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Abstract We consider electromagnetic fields and charged
particle dynamics around non-singular black holes in con-
formal gravity immersed in an external, asymptotically uni-
form magnetic field. First, we obtain analytic solutions of the
electromagnetic field equation around rotating non-singular
black holes in conformal gravity. We show that the radial
components of the electric and magnetic fields increase with
the increase of the parameters L and N of the black hole solu-
tion. Second, we study the dynamics of charged particles. We
show that the increase of the values of the parameters L and
N and of magnetic field causes a decrease in the radius of
the innermost stable circular orbits (ISCO) and the magnetic
coupling parameter can mimic the effect of conformal gravity
giving the same ISCO radius up to ωB ≤ 0.07 when N = 3.

1 Introduction

General Relativity has a good success in predicting and
describing a number of observations and experiments about
gravity. The recent detection of gravitational waves [1] and
observation of black hole shadow [2] can also be considered
tests of General Relativity [3,4], which successfully passed
them. However, the theory itself is plagued by the problem
of singularities. Most physically-relevant solutions of Ein-
stein’s equation possess a singular region. The current stan-
dard understanding of physical laws cannot accept a singu-
larity and there are several attempts to resolve the singularity
problem (see, e.g., [5–21]).
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One of the examples to resolve the singularity prob-
lem has been proposed in Refs. [17], where, within a large
class of conformally invariant theories of gravity, singularity-
free black hole solutions have been proposed. The pro-
posed spacetimes are geodetically complete and the curvature
invariants do not diverge at r = 0.

Reference [22] has been devoted to study the electromag-
netic field around compact starts in conformal gravity. Using
X-ray observations of supermassive black holes (SMBHs), it
was proposed a test of conformal gravity in [23]. The energy
condition and scalar perturbations of the spacetime in confor-
mal gravity have been studied in [24,25]. Recently, magne-
tized particle motion around black holes in conformal gravity
in the presence of external magnetic fields has been studied
in [26]. In this work, we plan to investigate charged parti-
cle motion acceleration around singularity-free black holes
immersed in an external magnetic field.

A black hole itself cannot have its own magnetic field.
However the curved spacetime will change the structure of
electromagnetic field surrounding the black hole. The pio-
neer work of Wald has been devoted to study the electromag-
netic field around a Kerr black hole immersed in an external,
asymptotically uniform magnetic field [27]. A number of
works have been devoted to study the electromagnetic field
and charged particle motion around compact objects in exter-
nal magnetic fields [28–53].

The energetic process around black holes can be used
to model the observational features of astrophysical objects
(Relativistic jets, Soft gamma ray repeaters - SGR and
etc.). Different mechanisms of energy extraction from black
holes have been proposed: Penrose process [54], Blandford-
Znajeck mechanism [55], Magnetic Penrose process [56–
59], and particle acceleration mechanism (BSW) [60]. Par-
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ticularly, in Ref. [60] it was shown that the center of mass
energy of colliding particles near an extreme rotating Kerr
black hole may diverge for the fine tuned values of the angu-
lar momentum of the particles. Magnetic fields may play an
important role in the charged particle acceleration near black
holes [31,32]. Thus we are also interested to study the effects
of conformal gravity and magnetic fields on the charged par-
ticle acceleration process.

In this paper, we study the dynamics of charged particles
around black holes in conformal gravity in the presence of
magnetic fields. The paper is organized as follows: Sect. 2 is
devoted to study the electromagnetic field around black holes
in conformal gravity immersed in an external, asymptotically
uniform magnetic field. The charged particle motion around
non-rotating and rotating black holes in conformal gravity
in the presence of an external magnetic field has been stud-
ied in Sects. 3 and 4, respectively. In Sect. 5, we study the
collision of charged particles near a black hole in conformal
gravity. We summarize our results in Sect. 6. Throughout this
work, we use (−,+,+,+) for the space-time signature and
a system of units where G = c = 1.

2 Electromagnetic field around a singularity free Black
hole

In this section, we study the electromagnetic field around a
singularity-free black hole in conformal gravity described by
the line element

ds∗2 = S(r, θ)ds2
Kerr , (1)

where

ds2
Kerr = gKαβdx

αdxβ , (2)

with

gK00 = −
(

1 − 2Mr

�

)
,

gK11 = �

�
,

gK22 = � ,

gK33 =
[
(r2 + a2) + 2a2Mr sin2 θ

�

]
sin2 θ ,

gK03 = −2Mar sin2 θ

�
,

� = r2 + a2 − 2Mr, � = r2 + a2 cos2 θ , (3)

and

S(r, θ) =
(

1 + L2

�

)2N+2

, (4)

where a is the spin parameter of the black hole with total
mass M , S is called the conformal rescaling, and L and N
are conformal parameters; that is, parameters related to the
conformal rescaling.

