combining the instances of
preprocessing and resolutions, there are four low-level fea-
ture spaces, namely: PLR

met, PHR
met , PLR

J and PHR
J . The super-

scripts LR and HR denote the low and high-resolutions.
We notice that all the high-level variables except φmet, are
invariant under the two preprocessing operations, although,
for our purpose, we extract them prior to their application.

This follows from the usual physical intuition that absolute
positions in the lab-frame are of no particular importance,
and the useful information comes from the relative position
of the different final-states.

We regularize the high-level features by mapping the dis-
tribution of each variable to their z-scores. Calculating the
mean x̄ j , and the standard deviation σ j for each feature of
the whole dataset (training and validation data of both classes
together), we perform the following operation on each vari-
able of all events,

z ji = x j
i − x̄ j

σ j
. (5)

The superscript j denotes the feature index, and the subscript
i denotes the per-event index. It is particularly useful since
the features have very different ranges (for instance, m j j and
|Δη j j |), and the operation minimizes this disparity. Further-
more, the features of z j are now dimensionless. A caveat
here is that the values of mean and standard deviations used
are calculated from a balanced dataset. In experimental data,
the presence of both classes, if at all, there is a positive sig-
nal, is never balanced. We justify our choice by their class
independence, by virtue of which the relative differences in
the shape of the signal and background distributions are con-
served, and the same set of values can be used when applying
to unknown data with no labels.
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Fig. 9 Average of 25,000 low-resolution tower-images of (left) unpro-
cessed, (center) processed image with φmet = 0 and (right) φJ = 0 for
(top panel) signal and (bottom panel) background classes. The images
are binned in the full range of the tower: η ∈ [−5, 5] and φ ∈ [−π, π).
We can see that as we go from left to right, there is a discernible improve-

ment in regularization of the features. There are no distinctly localized
hard regions for the unprocessed case, while there are some for the
φmet = 0 instance, which becomes harder for φ j1 = 0 case with the
hardest region around the leading jet

5 Neural network architecture and performance

In the previous sections, we have defined seven feature
spaces, which are broadly grouped into high-level classes
comprising of K (kinematic), R (QCD-radiative) and H
(a combination of the two previous spaces); while low-
level spaces are: PLR

met, PHR
met , PLR

J and PHR
J . With these

as inputs, we train neural-networks for classification. The
generic architecture chosen for the high-level feature spaces
are dense Artificial Neural Networks (ANNs) while for
low-level ones are Convolutional Neural Networks. Hence,
we name the 7 networks as: K-ANN, R-ANN, H-ANN,
PLR
met-CNN,PHR

met -CNN,PLR
J -CNN andPHR

J -CNN. All net-
works were executed in Keras(v2.2.4) [121] with Tensor-
Flow(v1.14.1) [122] backend.

5.1 Choice of hyperparameters

The CNN is composed of three modules with each module
formed by two convolutional layers followed by an average-
pooling layer. Each convolutional layer consists of sixty-four
filters with a size 4 × 4, with a single stride in each dimen-
sion. We pad all inputs to maintain the size of the outputs
after each convolution. The pool-size is set to be 2 × 2 for
all three modules with 2 × 2 stride size. The third module’s

output is flattened and fed into a dense network of three lay-
ers having three hundred nodes each, which we pass into the
final layer with the two nodes and softmax activation. The
convolutional layers and the dense layers before the final
layer have ReLu activations. In total, the CNNs for the high-
resolution (low-resolution) images have approximately 3.7
(1.2) million trainable parameters. The information bottle-
neck principle [123] inspires the ANN architectures. It has
close connections to coarse-graining of the renormalization-
group evolution and was, in fact, priorly pointed out in refer-
ence [124]. We choose the number of nodes in the first layer
to be equal to the number of input-nodes, which is then suc-
cessively reduced after two layers of the same dimension.4

These reductions in successive nodes are chosen to be five
for theR-ANN andH-ANN, while forK-ANN, we consider
four due to the low-dimensionality of the input. We stop this
process when there is no further reduction possible, or after
four such reductions. We checked two activation functions:
sigmoid and ReLu for the ANNs. We found that sigmoid
activation gave the best validation accuracy for R-ANN and
H-ANN, while it decreased over ReLu activations for K-
ANN. In total, the K-ANN, R-ANN, and the H-ANN have
210, 991, and 2790 trainable parameters, respectively. Since

4 This provides stability of the representations learned at each dimen-
sion.
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Fig. 10 Simplified architecture of (left) CNNs and (right) ANNs

this is a first exploratory study, we do not optimize the hyper-
parameters and use the values specified here for extracting
the results. Simplified architecture flowcharts for each of the
different networks are given in Fig. 10.

