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Abstract We present a model-independent method to esti-
mate the effects of short-distance constraints (SDCs) on the
hadronic light-by-light contribution to the muon anomalous
magnetic moment aHLbL

μ . The relevant loop integral is eval-
uated using multi-parameter families of interpolation func-
tions, which satisfy by construction all constraints derived
from general principles and smoothly connect the low-energy
region with those where either two or all three independent
photon virtualities become large. In agreement with other
recent model-based analyses, we find that the SDCs and
thus the infinite towers of heavy intermediate states that are
responsible for saturating them have a rather small effect on
aHLbL
μ . Taking as input the known ground-state pseudoscalar

pole contributions, we obtain that the longitudinal SDCs
increase aHLbL

μ by (9.1 ± 5.0) × 10−11, where the isovector
channel is responsible for (2.6 ± 1.5)× 10−11. More precise
estimates can be obtained with our method as soon as further
accurate, model-independent information about important
low-energy contributions from hadronic states with masses
up to 1–2 GeV become available.

1 Introduction

The persisting discrepancy between the Standard Model eval-
uation and the experimental determination [1] of the muon
anomalous magnetic moment aμ is one of the outstanding
open problems in particle physics and is traditionally consid-
ered a harbinger of New Physics. Moreover, the forthcoming
results from the Fermilab E989 experiment, which aim to
improve the present accuracy by a factor of 4 to reach an
uncertainty of about 16 × 10−11 (i.e. 0.14 ppm) [2], make
it even more crucial and timely to further scrutinize and
improve control over theory predictions.
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Together with the hadronic vacuum polarization contribu-
tion, the hadronic light-by-light (HLbL) is the major source
of theoretical uncertainty in the Standard Model [3–5]. In the
last years, significant efforts have been devoted to improve
the determination of aHLbL

μ and reduce model dependence
by using analytic approaches based on dispersion relations
[6–17] as well as lattice QCD [18–24]. In particular, the dis-
persive framework for the HLbL tensor in Refs. [6–11] has
enabled accurate data-driven determinations with controlled
error estimates of the contributions from one- and two-pion
intermediate states.

In this framework aHLbL
μ is evaluated via a two-loop inte-

gral of dispersively reconstructed scalar functions against
analytically known kernels. At sufficiently small space-like
photon virtualities, contributions from low-mass states acces-
sible to a dispersive treatment are enhanced. At higher virtu-
alities such an enhancement does not occur leading to impor-
tant effects from higher intermediate states, which are con-
strained by operator product expansions (OPEs) and pertur-
bative QCD (pQCD).

More specifically, there are two relevant kinematic regimes
concerning short-distance constraints (SDCs) on aHLbL

μ for
asymptotic values of (subsets of) the photon virtualities.
Since one of the photons corresponds to the static electromag-
netic source in the definition of g −2, one asymptotic regime
is realized when the remaining three space-like photon vir-
tualities are comparable and much larger than Λ2

QCD, and
the other when two space-like photon virtualities are much
larger than both the third and Λ2

QCD. The latter SDC was first
derived by Melnikov and Vainshtein (MV) [25] using an OPE
that leads to relations involving longitudinal and transversal
amplitudes of the correlator of two vector and one axial cur-
rent (VVA) in the chiral limit. The former SDC was also
discussed in Ref. [25] based on the quark-loop calculation
at leading order in pQCD and its derivation was recently put
on a firmer theoretical ground by means of an OPE in an
external electromagnetic background field [26].
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Tree-level resonance exchanges cannot make aHLbL
μ com-

ply with all SDCs unless an infinite number of states is
included. This is due to the fact that the transition form
factors (TFFs) describing the resonance couplings to off-
shell photons are subject themselves to asymptotic QCD
constraints [27–29], which make the full HLbL four-point
function decay too fast at high virtualities.1 MV proposed a
model to satisfy the longitudinal and transversal OPE SDCs
through a modification of the pion pole contribution [25,31],
which affects also the low-energy region. Recently, alter-
native model-dependent solutions have been investigated to
fulfill both OPE and pQCD SDCs by instead adding degrees
of freedom to the ground-state pseudoscalars. In this con-
text, Refs. [32,33] proposed the inclusion of infinite tow-
ers of excited pseudoscalar poles in large-Nc-inspired Regge
models to satisfy longitudinal SDCs away from the chi-
ral limit,2 while the effect of summing over axial-vector
contributions in holographic QCD was the subject of Refs.
[40,41].3 Through the explicit summation of intermediate
states, these models provide specific interpolations between
the low-energy region and the asymptotic regimes for the
scalar functions that determine aHLbL

μ .
The goal of this paper is complementary to these studies.

We introduce an approach based on more general interpolat-
ing scalar functions, independent of the physical mechanism
that is ultimately responsible for their actual form outside the
low-energy region. The multi-parameter families of func-
tions studied here satisfy all constraints rigorously derived
from general principles: unitarity, analyticity and crossing in
the low-energy domain, OPE and pQCD constraints in the
mixed and high-energy regions. Here we focus on longitudi-
nal SDCs since these are tightly related to the pseudoscalar
poles for which accurate low-energy input is available and
their implementation does not involve any mixing of OPE
constraints among different scalar functions [33]. Error esti-
mates as well as the role played by the various parameters
and assumptions, can be easily and transparently addressed
in our approach and are investigated in detail in our numerical
study.

Crucial input for our analysis is provided by an accurate
low-energy representation of the scalar functions. In the fol-
lowing we will mostly assume that this is given by the ground-
state pseudoscalar poles. In this context, an important role is
played by the lightest state (π0), whose contribution is under
firm theoretical control thanks to a dispersive evaluation [12–

1 See e.g. Ref. [30] where the analogous case of a three-point function
is treated explicitly.
2 For other calculations based on large-Nc arguments to satisfy long-
and short-distance constraints on QCD correlators using finite or infinite
sets of narrow resonances, see Refs. [30,34–39].
3 See also Ref. [42] for a discussion of the role of axial-vector mesons
in the saturation of the SDCs.

14]. Improved determinations of the effects of SDCs can be
obtained in a straightforward way within our approach once
similarly precise, model-independent information about fur-
ther relevant intermediate states in the energy region up to
1–2 GeV become available. In order to illustrate this aspect
and compare against a different way to estimate the contribu-
tion from SDCs, we have applied our method also to the case
where the lightest axial-vector meson is included in the low-
energy region using input from holographic QCD [40,41]
and neglecting issues related to intrinsic model dependence.