The Penrose diagram, and thus the causal structure of the
spacetime, of our singularity-free black hole solution is the
same as the Penrose diagram of the Kerr solution, because
conformal transformations do not alter the causal structure
of spacetimes. They only change distances. The Kerr singu-
larity at r = 0 is not a curvature singularity any longer in
our solution, and this is possible because the scalar curvature
and the Kretschmann scalar are not invariant under conformal
trasformations. After the conformal rescaling, massive parti-
cles need an infinite time to reach the point r = 0. Massless
particles require an infinite value of their affine parameter to
reach the point r = 0. So the point r = 0 is not a singu-
larity in the sense of geodesic motion any longer either. The
conformal rescaling S has thus the capability to remove the
Kerr singularity at r = 0. S is also singular at r = 0 and
this is strictly necessary to compensate the singularity of the
Kerr solution at r = 0. For N ≥ 1, the conformal factor can
remove the singularity of the Kerr metric at r = 0, while,
for a lower value, the singularity of S is not strong enough to
compensate the singularity of the Kerr metric. More details
can be found in the original paper deriving this solution [17]

We start with considering the electromagnetic field around
a singularity-free black hole immersed in an external, asymp-
totically uniform magnetic field aligned along the direction of
the axis of symmetry of the space-time. The energy momen-
tum tensor of the electromagnetic field is assumed to be neg-
ligibly small, does not change the spacetime metric, and is
of the following order of magnitude

B2r3

8πMc2 � 3

400

(
B

103 G

)2 (M⊙
M

)( r

1.5 km

)3
. (5)

Using a Killing vector ξμ being responsible for the sym-
metry of spacetime geometry of the black hole, one may
recall the equation

ξα;β + ξβ;α = 0. (6)

Expressions (6) can be used to have the following equation

ξα;β;γ − ξα;γ ;β = −ξλRλαβγ . (7)

where the Riemann curvature tensor Rλαβγ can be trans-
formed to the Ricci one in the following way

ξ
α;β

;β = ξγ R αβ
γβ = Rα

γ ξγ . (8)

For the spacetime of the singularity free rotating black
hole in the conformal gravity, the right hand side of Eq. (8)
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can be chosen as Rα
γ ξγ = ηα . The Maxwell equations then

can be expressed in the following form

Fαβ

;β = −2ξ
α;β

;β + 2ηα = 0, (9)

where Fαβ is electromagnetic field tensor and can be selected
as

Fαβ = C0ξ[β;α] + fαβ = −2C0
(
ξα;β

)+ a[β,α]. (10)

Here C0 is an integration constant and the 4-vector aα is a
correction to the potential due to the presence of the confor-
mal gravity parameters responsible for the Ricci non flatness
of the spacetime. The 4-vector aα can be found from the
equation �aα = ηα .

The electromagnetic potential then can be written as the
sum of two contributions

Aα = Ãα + aα. (11)

where Ãα is the potential being proportional to the Killing
vectors. To find the solution for Ãα , one can use the ansatz
for the vector potential Ãα of the electromagnetic field in
the Lorentz gauge in the form Ãα = C1ξ

α
(t) + C2ξ

α
(ϕ) [27].

The constant C2 = B/2, where the gravitational source is
immersed in a uniform magnetic field B being parallel to its
axis of rotation. The value of the remaining constant C1 =
aB can be easily calculated from the asymptotic properties
of the spacetime (2) at the asymptotical infinity.

The second part aα of the total vector potential of the
electromagnetic field is produced due to the contribution
of conformal gravity and has the following solution aα ={
kBL2/r, 0, 0, 0

}
, where the expression for the constant k

can be easily found from the asymptotic properties of the
spacetime (2) at infinity [39,42]. However, since the effect
of conformal gravity is negligibly small at large distances,
one might exclude this part tending k → 0 and use the tradi-
tional contravariant expression for the 4-vector potential as
in the Kerr case.