We chose categorical-cross entropy as the loss function.
The cross-entropy between two probability distributions y0

and yt is defined as,

L = −
∑

x∈X
yt (x) ln(y0(x)) , (6)

where the distributions are functions of the feature-vector x.
It is a measure of how well a modeled distribution y0, corre-
sponding to the network-output, resembles the true distribu-
tion of yt , the true values provided during training. For a fixed
true-distribution yt , minimizing the cross-entropy essentially
minimizes the KL-divergence [125],

DKL(yt ||y0) =
∑

x∈X
yt (x) ln(yt (x))

−
∑

x∈X
yt (x) ln(y0(x)), (7)

which is a measure of the similarity between two distribu-
tions, and becomes zero iff they are identical. We used Nadam
[126] optimizer with a learning rate of 0.001 to minimize the
loss function for all neural-networks. The optimizer’s adap-
tive nature: smaller updates for frequently occurring fea-
tures while larger updates for rare features, helps in better
convergence for the sparse image-data that we have, with
the added benefits of Nesterov accelerated gradient descent
[127]. Moreover, the learning-rate is no longer a hyperpa-
rameter. For the CNNs, training does not require more than
ten epochs to reach optimal validation accuracy. Neverthe-
less, we train them five times from random initialization for
twenty epochs. The ANNs are trained for more epochs since
the relatively fewer parameters make the convergence slower.
For the ANNs, ReLu activation networks are trained for two
hundred epochs. In comparison, sigmoid activation networks
are trained for one thousand epochs due to their relative dif-
ference in convergence compounded with fewer parameters.
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Fig. 11 Binned distribution of the network output for aPHR
J -CNN (top-left), bPLR

J -CNN (top-right), cPHR
met -CNN (bottom-left) and dPLR

met-CNN
(bottom-right)

A batch-size of three hundred was chosen for training all net-
works. Each model, including all of its parameters, is stored
after every epoch in the Keras-provided “hdf5” format dur-
ing training. Out of these, we use the best performing model
with the highest validation accuracy for further analysis.

5.2 Network outputs

We extract the network output y0, which is the probability
of the event being a signal, from the best performing model
from each network class. The class-wise binned distribution
of y0, for training and validation datasets of the low-level
and high-level feature spaces, are shown in Figs. 11 and 12,
respectively. These also show the channel wise contribution
to their parent class. The choice of binning is set to the same
ones used in extracting the bounds on the invisible branching
ratio of the Higgs in Sect. 6. It has been set such that the min-
imum number of entries of each class for the validation data
in the edge bins have enough numbers to reduce the statistical
fluctuations to less than 15%. Contributions of the SEW and
SQCD components to the signal class follow a definite pat-

tern. As expected, all networks find it difficult to distinguish
the SQCD signal from the QCD dominated background.
Hence, SQCD contributes more in the bins closer to zero,
which is governed by the background class. SEW shows the
opposite behavior dominating near one. This same feature,
although a little inconspicuous, is present for the background
class’s EW subset as well. It may be pointed out that even
for traditional analysis methods, there is significant contam-
ination from SQCD . A relevant machine-learning paradigm
[36] where mixed samples are used in place of pure ones,
could have an interesting application in reducing this SQCD

contamination of the signal for precision studies. Another
notable feature prominent in the CNN outputs is the relative
contribution of the ZQCD and WQCD channels to the back-
ground in the first bin, which is dominated by WQCD . This
can be apprehended from the fact that some of the leptons
from W± decay, although not reconstructed, can still make
calorimeter deposits on top of the QCD radiation to make
itself visible to CNNs.