The paper is structured as follows. In Sect. 2 we review
the relevant constraints on HLbL and the assumptions made
in their derivations. Section 3 describes our interpolation
between the OPE and pQCD asymptotic constraints while
in Sect. 4 we discuss its smooth connection with the low-
energy region. In Sect. 5 we present our numerical analysis
with particular emphasis on the error estimation. Conclusions
are drawn in Sect. 6. Appendix A is devoted to the analysis
of the convergence properties of our interpolants.

2 Longitudinal short-distance constraints on HLbL

2.1 Master formula for aHLbL
μ and pseudoscalar pole

contributions

In order to set up the notation, we start by summarizing the
relevant definitions and results from Refs. [9,11]. The HLbL
contribution to aμ is governed by the fourth-rank vacuum
polarization tensor for fully off-shell photon-photon scatter-
ing in pure QCD,

Πμνλσ (q1, q2, q3) = −i
∫

d4x d4 y d4z e−i(q1·x+q2·y+q3·z)

×〈0|T{ jμ(x) jν(y) jλ(z) jσ (0)}|0〉
(1)

with momenta assigned as q1 +q2 +q3 = q4. In this expres-
sion, the electromagnetic current for the light quark triplet is
given by

jμ(x) = ψ̄(x)Qγ μψ(x),

ψ = (u, d, s)T ,

Q = 1

3
diag(2,−1,−1) . (2)

By generalizing the procedure introduced by Bardeen and
Tung [43] and Tarrach [44] in their studies of doubly-virtual
Compton scattering, it is possible to derive a generating
redundant “BTT” set of 54 Lorentz structures,

Πμνλσ =
54∑

i=1

T μνλσ
i Πi , (3)
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which is manifestly gauge invariant, closed with respect to
crossing relations and such that the scalar functions Πi are
free of kinematic singularities.

The HLbL contribution to aμ can be derived from the ten-
sor Πμνλσ by using projection operator methods [5,45,46]
in the static limit q4 → 0. After performing a Wick rotation
to Euclidean momenta, angular averages [47,48] lead to the
master formula [11]

aHLbL
μ = 2α3

3π2

∫ ∞

0
dQ1

∫ ∞

0
dQ2

∫ 1

−1
dτ

√
1 − τ 2 Q3

1 Q3
2

×
12∑

i=1

Ti (Q1, Q2, τ ) Π̄i (Q1, Q2, τ ), (4)

where Q1,2 denote the magnitudes of the Euclidean loop

four-momenta, Q1,2 =
√

−q2
1,2, and τ is the cosine of the

angle between these vectors. The scalar functions Π̄i are
linear combinations of the previous Πi for q4 → 0. The
analytic expressions of the integration kernels Ti are given
in Ref. [11].

Parameterizing the three-dimensional integration domain
by the coordinates [49]

Σ ∈ [0,∞) , r ∈ [0, 1] , φ ∈ [0, 2π) , (5)

which are related to the non-vanishing photon virtualities by

Q2
1 = Σ

3

(
1 − r

2
cos φ − r

2

√
3 sin φ

)
,

Q2
2 = Σ

3

(
1 − r

2
cos φ + r

2

√
3 sin φ

)
,

Q2
3 = Q2

1 + 2Q1 Q2τ + Q2
2 = Σ

3
(1 + r cos φ) , (6)

will prove very useful in the following discussion about
asymptotic constraints on HLbL. The master formula in
Eq. (4) then takes the form

aHLbL
μ = α3

432π2

∫ ∞

0
dΣ Σ3

∫ 1

0
dr r

√
1 − r2

∫ 2π

0
dφ

×
12∑

i=1

Ti (Σ, r, φ)Π̄i (Σ, r, φ) . (7)

In terms of the Q2
i coordinates, the integration domain

amounts to a cone with tip at the origin. In terms of (Σ, r, φ),
a given point in this cone is specified by the distance Σ to
the tip of the point’s projection on the symmetry axis (Σ =
Q2

1 + Q2
2 + Q2

3), and by the polar coordinates r and φ on the
plane containing the point and orthogonal to the symmetry
axis, normalized such that r = 1 corresponds to the surface
of the cone.

In the master formula, a special role is played by the scalar
functions Π̄1,2, which fulfill

Π̄2 = C2,3[Π̄1] and C1,2[Π̄1] = Π̄1, (8)

where the crossing operator Ci, j exchanges momenta and
Lorentz indices of the photons i and j . These functions are
the only ones describing the effects of pseudoscalar tree-
level exchanges. For small values of Σ , the pion pole dom-
inates yielding the largest contribution to aHLbL

μ and also
η/η′ poles yield sizable effects. Furthermore, distinctively,
the OPE SDCs on Π̄1,2 do not involve other scalar functions
[33].

The functional form of Π̄1,2 in specific kinematic regimes
is constrained according to analytic QCD results, which we
will fully exploit to estimate the impact of (longitudinal)
SDCs on

along
μ ≡ α3

432π2

∫ ∞

0
dΣ

∫ 1

0
dr

∫ 2π

0
dφ Σ3 r

√
1 − r2

×
[

T1(Σ, r, φ) + T2

(
Σ, r, φ + 2π

3

)]

×Π̄1(Σ, r, φ), (9)

where the shift in the variable φ in T2 corresponds to the
crossing operation on Π̄1. Thus for our analysis, we only need
to study one BTT scalar function in the g − 2 kinematics.

For the purpose of later discussion, we stress here that a
pole term in Π̄1 due to a single-particle intermediate state of
mass M yielding the denominator Q2

3 + M2 leads to a hierar-
chy among contributions in the space-like momentum region
relevant for aHLbL

μ . For small values of Q2
3 larger masses get

suppressed, while for Q2
3 comparable to the squared mass

of the heavier state or larger, no suppression is expected.4

This effect is of course modified by the numerator in Π̄1,
which encodes information on the strength of the coupling
to two (off-shell) photons, but it still helps us identify which
states can be relevant at specific energy scales and which not,
independent of the values of Q2

1,2.
The lightest state contributing to Π̄1 is π0. The unitarity

relation for a single pseudoscalar intermediate state yields

Π̄
PS-pole
1 = − FPSγ ∗γ ∗(−Q2

1,−Q2
2)FPSγ ∗γ ∗(−Q2

3, 0)