Finally, the components of the 4-vector potential Aα of
the electromagnetic field will take a form

A0 = aB
(
L2 + �

)4 (
2Mr − � − Mr sin2 θ

)
�5

, (12)

A1 = 0, (13)

A2 = 0, (14)

A3 = B sin2 θ
(
L2 + �

)4
2�5

×
(

2a2Mr sin2 θ + a2(� − 4Mr) + r2�
)

, (15)

where, for simplicity, we take N = 1. The components of the
electric and magnetic fields in the frame moving with four
velocity uα read

Eα = Fαβu
β , (16)

Bα = 1

2
ηαβσμFβσuμ , (17)

where the electromagnetic field tensor, Fαβ , in terms of the
four potential can be expressed as

Fαβ = Aβ,α − Aα,β . (18)

Using the the expressions above for the zero angular
momentum observers (ZAMO) with the four-velocity com-
ponents

(uα)ZAMO ≡
√

−g00

(
1, 0, 0,

g03

g00

)
,

(uα)ZAMO ≡ −1√−g00

(
1, 0, 0, 0

)
, (19)

one can easily find the components of the electromagnetic
field using the expressions in (16)–(18). The nonvanishing
orthonormal components of the electromagnetic field mea-
sured by zero angular momentum observers with the four-
velocity that has the form (19) are given by the expressions
in (A1)–(A4) and linear approximation of conformal gravity
parameter L2 is presented by the expressions in (A5)–(A8)
in appendix A.

Figure 1 shows the radial dependence of the components
of electromagnetic fields in the cases of different values of
the angle θ and conformal gravity parameter L2. Since the
expressions in (A1)–(A4) have a complex form, one might be
interesting to see the structure of the electromagnetic fields
around BHs in the ZAMO frame, which is presented in Fig. 2.

In the case of slow rotation (a � M) and far distance
(M/r � 1), expressions (A1)–(A4) reduce to

Er̂ = −aB

r2

[
8L2

r
+ M

(
2 + sin2 θ

)]
, (20)

E θ̂ = −2aBM

r2

[
1 + M

r

]
sin 2θ , (21)

Br̂ = B cos θ, (22)

B θ̂ = B sin θ

×
[

1 − M

r
− 8L2 + M2

2r2 − M3 − 8ML2

2r3

]
(23)

From the expressions in (20)–(23), one can see that in

such limits only the components Er̂ and B θ̂ are affected

by conformal gravity while other components (E θ̂ and Br̂ )
do not include any contribution from L2 (for the chosen
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Fig. 1 Radial dependence of the electric and magnetic fields for different values of θ . All graphics are plotted in the case of B = 1 and M = 1.
Black solid lines correspond to L2 = 0, while dashed red lines and blue dot-dashed lines to L2 = 0.2 and L2 = 0.4, respectively

approximation). The latter is especially clearly seen for E θ̂

in the graphs presented in Fig. 1. In the limit of flat space-
time, i.e. for M/r → 0, Ma/r2 → 0 and L2/r2 → 0,
expressions (A1)–(A4) give the following limiting expres-

sions: Br̂ = B cos θ, B θ̂ = B sin θ, Er̂ = E θ̂ = 0, being
consistent with the solutions for the homogeneous magnetic
field in Newtonian limit. Figure 3 presents the profiles of
magnetic fields around black holes for different values of
spin and conformal parameter. One can see from the right
top and bottom panels that the conformal parameter forces
the parallel field line to have a dipole-like structure. Finally,
bottom panels give the possibilities of the comparison of the
nature of conformal and spin parameters of the black hole.

3 Charged particle motion around a conformal
non-rotating black hole immersed in a uniform
magnetic field

Here we study charged particle motion around a black hole
in conformal gravity in the presence of an external, uniform
magnetic field. The Hamilton–Jacobi equation for a test par-
ticle with mass m and charge q can be written as

gμν
( ∂S
∂xμ

− q Aμ

)( ∂S
∂xν

− q Aν

)
= −m2. (24)

The solution of Eq. (24) can be sought in the following form

S = −Et + lφ + Sr (r) + Sθ (θ) , (25)
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(a) (b)

Fig. 2 Structure of the magnetic and electric fields around a black hole. Blue and red lines correspond to magnetic and electric fields, respectively

where E = E/m andL = l/m are the specific energy and the
specific angular momentum of the test particle, respectively.