Receiver operating characteristic (ROC) curves between
the signal acceptance εS , and the background rejection 1/εB ;
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Fig. 12 Binned distribution of the network output for (left) K-ANN, (center) H-ANN, and (right) R-ANN

and also the area under the curve (AUC) for all networks are
shown in Fig. 13. The AUCs were calculated using y0 and the
true class labels yt with the scikit-learn(v0.22) [128] package.
It is interesting to see that the so-called QCD-radiative vari-
ables (R) perform almost as good as the kinematic-variables
(K) with only less than a percent difference in the valida-
tion AUCs. It can be understood by recalling that the radia-
tive variables’ definition includes the radiation pattern of the
event, including the radiation inside the jet in cumulative η

bins. This, in principle, has similar information to |Δη j j |,
which is one of the kinematic-variables with high separa-
tion. We confirm this by observing the correlations (shown in
Fig. 14) between the variables HηC=2.07

T and HηC=1.8
T with

|Δη j j | and m j j . They are relatively more correlated with
|Δη j j | than with m j j . The AUC for our combined variable
H-ANN shows that the R variables may contain some extra
information on top of what is extracted from the kinematic
variables. As emphasized earlier, we get less than 0.1 per-
cent difference in the validation AUCs of the low and high-
resolution networks. The difference in AUC between PJ and
Pmet, although small, is still significant. It can be understood
by looking at Fig. 9: there is better feature regularization in
PJ due to the choice of φ0 than in Pmet. CNNs, in gen-
eral, are supposed to be robust to these kinds of differences
owing to their properties of translational invariance [114]. In
our case, the presence of fully-connected layers and the rela-
tively small training sample hamper the generalization power
of the CNNs. Application of global-pooling instead of using
fully-connected layers and an increase in data size coupled
with proper hyper-parameter optimization should reduce this
difference in AUCs. These can be explored in future studies.

The class-wise linear correlation matrix between the
network-outputs, along with the four high-level variables
possessing the highest separations, are shown in Fig. 14.
As expected, the outputs within the respective subset of net-
works are highly correlated. The outputs of the ANNs and the
CNNs are also correlated significantly. A closer look reflects
the addition of information in the high-level feature spaces:
the correlations increase as we go from R/K-ANN to H-
ANN. In fact, if we extrapolate this argument in conjunction
with the relative increase in AUC, we find that the CNNs

have extracted the most information from the low-level data,
which is not present in any of the high-level variables. A
detailed description of the correlation of high-level variables
and the ANN outputs are given in Appendix C.

6 Bounds on Higgs invisible branching ratio

In order to quantify our network performance in terms of
expected improvements in the invisible Higgs search results
at LHC, we obtain expected upper limits on the Higgs to
invisible BRs from the distribution of the network output. We
use CLs method [129,130] in the asymptotic approximation
[131], to calculate the upper limit on the invisible BR at
95% CL. The method is briefly discussed as follows. In a
binned Poisson counting experiment of expected signal si and
background bi (which are functions of nuisance parameters
jointly denoted by θ) in a bin with observed number ni of
some observable, we can write the likelihood function as:

L(μ, θ) =
Nb∏

i=1

(μ si (θ) + bi (θ))ni

ni ! e−(μ si (θ)+bi (θ)) , (8)

where Nb is the total number of bins. Nb and the bin-edges for
the different variables are chosen as shown in their respec-
tive distribution plots (Figs. 5, 6, 11 and 12). The profile-
likelihood ratio:

λ(μ) = L(μ,
ˆ̂
θ)

L(μ̂, θ̂)
, (9)

where the arguments of the denominator maximizes L, and
ˆ̂
θ conditionally maximizes L for the particular μ, is used as
a test-statistic in the form of log-likelihood,

tμ = −2 ln(λ(μ)) . (10)

The distribution of the test statistic for different values of μ,
is required to extract frequentist confidence intervals/limits.
Since, we have fixed the total weight of the signal events with
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Fig. 13 The validation (top panel) ROC-curves and (bottom panel)
training/validation AUC for (left) low-level and (right) high-level fea-
ture spaces. In order to compare the feature spaces, the highest perform-

ing CNN is added to the plots on the right. The x-axis of the ROC-curve
is the signal acceptance εS , while the y-axis is the inverse of background
acceptance εB