Q2
3 + m2

PS

, (10)

where the numerator is given by the product of a doubly-
virtual and a singly-virtual transition form factor (TFFs) for
an on-shell pseudoscalar meson (PS), which is defined by the
matrix element

i
∫

d4x e iq1·x 〈0|T{ jμ(x) jν(0)}|PS(q1 + q2)〉
= εμναβqα

1 qβ
2 FPSγ ∗γ ∗(q2

1 , q2
2 ) (11)

with ε0123 = +1. If we set Π̄1 = Π̄
PS-pole
1 , then along

μ

amounts to the pseudoscalar pole contribution aPS-pole
μ . In

4 This argument obviously also holds if the denominator of the heavier
state gets replaced by M2 as for the axial-meson longitudinal contribu-
tion in Eq. (65) below (see also Ref. [42]).
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the π0 case, this has been evaluated within a few percent
accuracy via a data-driven dispersive approach [12–14],

aπ0-pole
μ,disp = 62.6+3.0

−2.5 × 10−11 . (12)

This result agrees with other recent determinations based
on lattice QCD [50], Canterbury approximants [51], Dyson–
Schwinger equations [52,53] and AdS/QCD models [54].
While a dispersive analysis of the doubly-virtual η/η′ TFFs
has not been completed yet,5 the method of Canterbury
approximants in Ref. [51] provides data-driven determina-
tions and associated uncertainties also for the η/η′ TFFs. In
our numerical analysis of SDCs, we have used as input the
dispersive π0 TFF from Refs. [13,14] and compared our final
results against those with form factors from Canterbury and
Dyson–Schwinger approaches, while for η/η′ we have used
the TFFs in Ref. [51] and compared against Ref. [52].

The asymptotic constraints on aHLbL
μ [25,26] (see also

Refs. [42,58]) that we are going to discuss in the next sections
have been translated into the BTT framework in Refs. [26,32,
33]. In this context, there are two distinct relevant kinematic
regimes. The first (asymmetric) one is realized when one of
the photon virtualities is much smaller than the other two,
which are large and comparable, e.g. Q2

1 ∼ Q2
2 � Q2

3.
The second (symmetric) limit occurs when all the Euclidean
non-vanishing photon virtualities are large and comparable
in size (Q2

1 ∼ Q2
2 ∼ Q2

3 � Λ2
QCD). Both asymptotic limits

correspond to Σ → ∞ but for different values of r and φ:
the asymmetric limit Q2

1 ∼ Q2
2 � Q2

3 corresponds to r = 1
and φ = π while the symmetric configuration occurs in a
neighborhood of r = 0 (see Fig. 1).

In the following we will review the relevant constraints on
Π̄1 at large Σ and describe in detail our method to provide
general families of interpolants for Π̄1(Σ, r, φ) between low-
and high-energy regions in the g − 2 integral.

2.2 The asymmetric asymptotic region: OPE constraints

For large Euclidean values of q̂ ≡ (q1 − q2)/2, one can
expand the time-ordered product of two electromagnetic cur-
rents, which defines the tensor

Πμν(q1, q2) = i
∫

d4x d4 y e−i(q1·x+q2·y)T{ jμ(x) jν(y)},
(13)

into a series of local operators. At leading order in αs , by
matching single-quark matrix elements and omitting the unit
operator, which does not contribute to the connected HLbL
tensor in Eq. (1), one obtains [59]

5 The dispersive formalism for the singly-virtual η/η′ TFF has been
established [55] and progress has been made towards the determination
of the doubly-virtual isovector contribution [56,57].

Fig. 1 The circle represents the boundary of the g − 2 integration
domain for a fixed value of Σ . The angles φ = π/3, φ = π and φ =
5π/3 correspond to Q2

2 = Q2
3, Q2

1 = Q2
2 and Q2

1 = Q2
3, respectively.

The colored regions denote where SDCs on Π̄1 hold at large Σ . The
blue domains yield contributions to Π̄1 from the OPE expansion of the
VVA correlator that are sub-leading compared to the green one, while
the orange region corresponds to the pQCD constraint

Πμν(q1, q2)

=
∫

d4z e−i(q1+q2)·z
(

− 2i

q̂2 εμναβ q̂α j5β(z)

)
+ · · · ,

(14)

where the axial current jμ5 is defined by jμ5 (x) = ψ̄(x)Q2

γ μγ5ψ(x) with charge matrix given in Eq. (2). The ellipsis
denotes sub-leading terms suppressed by powers of {|q1 +
q2|/|q̂|, ΛQCD/|q̂|}. This result implies that, at leading order
in the OPE and at leading order in αs , the HLbL tensor can
be expressed in terms of the correlator of two vector currents
with an axial current,

Πμνλσ (q1, q2, q3) = 2i

q̂2 εμναβ q̂α

∫
d4x d4 y e−iq3·x eiq4·y

×〈0|T{ jλ(x) jσ (y) jβ5 (0)}|0〉 + · · ·
(15)

for Q2
1 ∼ Q2

2 � {Q2
3, Q2

4,Λ
2
QCD}. This three-point func-

tion, which also appears in the calculation of fermion loop
electroweak contributions to aμ [60,61], can be decomposed
into Lorentz structures that are longitudinal and transversal
with respect to the Lorentz index of the axial current (see e.g.
Ref. [62]). The corresponding longitudinal scalar function
determines the asymptotic behavior of Π̄1 in the asymmetric
region and is fixed by the axial Adler–Bell–Jackiw anomaly
up to chiral corrections and the gluon anomaly. Neglecting
these effects, which will be discussed below, this translates
into the following constraint [33] for the singlet and octet fla-
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vor components of Π̄1(Q2
1, Q2

2, Q2
3), defined by the decom-

position of the axial current,

Π̄
(a),OPE
1 (Q2, Q2, Q2

3) = − 2Nc C2
a

π2 Q2 Q2
3

for a = {3, 8, 0},
(16)

where Ca = Tr(Q2λa)/2 in terms of the charge matrix Q
and Gell–Mann matrices λa . In particular,

C3 = 1

6
, C8 = 1

6
√

3
, C0 = 2

3
√

6
. (17)

Since Eq. (16) relies on a perturbative calculation of the
VVA correlator, it holds in the kinematic limit Q2

1 ∼ Q2
2 ≡

Q2 � Q2
3 � Λ2

QCD. For the non-singlet components
(a = 3, 8), since perturbative [63] as well as non-perturbative
[64,65] corrections are absent in the chiral limit, the hierar-
chy between Λ2

QCD and Q2
3 can be dropped. In contrast, the

singlet channel (a = 0) is affected by the gluon anomaly,
even in the chiral limit. This does not modify Eq. (16) for
Q2

3 � Λ2
QCD [33], but the extrapolation to small Q2

3 is only
valid if in addition the large-Nc limit is considered, where the
anomaly vanishes. Furthermore, in the crossed kinematics
(Q2

2 ∼ Q2
3 � Q2

1 and Q2
1 ∼ Q2

3 � Q2
2), the leading-order

OPE contributions to Π̄1 vanish.
Let us now compare Π̄

(a), OPE
1 against the pseudoscalar

pole contributions, focusing on the pion pole first. In the chi-
ral limit and using the fact that lim

Q2→∞
Q2 Fπγ ∗γ ∗(−Q2,−Q2)

= 4C3 Fπ at leading order in αs [66,67], one finds

lim
Q2→∞

Q2Π̄
π0-pole
1 (Q2, Q2, Q2

3) = −4C3 Fπ

Fπγ ∗γ ∗(−Q2
3, 0)

Q2
3

.