It is convenient to consider the particle motion on the equa-
torial plane plane, where θ̇ = 0 (pθ = 0). Then we can write

ṙ2 + Veff(r) = E2 , (26)

where the effective potential has a form

Veff(r) = f (r)
[
S(r) +

(L
r

− ωBr S(r)
)2]

(27)

and ωB = eB/2m is the magnetic coupling parameter, or
the so-called cyclotron frequency, which characterizes the
interaction between the charged particle and the magnetic
field. The effective potential is invariant under the follow-
ing transformations: (L,−ωB) ←→ (−L, ωB), where the
Lorentz force acting on the charged particle is repulsive
and has the same direction as the centrifugal force, and
(L, ωB) ←→ (−L,−ωB), where the Lorentz force is attrac-
tive and has the same direction as the gravitational force.
Below we analyze the effective potential (27) for positive
angular momenta of the particle and either positive or nega-
tive magnetic coupling parameter.

Figure 4 shows the radial dependence of the effective
potential on the equatorial plane. One can see from Fig. 4
that when ωB > 0 the effective potential is higher than in the
case ωB < 0 and increases with the increase of the values of
parameters L and N . It is worth to note that at large distances
the effect of the magnetic field plays a more important role
than the effect of conformal gravity.

3.1 Stable circular orbits

Now we will consider the innermost stable circular orbits of
charged particles using following the standard conditions

V ′
eff(r) = 0, V ′′

eff(r) = 0, (28)

In fact, circular orbits can be stable when the second deriva-
tive of the effective potential with respect to both coordinates
(∂r Veff ≥ 0 and ∂θVeff ≥ 0) is positive and the ISCO on the
equatorial plane corresponds to the zero value of this deriva-
tive ∂r Veff = 0. The angular momentum of circular orbits
can be found in the following form

L±
cr = 1

4 f (r) − 2r f ′(r)

{
r3ωB

[
S(r) f ′(r) + f (r)S′(r)

]

±r3/2
[

4
{
f (r) f ′(r)

[
2S(r) − r S′(r)

]− r S(r) f ′(r)2
}

+ f 2(r)
{
rω2

B
[
2S(r) + r S′(r)

]2 + 8S′(r)
} ]1/2}

(29)

In order to ensure that we obtain a real solution of Eq.
(29), we require the function under the square root to be
always positive. Since the second part of the equation under
the square root is always positive, it implies

f (r) f ′(r)
[
2S(r) − r S′(r)

]− r S(r) f ′(r)2 > 0, (30)

must be satisfied for any values of L and N .
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Fig. 3 Magnetic field line profiles around a black hole in the x − z plane for different values of spin parameter a and conformal parameter L .
Units in which M = 1

Now we will analyze the distance where Lcr is always
positive i.e. positions where circular motion can occurs in
the equatorial plane.

Figure 5 illustrates the dependence of the minimum dis-
tance where circular orbits are allowed from the cyclotron
frequency for the different values of the conformal parame-
ters L and N . One can see from the figure that independently
from the values of L and N such minimum orbits starts from
the value 3M in the absence of external magnetic field and
then decreases with the increase of the latter one. It is also
worth to note that the rate of such decrease reduces with the
increase of both conformal parameters.

Figure 6 shows the radial dependence of the critical value
of the angular momentum for circular orbits. One can see
from this figure that the value of the critical angular momen-

tum of the charged particle increases in the presence of an
external magnetic field.

The energy of the charged particle at circular orbits can
be obtained substituting Eq. (29) into Eq. (27)

E = f (r)

[
S(r) +

(Lcr

r
− S(r)ωBr

)2
]

. (31)

Here we will study radial dependence of the energy in the
equatorial plane, where sin θ = 1.

Figure 7 illustrates the radial profiles of the charged parti-
cle energy in circular orbits on the equatorial plane. One can
see that the magnetic field increases the energy of the charged
particle. One more thing is that the rate of energy increase in
the case of ωB > 0 is higher than the case of ωB < 0.
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Fig. 4 Radial dependence of the effective potential of a charged par-
ticle for different values of the conformal, scale, and magnetic field
parameters

Fig. 5 Dependence of the minimum circular orbits from the magnetic
interaction parameter (cyclotron frequency) ωB for the different values
of the conformal parameters L and N with the comparison of pure
Schwarzschild case (black solid line)

Fig. 6 Radial dependence of the specific angular momentum. Solid,
dashed and dot-dashed lines correspond to the values of the conformal
parameters (L , N ) = (0, 3), (1, 3), and (1, 1), respectively. Blue, red
and black lines correspond to positive, negative, and vanishing charge
of the particle, respectively