Fig. 14 Pearson’s correlation coefficients amongst the first four high-level variables with highest separation and the network-outputs for (left)
signal and (right) background. These have been calculated using the validation dataset
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respect to the background to correspond to the ones expected
with the total expected production cross-section from SM for
each channel(SEW and SQCD), μ corresponds to the invisi-
ble branching ratio of the Higgs. In the asymptotic method,
for one parameter of interest, approximate analytical expres-
sions for the distribution are derived using a result from Wald
[132], in the form of a non-central Chi-square distribution.
Monte-Carlo simulations required to extract the unknown
parameters are by-passed by choosing the best representa-
tive data called the Asimov data, by the authors of reference
[131]; which is defined as the data when used to estimate the
parameters, produces their true values.

We used HistFactory [133] to create the statistical model,
and the RooStats [134] package to obtain the expected lim-
its. This provides us with greater ease of handling system-
atic uncertainties. As stated before, we also redo the shape-
based analysis of reference [83] with our dataset only con-
sidering a few simpler systematics, to consistently gauge
the increased sensitivity of the deep-learning approach. We
incorporate three overall-systematics: uncertainty of the total
cross-section, statistical uncertainty of Monte Carlo simu-
lated events, and approximate luminosity uncertainties. We
do not take into account the possible change in the shape
of the distributions due to Monte Carlo simulation effects.
The per-bin statistical error is taken into consideration by
activating each sample’s statistical-error while creating the
statistical model in HistFactory. This is essentially a shape-
systematics that considers the bin-wise change in shape due
to the statistical uncertainties. Its inclusion increases the
median expected upper-limit by around three percent in the
reproduced shape-analysis. The number of events for the
analysis with the higher met cut is set to the expected num-
ber at 36 fb−1 for all background channels. This result is also
scaled for the other luminosities. For the ones with the lower
met cut, we use the validation data scaled by appropriate
weights for the respective luminosities.

The median expected upper limit on the invisible branch-
ing ratio of SM Higgs at 95% CL along with the one and two
sigma error bands are shown in Fig. 15 for integrated lumi-
nosities of 36 fb−1 and 140 fb−1. A short description of the
datasets used, and the corresponding median-expected upper
limits with 95 % CL is tabulated in Table 1. This also con-
tains the projected limits for 300 fb−1, the integrated lumi-
nosity expected at the end of LHC Run III. We emphasize
that even though we scale to 300 fb−1 luminosity, we use
the same dataset, and hence, the statistical uncertainties are
not reduced. Consequently, our estimation for 300 fb−1 is
a conservative one. First and foremost, one can notice that
the reproduced result of the shape-analysis of reference [83]
for an integrated luminosity of 36 fb−1 is quite consistent,
and the difference can be accounted to the excluded back-
ground channels and experimental systematics. We repeat
this analysis with the weaker selection criteria and see a

modest improvement in the median-expected upper-limit. We
also perform similar analyses with |Δη j j | distributions, and
get an improvement of 2.9 % for met > 200 GeV, and 2.6
% for met > 250 GeV cuts. The worst (best) performing
neural-network R-ANN (PHR

J -CNN) has an improvement
of 8.8% (14.6%) from the repeated experimental analysis.
This, although, is with different cuts, and for the same cut in
met, we have an improvement of 5.3% (12.1%) for R-ANN
(PHR

J -CNN). For an integrated luminosity of 140 fb−1, we
get an improvement of 2.2 % and 7.3 % for R-ANN and
PHR

J -CNN, respectively. The reduced difference for higher
luminosities is, of course, expected since the significance
does not scale linearly with an increase in data size. An
expected median upper-limit of about 3.5% can be achieved
with 300 fb−1 of data using the highest performing network,
PHR

J -CNN.
The results of the different feature spaces follow the

expected trend. For this discussion, we quote the numbers
for an integrated luminosity of 36 fb−1. Comparing the per-
formance of high-level feature spaces, we see that R per-
forms the worst while the combined space H puts the most
stringent bounds. The difference is minimal (0.7 %) with K-
ANN, and appreciable (4.4%) with R-ANN. Amongst the
image-networks, the difference between the low and high-
resolution networks is less than a percent (0.8 % for PJ , and
0.6% for Pmet). Differences in performances of the different
preprocessing instances are reflected in this analysis:PJ puts
nominally stricter bounds on the branching ratio (1.4 % for
LR, and 1.6 % for HR).