(18)

This expression has a pole at Q2
3 = 0 since Fπγ ∗γ ∗(0, 0) =

3C3/(2π2 Fπ ). The location of this pole as well as its residue
agree with Π̄

(3), OPE
1 in Eq. (16) (cf. Ref. [25]), which is

consistent with the pion being the only massless isovector
state in the chiral limit.

For finite quark masses, the pole in Π̄
π0-pole
1 is shifted from

Q2
3 = 0 to Q2

3 = −m2
π , which lies outside the integration

domain for aHLbL
μ . The closest point in the integration region

for fixed asymptotic Σ (see Fig. 1) is at Q2
3 = 0, where

lim
Q2→∞

Q2Π̄
π0-pole
1 (Q2, Q2, 0) = −4C3 Fπ

Fπγ ∗γ ∗(0, 0)

m2
π

= − 6C2
3

π2m2
π

. (19)

Here few percent chiral corrections to Fπγ ∗γ ∗(0, 0) [68–72]
have been neglected. This is still close to the actual pole,
which leads to the enhancement by m−2

π . Since no other con-
tribution receives the same enhancement, the last expression
is expected to provide an excellent approximation to the true

Π̄
(3)
1 in the specified limit.6 We observe that the OPE result,

which is derived in the chiral limit, reproduces Eq. (19) if the
pole position is shifted by the pion mass as dictated by the
pion pole contribution

lim
Q2→∞

Q2Π̄
(3)
1 (Q2, Q2, Q2

3) = − 6C2
3

π2(Q2
3 + m2

π )
. (20)

This is also consistent with the OPE result in Eq. (16) for
Q2 � Q2

3 � Λ2
QCD, where chiral corrections are sub-

leading. Thus, Eq. (20) is exact for Q2
3 � Λ2

QCD, relies on

the assumption of pion dominance at Q2
3  Λ2

QCD and has

the correct chiral limit Eq. (16) for all Q2
3. We extend it to

the η/η′ channels and write

lim
Q2→∞

Q2Π̄
(a)
1 (Q2, Q2, Q2

3) = − 6C2
PS

π2(Q2
3 + m2

PS)
. (21)

Here Cπ = C3 but Cη/η′ cannot be directly identified with
C0/8 due to η-η′-mixing. In analogy to the pion channel,
we assume that ground-state single-pseudoscalar exchanges

dominate Π̄
(8/0)−η/η′
1 (Q2, Q2, 0), despite the fact that the

η/η′ poles are further away from Q2
3 = 0. This assumption

implies that Cη/η′ can be read off from the pole contributions

lim
Q2→∞

Q2Π̄
η/η′-pole
1 (Q2, Q2, 0) = − 6C2

η/η′

π2m2
η/η′

. (22)

One can show that in the chiral limit and neglecting the
gluon anomaly [33]

lim
Q2

3→0
lim

Q2→∞
Q2 Q2

3

×
(
Π̄

η-pole
1 (Q2, Q2, Q2

3) + Π̄
η′-pole
1 (Q2, Q2, Q2

3)
)

= −6(C2
8 + C2

0 )

π2 . (23)

At this point we note that, besides the αs corrections to the
TFFs and OPE coefficient discussed in Sect. 2.3, which affect
all ground-state pseudoscalars in the same way, the gluon
anomaly induces a running of the flavor singlet decay con-
stant [73–75]. This running leads to an incomplete cancella-
tion between the decay constants in the symmetric asymptotic
and the real photon limits, which has a sizable impact due to
the large scale separation [76,77].

Since Π̄
η/η′-pole
1 can be expressed in terms of TFFs accord-

ing to Eq. (10), assuming that corrections due to non-
vanishing meson masses are negligible both in the real photon
limit and in the symmetric asymptotic limit of the η/η′ TFFs,
Eqs. (21–23) together imply

C2
η + C2

η′ = C2
8 + C2

0 (24)

6 At variance with the MV model of Ref. [25], we do not neglect the
momentum dependence of the singly-virtual TFF and we allow for the
contribution from other states besides the pion at finite Q2

3.
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up to the above-mentioned anomaly-induced scale-
dependence, which leads to a violation of this equality (cf.
Sect. 5.2).

For Q2
3 � Λ2

QCD, the additional Q2
3-suppression of the

singly-virtual TFF leads to a mismatch between the pseu-
doscalar pole contributions and the OPE constraint. In Ref.
[25] MV proposed to solve this issue by setting the singly-
virtual TFF equal to a constant. This prescription is not com-
patible with the dispersive definition of the pole contribu-
tions in the framework summarized in Sect. 2.1, according
to which, instead, an infinite tower of heavier intermedi-
ate states is needed to saturate the constraint (see e.g. Ref.
[33]). For this purpose, summations of series of contributions
from excited pseudoscalars [32,33] and axials [40,41] have
been recently performed in the context of hadronic models.
In Sects. 5.3 and 5.4, we will compare the outcome of our
analysis against these estimates of the effects of longitudinal
SDCs.

2.3 αs corrections to the OPE

The derivation of Eq. (14) has been performed at leading
order in αs . Since no other operator of dimension 3 can appear
in that OPE, αs corrections only affect the OPE coefficient of
the axial-vector current. In Refs. [78–80], this coefficient has
been calculated to next-to-leading order (NLO). Including
this contribution in Eq. (14) leads to

Πμν(q1, q2) =
∫

d4z e−i(q1+q2)·z

×
(

− 2i

q̂2

(
1 − αs

π

)
εμναβ q̂α j5β(z) + O

(
q̂−2

) )
. (25)

It follows that the NLO version of Eq. (21) reads

lim
Q2→∞

Q2Π̄
(a)
1 (Q2, Q2, Q2

3)

= − 6C2
PS

π2(Q2
3 + m2

PS)

(
1 − αs

π

)
. (26)

The two-current operator product not only enters the
HLbL tensor, but also the pion TFF (see Eq. (11)). Thus,
any perturbative correction to the OPE Wilson coefficient
automatically implies the same perturbative correction to the
symmetric limit of the pion TFF and vice versa. In fact, the
symmetric asymptotic pion TFF has been calculated to NLO
in Refs. [14,81],7

7 In Ref. [81] the hard scattering kernel has been computed to NLO.
In the limit Q2

1 = Q2
2 this is independent of the momentum fraction

carried by the interacting quark, which makes the result independent of
the pion distribution amplitude.