Fig. 7 Radial dependence of specific energy of the charged particle
with magnetic interaction parameter |ωB | = 0.1 at circular orbits

Fig. 8 Dependence of the ISCO radius of the charged particle on
the magnetic parameter for various values of the conformal and scale
parameters
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Fig. 9 Dependence of the ISCO radius of neutral and charged particles
from the conformal parameter L for various values of the parameter N

In Fig. 8, we present the effect of conformal gravity and
magnetic field on the ISCO radius of charged particles. One
can see from the figure that increasing the conformal parame-
ters L and N and the magnetic coupling parameter decreases
of the ISCO radius.

In Fig. 9 it is illustrated the dependence of ISCO radius
of neutral (first panel) and charged (second panel) particles
on the conformal parameter L , for the chosen values of the
parameter N . One can see from the first panel that the mini-
mum values of the ISCO radius tends to 3M for the neutral
particles independently from the parameter N , while for the
charged ones this minimum ISCO radius decreases with the
increase of N .

3.2 Charged particles trajectories

Now we will study the effects of the parameters of conformal
gravity on the trajectories of charged particles.

Trajectories of positive and negative charged particles for
absolute values of the magnetic coupling parameter |ωB | =
0.1 are shown in Fig. 10. All plots in this figure are taken at
the value of the conformal parameter L = M and trajecto-
ries of the charged particles in red lines on first and fourth
rows correspond to the values of the conformal parameters

N = 1, black and blue lines correspond to the conformal
parameter N = 4 and N = 8, respectively for the fixed
value of the specific angular momentum L = 5M . One can
see from the figures that the specific energy of the charged
particles increases with increasing of the conformal param-
eter N . Moreover, the orbits of charged particles started at
equatorial plane θ0 = π/2 become unstable and the par-
ticle leaves the central object at higher values of N . It can
be explained by the magnetic field structure around the black
hole in conformal gravity which is shown in the third column
of the plots in grey lines that becomes dipol like structure at
the higher values of the parameter N .

3.3 Conformal non-rotating black hole versus
Schwarzschild black hole in a uniform magnetic field

In this subsection, we consider two different cases: the
motion of a charged particle around a Schwarzschild black
hole and a non-rotating black hole in conformal gravity, in
a magnetic field, with the same ISCO radius for the charged
particle.

Figure 12 show that the impact of the conformal parameter
L and of the magnetic coupling parameter ωB on the ISCO
radius is the same.

Figure 13 shows the relation between the conformal and
magnetic coupling parameters L and ωB , for the same ISCO
radius. One can see from this figure that a magnetic field can
mimic conformal gravity for the values of the parameter L =
1 and the other conformal parameter N = 1, 2, 3 at ωB ≤
0.003068, ωB ≤ 0.021015 and ωB ≤ 0.06771, respectively.

4 Charged particle motion around conformal rotating
black holes immersed in a uniform magnetic field

Since the spacetime of a rotating black hole in conformal
gravity admits separation of variables on the equatorial plane
(θ = π/2) we will study the motion around the source
described by the metric (1) using the Hamilton–Jacobi equa-
tion where the action S can be decomposed in the form as
Eq. (25). Finally we obtain the equation of motion in the
following form (for N = 1):

ṫ = eBa + Er3 − 2aLM + a2E(2M + r)

r−7�(L2 + r2)4 (32)

ṙ2 = R(r) (33)

φ̇ = eB

2
+ 2aEM + L(r − 2M)

r−7�(L2 + r2)4 (34)

where
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Fig. 10 Trajectories of positively charged particles around a non-
rotating black hole immersed in a magnetic field in conformal grav-
ity. Red, black and blue trajectories correspond to the case N = 1, 4,
and 8, respectively, when the conformal parameter L/M = 1 started

from equatorial plane and the distance r0 = 7M . All trajectories have
been plotted for the value of specific angular momentum L = 5. Black
dashed lines and gray solid lines correspond to magnetic field lines

R(r) = �

�S(r)

⎡
⎢⎢⎣
(

ωBS(r)
((
a2 + r2

)
� − 2a2Mr

)
�

− L
)

×
(

(2Mr(aE − L) + L�)

S(r)
(
�
(
a2 + r2

)− 2Mr3
) − ωB

)
− 1

+

(
2Mr�4

(
a2E−aL+Er2

)
2Mr3−�(a2+r2)