Up to now, we demonstrated the capability of our CNN
based low-level networks and also ANN-based networks con-
sidering particle level data, including detector effects as well
as underlying events during our simulations as discussed in
Sect. 2. However, we neglected the effect of simultaneous
occurrences of multiple proton-proton interactions (pileup)
in our analysis. The amount of pileup is relatively moder-
ate in low luminosity data, but increasingly significant once
we move towards high luminosity. We believe that its pres-
ence would not alter our primary results substantially from
the calorimeter image data. CNN architectures look into the
global features of an input image. Calorimeter deposits due to
pileup are expected to be similar for different classes since
they are independent of the hard scattering processes. The
same can be identified as redundant information, as a con-
sequence of the optimization algorithm effectively search-
ing for dissimilarities between the two classes. Optimal pdfs
acquired by CNNs remain very similar, whether it is with or
without pileup. This issue was analyzed before, where it was
shown that unlike high-level methods, deep-learning from
calorimeter deposits shows robustness to pileup effects in the
classification of jet-image [28]. Although, in these studies,
the jets have large transverse boosts and mostly reside in the
central regions where its effect is reduced. However, various
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Fig. 15 Expected 95% C.L median upper limit on the invisible branching ratio of SM Higgs with one and two sigma sidebands for (left) 36 fb−1

and (right) 140 fb−1 integrated luminosities

Table 1 Short description of the different analyses shown in Fig. 15 and the expected median upper-limit on BR(h0 → inv) at 95% CL for each
integrated luminosities which also include projections for L = 300 fb−1

Sl.No Name Description Expected median upper-limit on BR(h0 → inv)

L = 36 fb−1 L = 140 fb−1 L = 300 fb−1

1. m j j (met > 250 GeV) Reproduced shape analysis of reference [83] 0.226+0.093
−0.063 0.165+0.082

−0.056 0.130+0.089
−0.027

2. |Δη j j |(met > 250 GeV) |Δη j j | analysis with shape-cuts of reference [83] 0.200+0.080
−0.056 0.128+0.050

−0.036 0.106+0.041
−0.025

3. m j j (met > 200 GeV) m j j shape analysis with weaker cut 0.191+0.075
−0.053 0.116+0.071

−0.036 0.101+0.037
−0.045

4. |Δη j j |(met > 200 GeV) |Δη j j | analysis with weaker cut 0.162+0.065
−0.045 0.105+0.042

−0.029 0.087+0.034
−0.025

5. PLR
J -CNN Low-Resolution, φ0 = φ j1 0.078+0.030

−0.022 0.051+0.020
−0.014 0.045+0.017

−0.013

6. PHR
J -CNN High-Resolution, φ0 = φ j1 0.070+0.027

−0.020 0.043+0.017
−0.012 0.035+0.013

−0.010

7. PLR
met-CNN Low-Resolution, φ0 = φmet 0.092+0.037

−0.025 0.062+0.024
−0.017 0.053+0.023

−0.014

8. PHR
met -CNN High-Resolution, φ0 = φmet 0.086+0.035

−0.024 0.058+0.023
−0.016 0.051+0.020

−0.014

9. K-ANN 8 kinematic-variables 0.101+0.052
−0.022 0.075+0.029

−0.021 0.063+0.027
−0.017

10. R-ANN 16 radiative HηC
T variables 0.138+0.055

−0.039 0.094+0.036
−0.027 0.079+0.032

−0.022

11. H-ANN Combination of K and R variables 0.094+0.038
−0.026 0.065+0.026

−0.018 0.057+0.022
−0.015

other studies [47,48] have also shown that deep-learning on
the full calorimeter information is less prone to pileup effects.
These existing results further elucidate our presumption that
CNNs would be less affected by higher pileup expected at
future runs of LHC. In contrast, the other analyses, includ-
ing the ANNs trained on high-level feature spaces, can be
relatively more affected.