Fπγ ∗γ ∗(−Q2,−Q2)

=
(

1 − αs

π
+ O

(
α2

s

)) 2Fπ

3Q2 + O
(

Q−4
)

, (27)

which is consistent with Eq. (25). The fact that the αs cor-
rections agree between the HLbL tensor in the asymmetric
asymptotic limit and the symmetric asymptotic pion TFF
guarantees that the pion pole saturates Π̄

(3)
1 at Q2

3 = 0 in the
chiral limit also beyond leading order in αs .

A comment on the renormalization scale dependence of
the terms in Eq.(25) is in order here. The non-singlet com-
ponents of the axial current are conserved (up to quark mass
corrections) and thus their anomalous dimensions vanish.
This is not true for the singlet component due to the gluon
anomaly [82,83], but we neglect this effect here because it
starts at O(α2

s ). Therefore, since the perturbatively expanded
dimensionless part d of the Wilson coefficient is scale (μ)
independent,

d

(
− q̂2

μ2 , αs(μ
2)

)
= d(1, αs(−q̂2)) (28)

and the terms αn
s lnn−1(−q̂2/μ2) (n ≥ 1) can be resummed

using as input the β-function and the one-loop result with αs

evaluated at the scale −q̂2 (see also [84]).

2.4 The symmetric asymptotic limit: perturbative QCD
constraints

In Ref. [26] it has been shown that the pQCD quark loop
is the leading term of an OPE in the kinematic limit Q2

1 ∼
Q2

2 ∼ Q2
3 � Λ2

QCD, where the fourth (external) photon has
vanishing momentum in (g−2)-kinematics. At leading order
in this OPE and at leading order in αs [33],

Π̄
pQCD
1 (q2

1 , q2
2 , q2

3 ) = NcTrQ4

16π2

∫ 1

0
dx

∫ 1−x

0
dy I1(x, y)

= 1

24π2

∫ 1

0
dx

∫ 1−x

0
dy I1(x, y),

I1(x, y) = −16x(1 − x − y)

Δ2
132

−16xy(1 − 2x)(1 − 2y)

Δ132Δ32
,

Δi jk = m2
q − xyq2

i − x(1 − x − y)q2
j

−y(1 − x − y)q2
k ,

Δi j = m2
q − x(1 − x)q2

i − y(1 − y)q2
j .

(29)

In the symmetric limit, neglecting terms that are sup-
pressed by powers of m2

q/Q2,

123



Eur. Phys. J. C (2020) 80 :1108 Page 7 of 20 1108

Π̄
pQCD
1 (Q2, Q2, Q2) =

∑
a=3,8,0

Π̄
(a), pQCD
1 (Q2, Q2, Q2)

=
∑

a=3,8,0

− 4NcC2
a

3π2 Q4 , (30)

where we have chosen to adopt the same flavor decompo-
sition as for the asymmetric OPE case, Eq. (16). If higher-
order perturbative corrections are small, the leading-order
result above is expected to be a good approximation also
away from the fully symmetric configuration as long as large
logarithms of ratios of momenta are absent.

Since Π̄
PS-pole
1 decays like Q−6, (towers of) hadronic con-

tributions beyond ground-state pseudoscalar poles have to be
responsible for the behavior shown by Eq. (30). Following
the MV prescription in Ref. [25], the parametric dependence
on Q can be reproduced but with an incorrect coefficient.

In order to saturate the pQCD result in the isosinglet chan-
nels, we need coefficients CpQCD

η/η′ satisfying

C2
8 + C2

0 =
(

CpQCD
η

)2 +
(

CpQCD
η′

)2
. (31)

Since Eq. (24) is violated, we define
(

CpQCD
η/η′

)2 = (1 + δ0)C
2
η/η′ , (32)

where the parameter δ0 is chosen such that Eq. (31) holds.

3 Interpolating between asymptotic constraints

We approximate the true Π̄1(Σ, r, φ) following a two-step
procedure. We first select functional forms that are valid for
asymptotic Σ and are compatible with the constraints dis-
cussed in the previous section. We then interpolate between
this set of functions and various representations of Π̄1 at small
Σ determined by single-particle intermediate states. Here we
work at leading order in αs . Perturbative corrections will be
discussed in our numerical analysis in Sect. 5.

The relevant constraints on Π̄1 at large Σ are given by
Eq. (21) for Q2

1 = Q2
2 � Q2

3 and Eq. (30) for Q2
1 = Q2

2 =
Q2

3. Both expressions as well as the vanishing result of the
leading-order OPE contribution in the crossed kinematics are
compatible with

Π̄
(a), asymp′
1 = − 4NcC2

PS

π2(Q2
3 + m2

PS)(Q2
1 + Q2

2 + Q2
3)

= − 12NcC2
PS

π2Σ(3m2
PS + Σ + Σr cos φ)

(33)

if CPS = CpQCD
PS . Thus, Eq. (33) interpolates between

symmetric and asymmetric asymptotic limits. According to
Sect. 2.4, δ0 parameterizes the anomaly corrections to the
singlet VVA correlator and the resulting shift in CpQCD

PS with

respect to CPS. Since a term proportional to Σ−2 and inde-
pendent of (r, φ) does not change the leading behavior at
Q2

3 = 0 and thus does not spoil compatibility with the OPE
constraint, we subtract 36δ0C2

η/η′/(π2Σ2) from Eq. (33) in
the case of η/η′.