+ 2aωBL2(L6 + 4L4� + 6L2�2 + 4�3) + (2aωB − E)�4
)

S(r)�5 (2aωBS(r)(� − Mr) − E�)−1

⎤
⎥⎥⎦ (35)

One may define the effective potential in the following
form

Vef f (r) = E2 − 1 − R(r)

2
. (36)

Radial dependence of the effective potential is presented in
Fig. 14, where graphs a. and b. are plotted in the case when
the values of the angular momentum L and energy E of the
particle are chosen to be equal to the values of a particle
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Fig. 11 As in Fig.10, but for negatively charged particles

Fig. 12 Dependence of the ISCO radius of charged particle on the mag-
netic coupling parameter ωB and conformal parameter L for different
values of the parameter N . Units in which M = 1

moving around the innermost circular orbit so, turning points
of the lines on the graphs represent the ISCO radius; while in
c. the lines correspond to the case when energy and angular
momentum of the test particle are fixed for the various values
of rotation parameter of a black hole.

Fig. 13 Relation between the conformal parameter L and the magnetic
coupling parameter ωB for the same ISCO radius of charged particles
and different values of the conformal parameter N

The stability of the equatorial orbits can be checked by
plotting the trajectories of charged particles for given values
of the external magnetic field and the conformal parameter L
as illustrated in Fig. 15 (the z axis is assumed to be parallel to
the symmetry axis and the origin coincides with the centre of
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(a) (b) (c)

Fig. 14 Radial dependence of the effective potential of radial motion of
a charged particle around rotating quasi-Kerr black hole in the equatorial
plane. The figures correspond to the case of a. without external mag-

netic field, b. in the presence of external magnetic field when L = 0.05
and c. in the presence of both parameters. Units in which M = 1

the gravitating object). It is clearly seen from the second row
of figures that for fixed values of the parameters mentioned
the trajectory remains stable.

The value of the ISCO radius can be obtained from the
following standard conditions

R(r) = 0, (37)

R′(r) = 0, (38)

R′′(r) = 0, (39)

with R(r) taking the form (35). The results of Eqs. (37)–(39)
are expressed in Fig. 16, panel a for a vanishing magnetic
field and a non-vanishing spin parameter and panel b for a
non-vanishing magnetic field and a vanishing spin parame-
ter. We can clearly see from the figures that in the absence of
an external magnetic field but non-vanishing spin parameter
the ISCO radius first slightly increases for small values of the
conformal parameter and then goes down for higher values of
L2. In the case of a vanishing spin parameter but in the pres-
ence of an external magnetic field, it always monotonically
decreases with the increase of the conformal parameter L2. In
Tables 1 and 2 numerical results in the presence of both rota-
tion and magnetic parameters are presented. From the tables,
one can see that for chosen values of ωB the ISCO radius
increases if one increases the conformal gravity parameter
for a given interval of the latter one. The opposite scenario
takes place for a given value of conformal parameter i.e. the
increase of magnetic parameter decreases the ISCO radius.
One should also mention that for the case of extreme rota-
tion the ISCO radius becomes bigger compared to the case
of pure Kerr metric where the ISCO becomes close to M .

5 Center-of-mass energy of charged particles collisions

In this section, we investigate the center-of-mass energy from
collisions of two charged particles near rotating magnetized
black holes in conformal gravity. The general expression
for the center-of-mass energy for two particles coming from

infinity with massesm1 andm2 and four-velocitiesuα
1 anduβ

2 ,
respectively, can be found as the sum of their four-momenta
[61,62]

{Ecm, 0, 0, 0} = m1u
μ
1 + m2u

μ
2 , (40)

Square of the center-of-mass energy can be defined in (40)
and we have

E2
cm = m2

1 + m2
2 − 2m1m2gμνu

μ
1 u

ν
2 , (41)

after algebraic substitutions, we have the expression in a
dimensionless form

E2
cm

m1m2
= m1

m2
+ m2

m1
− 2gμνu

μ
1 u

ν
2. (42)

Using the expression for the four velocities of the charged
particles around magnetized rotating black holes in confor-
mal gravity and considering the collision of the particles with
equal mass m1 = m2 and initial energy E1 = E2 = 1, one
may get the expression for the center-of-mass energy in the
following form

E2
cm

2m2 = E2
cm = 1 − gμνu

μ
1 u

ν
2. (43)

We analyze the center-of-mass energy of the collision of
positive and positive (positive and negative) charged particles
with the magnetic interaction parameter |ω| = 0.1 coming
from infinity with initial energy E1 = E2 = 1 and angular
momentum L1 = −L = 4.