To present our arguments in perspective, we combined
each event (tower-image) with an additional N randomly
chosen minimum bias event with CMS switch through
Pythia8 and Delphes without any pileup subtraction. At
the same time, N follows a Poisson distribution with <

N >= 20, 50, 50 for integrated luminosity 36, 140 and
300 fb−1, respectively. Merged tower-image with pileup is

then trained and tested for our high-resolution CNN sce-
nario (PHR

J -CNN, which can be noted from Sl.No (6) in
Table 1). We found a very mild depreciation over our esti-
mated median upper-limit at 0.076, 0.059, and 0.045, which
all lie within the 1σ error band in the branching ratio con-
straints. Note that no effort was made to mitigate the effects
of the pileup during these estimates, which will not be the
case in experimental analyses. In fact, there are extensive
studies [135,136] of using powerful machine-learning algo-
rithms specially designed to reduce pileup contamination of
events. A new interpretation of collider events in terms of
optimal transport [137,138] have also provided promising
new techniques for pileup mitigation on top of reinterpreta-
tion of existing ones [139,140]. These developments offer
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further optimism for better mitigation of pileup effects in the
future.

To test the robustness of our proposal, we also consider the
effect of an important experimental systematic uncertainty.
One of the significant experimental systematic uncertainties
affecting the result of this analysis can be the uncertainty
on the jet energy scale. Therefore, we estimate the effect
of uncertainties on the jet energy scale for our main results
with calorimeter input data in CNN architecture. We vary
the pixel-wise input values (which has already gone through
the smearing in Delphes) by 10% in upward and downward
directions, 5 and record the variation in the shape of the net-
work output without considering any pileup. This is added
as a coherent shape systematics, and we obtain an increased
expected median upper-limit of 0.071+0.028

−0.019 for PHR
J -CNN

at 140 fb−1 integrated luminosity, which is still better by a
factor of almost two when compared to the latest result from
ATLAS [95].

7 Summary and conclusion

The HEP experimental community is one of the frontrunners
in utilizing machine learning algorithms for the last several
decades in tagging and characterizing different objects and
analyzing the massive data samples with the help of neural-
network or boosted decision trees. However, recent devel-
opments in deep learning approaches have shown immense
prospects in a variety of other applications.

The Large Hadron Collider, after its breakthrough discov-
ery of an SM like Higgs boson, keeps accumulating an enor-
mous amount of data, pinpointing its different properties and
also constraining diverse BSM scenarios at the TeV scale.
While such high energy data are opening up scope for new
analysis techniques filling possible gaps in previous investi-
gations, it is prudent to review the effectiveness of some of
the effective machine learning tools.

While proposed as an alternative channel for Higgs
search, the vector boson fusion (VBF) mechanism has shown
tremendous possibility not only in extracting properties of
the Higgs boson but also in many other BSM searches. As
a whole, this mechanism reckons upon some of the funda-
mental features of event shape, vastly used to control the
backgrounds.

We choose VBF production of the Higgs boson decay-
ing to invisible particles as a case study for neural net-
works to learn the entire event topology without any recon-

5 Reference [141] reports jet energy scale uncertainty for various
observables, which lie well within 5%. However, since such uncertain-
ties are significantly controlled in jets reconstructed with the particle-
flow (PF) method, we take a relatively conservative measure for the
pixel-wise uncertainty of the measured energies.

structed objects. We use the compelling capability of Convo-
lutional Neural Networks (CNN) to examine the potential of
deep-learning algorithms using low-level variables. Instead
of identifying any particular objects, we utilize the entire
calorimeter image to study the event topology, which aims
to learn the difference in radiation patterns between the two
forward jets of the VBF signal. We specifically develop pre-
processing steps that preserve the Lorentz symmetry of the
events and are essential to maximizing the statistical output
of the data.