Obviously, the choice made in Eq. (33) and the exact form
of the singlet correction are not unique and we are free to
add a generic function such that the interpolant still satisfies
the constraints. In order to have a non-negligible effect at
asymptotic values of Σ , this additional function should also
scale as Σ−2 and we demand it to be finite and analytic for
all r ≤ 1.8 Therefore it can be approximated by a Taylor
series in r cos φ and r sin φ truncated after order M ,

Π̄
(3), asymp
1 = Π̄

(3), asymp′
1 + 12NcC2

π

π2Σ2

M∑
i=0

M∑
j=0

1

i ! j !
×ai, j (r cos φ)i (r sin φ) j ,

Π̄
(8/0)−η/η′, asymp
1 = Π̄

(8/0)−η/η′, asymp′
1 − 36δ0C2

η/η′

π2Σ2

+12NcC2
η/η′

π2Σ2

M∑
i=0

M∑
j=0

1

i ! j !
×ai, j (r cos φ)i (r sin φ) j , (34)

where

a0,0 = 0, ai,2 j+1 = 0 (35)

for integer j , due to the pQCD constraint and crossing sym-
metry.

Up to now, we have applied the quark-loop result only
at r = 0. However, the fact that Eq. (29) holds also in a
neighborhood of this point can be used to fix the coefficients
ai, j . To this end, we fitted Eq. (34) at fixed asymptotic Σ with
M = 2 to Eq. (29) for r < 0.9.9 We chose a grid of equally
separated points in this fitting region and minimized the sum
of the relative squared differences between our interpolant
and the leading-order quark-loop expression. The resulting
5 dimensionless fit parameters in the pion channel read

a1,0 = −0.170, a2,0 = 0.094, a0,2 = −0.554,

a1,2 = −0.169, a2,2 = −0.756 (36)

and are all at most O(1), as expected since in Eq. (34) they
parameterize relative corrections. This holds true also for the
η/η′ channels, where the numerical values are different. In
Sect. 5.1.2 we will discuss uncertainties due to the chosen
fitting range, the number of parameters in the fit and αs cor-
rections to the asymptotic constraints.

8 Π̄1 cannot decay more slowly than Σ−2 for any (r, φ) region in order
for the aμ integral in Eq. (9) to be finite.
9 Since the maximal ratio of two squared momenta for r = 0.9 is 14.7
and ln(14.7) ≈ 2.7, large logarithms do not occur in this region.
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4 Interpolating between low and high energies

The next step is to smoothly connect our representation of Π̄1

for Σ � {Λ2
QCD, M2

PS, . . . } given by Eq. (34) to an accurate
low-energy description. We achieve this by adding suitable
terms to Π̄

(a), asymp
1 that are sub-leading at large Σ . For each

choice of r and φ, the coefficients of these terms are then
matched onto an input low-energy representation of Π̄1 at
a suitably defined surface Σmatch(r, φ). In Sect. 4.2 we will
discuss how Σmatch is related to the mass scale at which inter-
mediate states beyond the ones explicitly considered start to
affect Π̄1.

4.1 Interpolation functions and matching procedure

For Σ > Σmatch we consider the following two interpolation
functions

Π̄
(a), int 1
1 (Σ, r, φ) = Π̄

(a), asymp
1 (Σ, r, φ)

×
(

1 +
N∑

i=1

bi (r, φ)Σ−i

)
,

Π̄
(a), int 2
1 (Σ, r, φ) = Π̄

(a), asymp
1 (Σ, r, φ)

×
(

1 +
N∑

i=1

bi (r, φ)Σ−i

)−1

(37)

whose leading terms at asymptotic Σ are given in Eq. (34),
whereas below the matching surface we set Π̄

(a), int 1,2
1 =

Π̄
PS-pole
1 . In Appendix A we will show that these functions

converge to the true Π̄
(a)
1 in the limit N → ∞ when matched

to exact low-energy input using the convergence property of
a Taylor series. The two different forms given in Eq. (37) will
be used to estimate the sensitivity of our numerical results
on the specific choice of interpolation between low and high
energies.10

The coefficients bi (r, φ) are fixed from the requirement
that the Π̄

(a), int i
1 have the same value and the same N − 1

Σ-derivatives as the low-energy representation if evaluated at
Σ = Σmatch(r, φ) for each (r, φ). No expansion is performed
in r and φ, which is crucial to obtain a smooth transition to
the low-energy regime.

Determining the optimal value of N is a non-trivial issue.
On the one hand, larger values of N seem to be preferable
since the true Π̄1 is analytic for space-like momenta and
thus all derivatives are continuous. On the other hand, match-
ing many derivatives leads to a function that is almost sat-
urated by the low-energy input contribution up to consider-
ably higher energies than Σmatch(r, φ). Since it is desirable

10 We also considered multiplying the asymptotic expression in Eq. (34)
by Padé approximants in Σ−1. Using up to 3 free parameters and fixing
them in the way discussed below, however, leads to poles within the aμ

integration domain, where Π̄1 is known to be analytic.

to match at least one derivative in order to have Π̄1 differen-
tiable at the matching point, we will use N ∈ {2, 3} in order
to estimate the dependence on N .

Interpolation functions with a logarithmic dependence on
Σ are not forbidden. This can stem, for example, from non-
perturbative corrections leading to terms like ln (Q2

i /M2),
where M is some non-perturbative mass scale. In fact, the
Regge model considered in Refs. [32,33] leads to inter-
polants containing terms like Q−4 ln (Q2/σ 2) for Q2

i =
Q2 → ∞, where σ 2 could e.g. be the Regge slope of the
excited pseudoscalar masses. In order to allow for such a
logarithmic approach of the asymptotic expression, we addi-
tionally consider the alternative interpolant

Π̄
(a), int 3
1 (Σ, r, φ) = Π̄

(a), asymp
1 (Σ, r, φ)

×
(

1 + b1(r, φ)Σ−1 ln

(
Σ

Λ2
QCD

)

+
N−1∑
i=1

bi+1(r, φ)Σ−i

)
(38)

and use again N ∈ {2, 3}.

4.2 The matching surface Σmatch

The remaining crucial ingredient in our procedure is the func-
tion Σmatch(r, φ), which determines the value of Σ at which
the matching is performed for given r and φ. Choosing it too
low leads to important modifications of Π̄

(a)
1 at low ener-

gies with consequent overestimation of a(a)
μ .11 Conversely,

choosing Σmatch too high assumes the low-energy input to
dominate beyond what is expected according to mass and
phase-space considerations and thus leads to underestimate
a(a)
μ .

For small values of Q2
3, the π0, η, η′ poles are assumed

to dominate independently of Q2
1,2, due to the pole at Q2

3 =
−m2

PS (see Sects. 2.1 and 2.2). This implies that no matching
is needed in this regime, i.e. Σmatch(1, π) = ∞. The most
general function that is analytic for all (r, φ) except for a
(first-order) pole at (r, φ) = (1, π) can be written as

Σmatch(r, φ) = 3m2

1 + r cos φ
(1 + P(r cos φ, r sin φ)) , (39)

where m2 determines the matching scale at r = 0 and P
is a polynomial with two arguments and no constant term.
The transformation property of Π̄1 under crossing specified
in Eq. (8) restricts P to contain only even powers of r sin φ.