The radial dependence of center-of-mass energy of colli-
sions of positive-positive and positive-negative charged par-
ticles near a rotating black hole in an external magnetic field
is shown in Figs. 17 and 18, for different values of the con-
formal and spin parameters. One can see from the figures
that the center of mass energy decreases with the increase of
the conformal parameter L and spin parameter. Moreover, in
the case of the collisions of positive-positive charged parti-
cles, the center of mass energy disappears due to dominated
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Fig. 15 Trajectories of charged particles on the equatorial plane θ0 = π/2 for given values of rotation, magnetic and conformal parameters (the
values of the parameters are the same for each column and written in the last row). Units in which M = 1
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(a) (b)

Fig. 16 Dependence of the ISCO radius on the conformal gravity parameter L2: a. in the absence of an external magnetic field and b. in the absence
of rotation. Units in which M = 1

Table 1 The innermost stable circular orbits of particles moving around
a rotating black hole (case for a = 0.5 and M = 1)

L2 0 0.001 0.002 0.005 0.01

ωB = 0.05 3.7312 3.7314 3.7316 3.7322 3.7331

ωB = 0.1 3.2897 3.2899 3.29 3.2904 3.2911

ωB = 0.2 2.8444 2.8445 2.8446 2.8449 2.8454

ωB = 0.4 2.4799 2.48 2.4801 2.4803 2.4807

ωB = 0.8 2.2192 2.2193 2.2194 2.2195 2.2197

Table 2 The innermost stable circular orbits of particles moving around
a rotating black hole (case for ωB = 0.25 and M = 1)

L2 0 0.001 0.002 0.005 0.01

a = 0.05 3.1458 3.1459 3.146 3.1462 3.1467

a = 0.1 3.1074 3.1075 3.1076 3.1078 3.1083

a = 0.2 3.0248 3.0249 3.025 3.0253 3.0257

a = 0.4 2.8316 2.83165 2.8317 2.832 2.8324

a = 0.8 2.2265 2.2267 2.2268 2.2273 2.2281

a = 0.99 1.4045 1.4049 1.4054 1.4067 1.4092

repulsive Coulomb forces. This implies that the collision does
not occur at the point where the energy disappears. The dis-
tance where the center-of-mass energy disappears increases
(decreases) increasing the conformal (spin) parameter.

6 Conclusion

In this work we have considered dynamics of charged par-
ticles and electromagnetic fields in the vicinity of rotating
black holes in conformal gravity immersed in an external,
asymptotically uniform magnetic field. The study of electro-
magnetic fields shows that the angular (radial) component
of the magnetic field and the absolute value of the external
magnetic field decrease (increases) with the increase of both
parameters of conformal gravity, L and N , and the increase
of the parameters of conformal gravity forces the external
uniform magnetic field to have a dipole-like structure.

One may see from the studies of particle dynamics of
charged particles around conformal non-rotating black holes
in the presence of a magnetic field that the minimum circular
orbits and ISCO radius decrease as with the increase of the
conformal gravity and magnetic coupling parameters and in
the case of rotating black holes the ISCO decreases faster.
Moreover, it is shown that the particle orbits become unstable
at higher values of both conformal parameter as a result of
the fact that the magnetic field gets a dipole structure.

We have studied the effect of conformal gravity on the
ISCO radius of charged particles around non-rotating black
holes in the presence of an external magnetic field. We have
shown that the conformal parameters can mimic the magnetic
coupling parameters when ωB ≤ 0.003068 (ωB ≤ 0.021015,
ωB ≤ 0.06771 ) at the values of conformal parameters N = 1
(N = 2, N = 3) while L ∈ (0, 1) and with increasing of the
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Fig. 17 Radial dependence of the center-of-mass energy of two collisions of positively charged particles near a singularity-free black hole in
conformal gravity for different values of the conformal parameter L and the spin parameter a. Units in which M = 1

Fig. 18 As in Fig.17, but for positive and negative charged particle collisions. Units in which M = 1

123



Eur. Phys. J. C (2020) 80 :1074 Page 15 of 17 1074

value of the conformal parameter N the mimic value of the
coupling parameter ωB increases.