Apart from low-level variables as calorimeter images for
CNN, we also consider two sets of high-level features. One
such set is based on the kinematics of the VBF, whereas the
other set of variables are designed to portray the radiation
pattern HT calculated in different η ranges of the calorime-
ter. For a comprehensive analysis, we constructed several
neural network architectures and demonstrated the compar-
ative performance of CNN and ANN using different fea-
ture spaces. All these networks achieved excellent separa-
tion between signal and background. However, we found
that CNN based low-level PHR

J -CNN performs the best
among all the networks, which is based on the high-resolution
images, although the dependence on image resolution is rel-
atively insignificant. We also note that deep-learning on the
full calorimeter information is less prone to pileup effects as
well. Without relying on any exclusive event reconstruction,
this novel technique can provide the most stringent bounds
on the invisible branching ratio of the SM-like Higgs boson,
which can be expected to be constrained up to 4.3% (3.5%)
using a dataset corresponding to an integrated luminosity
of 140 fb−1 (300 fb−1). These limits can severely constrain
many BSM scenarios, especially in the context of (Higgs-
portal) dark matter models. The techniques presented in this
work can easily be extended to a more complex event topol-
ogy.
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AppendixA: Incorporating finitemass effect of top quark
in gluon-fusion events

We generate the gluon-fusion production of the Higgs boson
by using the Higgs Effective Field Theory (HEFT) model,
where the interaction of the Higgs boson with gluons is
approximated by an effective vertex calculated by taking the
top-quark mass to infinity. This is a reasonable approximation
only when all relevant scales in the physical process are less
than 2 mt . The distribution of pT of the Higgs boson (equiva-
lentlymetwith detector effects introduced via Delphes) has a
significant portion of events in regions where the approxima-
tion is not valid. We remove this inconsistency by reweighting
the met distribution of the events obtained after Delphes. We
extract weights (ratio of the full SM results to HEFT) and bins
in pT of the Higgs for the present final state topology from
figure 30 on reference [105]. Each event is then assigned the
corresponding weight of the bin of itsmet. After reweighting
the events, we apply the preselection-cuts and extract the cut
efficiency using the weights.

Since we need unweighted events for the neural network
training, the passed events are again unweighted. This is
done in the following steps. We divide all events into sets
with unique weights. This is nothing but grouping the events

Fig. 16 Comparative distribution of kinematic variables for HEFT,
weighted with finite-top mass effects and unweighted distributions for
passed events used in deep-learning training and validation

into the extracted bins in met. We get mutually exclusive
subsets of events Si , with i being the bin-index. The per-
bin weights are divided by their maximum value. We get a
weight wi ∈ (0, 1] for each Si . From each set Si , we ran-
domly choose wi proportion of events rounded to the clos-
est integer. We show in Fig. 16, the distribution of some
kinematic-variables of the three datasets: unweighted events
generated with HEFT model, weighted events with finite-top
mass effects, and unweighted events used in neural network
training. The effect of rounding to the nearest integer is seen
in the later bins in met, where the statistics are weaker due
to fewer events.

Appendix B: Characteristics of high-level variables

In this section, we take a closer look at the high-level vari-
ables, especially the R variables defined in eq. 2. A key
element in the extraction of variables belonging to the two
spaces K and R is that the K variables are functions of four-
momenta of reconstructed objects while the R variables are
functions of four-momenta of tower-constituents (in our case
from the Tower class of Delphes). The R variables do not
take into account the tower-resolutions in the strict sense.
This may point to a further reduction in the performance of
ANNs compared to CNNs, where the tower-resolutions are
better modeled.

We show the signal vs background distribution of all R
variables in Fig. 17. The contribution of SEW and SQCD to
the total signal is stacked. The separation, as defined in eq.
4, are shown for these variables for the total signal (also,
SEW ) and background in Fig. 18. We can see that the trends
in the distribution are in accordance with their respective
values of separation. The shape of SQCD and the background
distributions are similar for all values of ηC , and the overall
differences, if any, comes from the contribution of SEW . The
separation is minimal and remains constant for ηC > 4. This
can be attributed to the fact that above these values, almost
all of the calorimeter hits contribute to HηC

T . It increases
continuously up to ηC = 1.8 and then decreases till ηC =
1.0. The increase is expected from the VBF topology, while
the decrease can be attributed to the smallness of the region
[−ηC , ηC ].