The parameter m2 sets the absolute mass scale of Σmatch

and should thus be related to the masses of the states affect-
ing Π̄1 beyond the ones explicitly included, namely π0, η, η′
here. In the following, we will assume that contributions to

11 We denote by a(a)
μ the result of the integral in Eq. (9) for Π̄1 ≡ Π̄

(a)
1 .
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Π̄1 in the g − 2 kinematics stemming from multi-particle
intermediate states are dominated by narrow resonances
while non-resonant effects lead to negligible corrections to
the matching procedure and can be simply added to our final
results.12 This is realized for example in the large-Nc limit
of pure QCD: since the short-distance expressions for Π̄1 in
both symmetric and asymmetric limits scale like Nc, these
can indeed be saturated by single-meson exchanges (see Ref.
[85]). Non-resonant contributions from multi-hadron inter-
mediate states (like 2π , 2K , πη, 3π ,…) are sub-leading for
large Nc and thus cannot contribute to the SDCs. Since scalar
mesons have no impact on Π̄1, the lightest states beyond the
ground-state pseudoscalars that are the most relevant at small
Q2

3 (see Sect. 2.1) are the axial mesons like a1(1260) and the
tensor mesons like f2(1270), with masses in the 1–2 GeV
region, whose effects on aHLbL

μ can presently be estimated
only using hadronic models.

For P(x, y) = 0, Σ = Σmatch corresponds to Q2
3 =

m2. Since a state of mass M ceases to be suppressed by the
denominator (Q2

3 + M2) compared to lighter states when Q2
3

approaches M2, m2 should be chosen well below M2. At the
same time, it should not be taken too small, because we do
not expect any large contribution to Π̄1 at Q2

3  M2. We
thus regard m2 = 0.5 GeV2 as a good starting point for our
analysis. In Sect. 5.1.4 we will discuss a range of choices for
this parameter as well as the effects of the polynomial

P(x, y) =
M∑

i=0

M∑
j=0

1

i ! j ! pi, j x i y j , (40)

which we have estimated by means of a Monte Carlo sam-
pling over the coefficients pi, j .

5 Numerical results and error analysis

5.1 The isovector channel

The isovector channel is best suited to our method since it
is characterized by a large contribution from the low-energy
region dominated by the well-known pion pole, which does
not mix (strongly) into the other flavor channels. The lightest
one-particle intermediate state beyond the π0 in this channel
is the a1(1260), whose effect at low energies is suppressed by
the large mass gap. The numerical dominance of this channel
at low energies, however, does not imply that the same holds

12 We have checked the effects of the inclusion of the pion-loop contri-
bution to Π̄1 [11] in the low-energy representation. Since the two-pion
state contains a five-dimensional representation of the isospin group,
a full decomposition into Π̄

(a)
1 is not possible. However, even if its

complete contribution is added to the isovector channel, we find that
at the current level of accuracy it is irrelevant whether the pion loop is
included in the matching procedure or not.

true at intermediate and high energies. In fact, the values of
Ca in Eq. (17) make the flavor singlet channel the numerically
most important one in the asymptotic region where meson
masses can be neglected, i.e. for Q2

i � Λ2
QCD. In Sect. 5.2

we will discuss the inclusion of η/η′ and in Sect. 5.4 also the
case of the isovector ground-state axial, which is however
affected by a larger degree of model dependence.

We start by selecting a “reference” set of assumptions and
input parameters. The impact of their modifications will be
assessed in the next sections and will define the range of our
predictions in the form of an uncertainty band. This procedure
allows us also to examine how the estimate of the effects of
SDCs would be improved by more precise information on the
pion pole, the contributions from states with masses around
1 GeV and the asymptotic regime.

As low-energy reference input, we took the leading-order
dispersive π0 singly- and doubly-virtual TFFs [13,14], while
the corresponding O(αs) correction is included in the uncer-
tainty. As reference interpolating function, we used Π̄

(3), int 1
1

with N = 3 (see Eq. (37)), which turned out to yield results
that are central in the range spanned by the interpolants 1, 2
and 3 and N ∈ {2, 3} (cf. Eq. (49) below). For the asymp-
totic function, we included information from pQCD away
from r = 0 in the way explained in Sect. 3, while αs correc-
tions contribute to the uncertainty. For the matching surface
we used Eq. (39) with P(x, y) = 0 and m2

ref = 0.5 GeV2.

The resulting function, which we call Π̄
(3), ref
1 , is shown in

Fig. 2 for r = 0 together with the uncertainty band for the
interpolants that we are going to discuss in the next sections.
Our reference outcome for the contribution to along

μ due to
the longitudinal SDCs in the isovector channel is

Δa(3), ref
μ = a(3), ref

μ − aπ0-pole
μ,disp = 2.56 × 10−11, (41)

where a(3), ref
μ comes from using Π̄

(3), ref
1 in the master for-

mula Eq. (9), and aπ0-pole
μ,disp is given in Eq. (12) according to

Refs. [13,14]. In Sect. 5.1.5 we will argue that our final result
does not strongly depend on the choice of the reference set
of parameters.

5.1.1 Pion TFF uncertainties

We shall now describe the effects of modifying the differ-
ent ingredients of the reference configuration, one by one,
starting from the pion TFF. By propagating the errors quoted
in Refs. [13,14] for the dispersive determination of the pion
TFF and by summing the different contributions in quadra-
ture, taking as well into account that a modification of the
TFF affects both terms in Eq. (41), we obtained an asym-
metric error band around the reference result with boundary
values
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Fig. 2 The pion pole contribution and associated uncertainty from Refs. [13,14] vs. the reference interpolant and its error band which includes all
sources of uncertainty considered in the present analysis (see discussion in Sects. 5.1.1–5.1.4 below)

δ+
TFFΔa(3)

μ = 0.06 × 10−11,

δ−
TFFΔa(3)

μ = 0.13 × 10−11, (42)

which correspond to the asymmetric error for the disper-
sive π0 TFF. Given the smallness of these uncertainties, the
(negative) correlation between them and the uncertainties of

aπ0-pole
μ,disp can be safely neglected.