The studies of center-of-mass energies of collisions of two
charged particles show that the increase of both conformal
and spin parameters causes a decrease in the center-of-mass
energy.
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Appendix A: Electromagnetic field components

Er̂ = aB
√

�

2
√QR�5/2

(
L2 + �

)
×
[
−40a2L2M2r3 sin2 θ(cos 2θ + 3)

+�2
(
−M cos 2θ

(
a2
(

2r(2M + r) − L2
)

−3L2r2 + 2r4
)

+ 3a2L2M + 16a2L2r − a2M2r cos 4θ

+5a2M2r − 6a2Mr2 + L2Mr2 + 16L2r3 − 6Mr4
)

−Mr�
(
a2M cos 4θ

(
L2 − 2r2

)

+2 cos 2θ
(
a2
(

2L2M + 17L2r − 4Mr2
)

+ 9L2r3
)

−5a2L2M + 6a2L2r +10a2Mr2 + 22L2r3
)

+M�3
((

a2 + 3r2
)

cos 2θ + 3a2 + r2
)]

(A1)

E θ̂ = − aB sin 2θ

2
√QR�5/2

(
L2 + �

)
[
−20a4L2M2r2 sin2 θ(cos 2θ + 3)

+a2Mr�
(
− cos 2θ

(
a2
(

17L2 − 4Mr
)

+3L2r(2M + 3r)
)

− 3a2L2 + a2Mr cos 4θ

−5a2Mr − 2L2Mr − 11L2r2
)

+ 4Mr�3
(
a2 + r2

)

+�2
(
a4
(

8L2 − 3Mr
)

+a2r
(

4L2M + 8L2r − 2M2r − 3Mr2
)

−a2Mr cos 2θ
(
a2 + r(6M + r)

)
+ 4L2Mr3

)]
(A2)

Br̂ = B

2
√R�2

(
L2 + �

) [1

2
a4Mr sin θ (� sin 4θ

+10L2 sin θ cos 3θ
)

+ 8a2L2Mr� cos3 θ

− cos θ
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2�2
(
a2
(
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)

+r2
(
L2 + �

))
− 4a2Mr�2 cos 2θ

+ sin2 θ
(
a4
(
−35L2Mr + 8L2� − 6Mr�

)

+8a2L2r2�
)) ]

(A3)

B θ̂ = B
√

� sin θ√R�2
(
L2 + �

) [5a2L2Mr2(cos 2θ + 3)

+�
(
a2M sin2 θ

(
L2 − 2r2

)

−2
(
a2
(
L2M + 2L2r − 2Mr2

)
+ 2L2r3

))

+�2
(
a2M sin2 θ − 2a2M + L2r

)
+ r�3

]
(A4)

where we used the following notations

R = 2a2Mr sin2 θ + �
(
a2 + r2

)
,

and

Q = �
(
a2 + r2

)
− Mr

(
a2 cos 2θ + a2 + 2r2

)
.

Er̂ = aB
√

�

�5/2
√QR

[
8L2r

{
−2a2M2r2 sin2 θ(cos(2θ) + 3)

�

−Mr
((

2a2 + r2
)

cos 2θ + r2
)

+ �
(
a2 + r2

)}

+M
(

− 4a2Mr3 sin2 θ(cos 2θ + 3) − r�(cos 2θ + 3)(
r
(
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)
− 2a2M sin2 θ

)
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2
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a2 + 3r2
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cos 2θ + 3a2 + r2

) )]
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(A5)

E θ̂ = aB
√

� sin 2θ

�5/2
√QR
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4a2L2
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2a2M2r2 sin2 θ(cos 2θ + 3)
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)
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+3a2 + 2Mr + 3r2
)

− 2�2
(
a2 + r2

))]
, (A6)

Br̂ = B cos θ√R�2

[
4a2L2 sin2 θ

{
a2 + r2 − a2Mr(cos 2θ + 3)

�

}

−
(
a4Mr sin2 θ(cos 2θ + 3) − 4a2Mr� cos2 θ

+�2
(
a2 + r2

)) ]
,

(A7)

B θ̂ = B
√

� sin θ√R�2

[
4L2r

{
a2Mr(3 + cos 2θ)

�
− a2 − r2

}

+a2M

(
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2

)
(3 + cos 2θ) + r�2

]
(A8)

Here ∧ (hat) stands for orthonormal components of the
electric and magnetic fields.
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