In Fig. 19, we show the remaining kinematic variables
not shown in Fig. 6. As can be seen, there is not much dis-
criminatory information in any of these variables: φmet is
uniform for all channels since the beams are unpolarized,
while Δφ J

met (J ∈ { j1, j2, j1 + j2}) has most contributions
around ±π , due to the imposed separation of two jets Δφ j j

and momentum conservation in the recoil of quarks/gluons
against heavy bosons (W±, Z0 and h0).
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Fig. 17 Signal vs Background distribution for all HηC
T variables. We can see that for higher values of ηC the signal and background are not that

different and the difference grows as we approach the cut value of η cut

Appendix C: Correlation between high-level variables
and network-oustputs

Salient features of the correlation of important variables with
all neural network outputs have been given in the main text
(Fig. 14). We examine the correlation of the ANNs with their
inputs in this section. All correlations have been calculated
using the inbuilt function in NumPy(v1.17.2)[142].

In Fig. 20 we show the correlations amongst the K vari-
ables including the K-ANN network output for each class.
As expected, the K-ANN output is highly correlated with the
two most discriminating variables |Δη j j | and m j j . The next
highest correlation with K-ANN is found to be with met
for background and |Δφ j j | for signal. Except for |Δφ j j |,
all other φ variables are almost uncorrelated with K-ANN
for both classes. The uniformity of φmet results in its negli-
gible correlation with all other variables. In the correlation
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Fig. 18 Seperation of all HηC
T variables for (left) signal vs background and (right) SEW vs background. These have been calculated with 25000

events for each of the three datasets with the same binning. We can see that the presence of SQCD significantly reduces the discriminating power
of HηC

T variables on the left

Fig. 19 Signal vs Background distribution of the high-level kinematic variables excluded in Fig. 6

among K variables, we can see two distinct sets of variables
with comparatively moderate to high correlations formed
amongst {|Δη j j |,m j j ,met} and {Δφ

j1
met,Δφ

j2
met,Δφ

j1+ j2
met }.

In the first set, |Δη j j | and m j j are almost completely corre-
lated since, the angular opening between two four vectors pμ

j1
and pμ

j2
, determine the invariant mass m j j = (pμ

j1
+ pμ

j2
)2.

The met shows a moderate correlation with both |Δη j j | and

m j j as— momentum conservation forces |p j1 + p j2 | to be
higher for higher met. The correlation amongst the second
subset can also be explained by transverse momentum con-
servation in the collision, with contamination from subsidiary
QCD radiation and detector effects.

The class-wise correlations amongst the outputs of R-
ANN andH-ANN along with six variables fromRwith high
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Fig. 20 Correlation between the high-level kinematic variables K and the network-output of K-ANN for (left) signal and (right) background

Fig. 21 Correlation between the high-level variables H and the network-outputs of R-ANN and H-ANN for (left) signal and (right) background.
For better representation we have chosen variables with non-negligible correlations with the network outputs

separation, and the two kinematic variables |Δη j j | and m j j

are shown in Fig. 21. As expected, we see that the R vari-
ables are highly correlated with one another, which decreases
with increasing distance in ηC . Another highlight is the neg-
ative correlation between them and the kinematic variables.
It can be understood if we recall that the dominant radiation
in the tower comes from the two leading jets, and an increase

in |Δη j j | will decrease the calorimeter hits in the central
regions. In the case of correlations between neural-network
outputs and their respective inputs, the sign of the correla-
tion is not much relevant for binary classification due to the
probabilistic interpretation of the outputs yi : y0 + y1 = 1
and yi > 0. On the contrary, the relative difference in sign
and magnitude in correlations between the different input
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features and the output is relevant. In the case of H-ANN,
we can see that in terms of both magnitude (importance as
plotted in Fig. 7) and sign (as discussed here), the relations
amongst K and R variables are carried over to their corre-
sponding correlations with the network-output.
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