In order to study the impact of different pion TFF param-
eterizations, we compared the previous results against the
ones obtained using, both for the construction of the inter-

polant and the evaluation of aπ0-pole
μ , the C1

2 Canterbury
approximant with aπ;1,1 = 2b2

π of Ref. [51] and the Dyson–
Schwinger TFF from Ref. [52]. We obtained

Δa(3), Can
μ = 2.60 × 10−11,

Δa(3), DSE
μ = 2.52 × 10−11, (43)

which are both compatible with the reference result within
the range given above. We conclude that the outcome of our
analysis is very robust against changes in the TFF input and
that the present knowledge of the pion TFF is sufficient for
our purposes.

5.1.2 Asymptotic uncertainties

Here we focus on the uncertainties in Π̄
(3), asymp
1 (see

Eq. (34)), which are related to

• the choices made in the fit to the quark-loop result that
lead to Eq. (36), namely the degree M of the polynomial
and the radius rmax of the fitting domain;

• αs corrections to the OPE constraint as given by Eq. (26);

• αs corrections to the quark loop.

We start by discussing the fit to the quark-loop result. In
Sect. 3, we chose M = 2, which leads to a strongly improved
fit quality compared to M = 1. Considering a larger value of
M gives an estimate of the errors made by approximating the
pQCD result by a polynomial at r < rmax at fixed asymptotic
Σ and by extrapolating to the regime r > rmax, which is
unknown except for the OPE constraint. Choosing M = 3
shifts the result for Δa(3)

μ by only 0.02 × 10−11 indicating
that the truncation at M = 2 is sufficient. We also studied the
effects of a substantial reduction of the radius, namely from
rmax = 0.9 down to rmax = 0.5, where no logarithm of ratios
of squared momenta is larger than 1. We found that this leads
to a small shift (0.07 × 10−11). We did not consider rmax >

0.9 since fixed-order pQCD is not expected to converge for
r close to 1 due to large logarithms. Combining linearly the
uncertainties from the choice of M and the fitting radius gives

δpQCD fitΔa(3)
μ = 0.09 × 10−11, (44)

with respect to the reference contribution of longitudinal
SDCs to the pion pole input in Eq. (41).

Let us now focus on the estimate of the separate perturba-
tive corrections to either the OPE or the pQCD result. Since
those concerning the OPE should not be extrapolated into the
domain of validity of pQCD, for asymptotic Σ we write (cf.
Eq. (26))

Π̄
(3), asymp, δOPE
1 = Π̄

(3), asymp
1

[
1 − αs(μ

2 = Q2
1 + Q2

2)

π
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× θ

(
A − Q2

3

Q2
1 + Q2

2

)]
. (45)

Here the Heaviside step function θ ensures that the perturba-
tive correction only affects a region around Q2

3 = 0, whose
size can be varied via the free parameter A. By setting A =
1/29, this region does not extend into the r < 0.9 domain.
The choice of the renormalization scale μ2 is the same as in
Ref. [14] and agrees with our discussion in Sect. 2.3 up to a
factor of 2 since−q̂2 = (Q2

1+Q2
2)/2−Q2

3/4 ≈ (Q2
1+Q2

2)/2
in the relevant regime. In our numerical analysis, for the run-
ning of αs we used the three-flavor one-loop beta function
and matched to αs(μ

2 = Mτ 2) = 0.35.
According to the discussion in Sect. 2, the OPE constraint

in the chiral limit is saturated by the pion pole at Q2
3 = 0 to

all orders in perturbation theory. For this reason in a con-
sistent analysis the OPE coefficient and the pion TFF in
the symmetric limit should be taken at the same perturba-
tive accuracy. Hence we replaced in Eq. (37) Π̄

(3), asymp
1 by

Π̄
(3), asymp, δOPE
1 and matched the correspondingly modified

Π̄
(3), int 1
1 to the pion-pole contribution with TFFs including

O(αs) effects [14,81].13 Using this interpolant and this pion-
pole result, our outcome for Δa(3)

μ is larger than the reference
result Eq. (41) by

δ+
NLO OPEΔa(3)

μ = 0.01 × 10−11. (46)

For A = 1/3, the domain where the correction applies
extends down to r = 0.25, but nevertheless the shift of
Δa(3)

μ turns out to be −0.05 × 10−11 and thus still negli-
gible. The smallness of these shifts can be understood from
the large values of Σmatch in the region where these pertur-
bative corrections apply. For this reason, the effect is almost
completely included in the pion pole contribution, where it
also has a small impact [14].

Since the NLO calculation of the quark loop has not been
performed yet, we can only provide a rough estimate of
the uncertainty related to unknown O(αs) corrections. We
assumed in analogy with Eq. (45),

Π̄
(3), asymp, δpQCD
1 = Π̄

(3), asymp
1

[
1 − αs(μ

2 = Σ)

π

×θ (rmax − r)

]
, (47)

and as in the leading-order quark loop fit, we set rmax = 0.9.
Using this expression in Eq. (37) for the matching to the pion-
pole with leading-order dispersive TFF, we obtained a shift of
−0.18 × 10−11 compared to the reference result. Even when
inflating this uncertainty by a factor of 2,

δNLO pQCDΔa(3)
μ = 0.36 × 10−11 (48)

13 We thank Bai-Long Hoid for kindly providing us with a numerical
representation of the dispersive pion TFF with O(αs) corrections.

this effect is still sufficiently small compared to the current
precision goal. We stress that once NLO calculations become
available, Π̄

(3), asymp
1 should be constructed to analytically

interpolate between the NLO expressions for the OPE and
the quark loop. The discontinuous functions employed here
only serve to provide a ballpark estimate of NLO effects.

5.1.3 Choice of interpolation functions

In Eqs. (37) and (38) we have introduced three different inter-
polation functions, characterized by two or three free param-
eters to be matched to the low-energy representation. The
corresponding results for the contribution from longitudinal
SCDs are

Δa(3), int 1, N=2
μ = 3.18 × 10−11,

Δa(3), int 1, N=3
μ = 2.56 × 10−11,

Δa(3), int 2, N=2
μ = 2.75 × 10−11,

Δa(3), int 2, N=3
μ = 2.16 × 10−11,

Δa(3), int 3, N=2
μ = 2.69 × 10−11,

Δa(3), int 3, N=3
μ = 1.94 × 10−11, (49)

where Δa(3), int 1, N=3
μ = Δa(3), ref

μ given by Eq. (41) has
been included for completeness.

We observe that the slower logarithmic approach to the
asymptotic limits in the interpolant 3 leads to smaller results,
especially when compared to the similar interpolant 1. Set-
ting

δintΔa(3)
μ = 0.62 × 10−11, (50)

all values listed above are within the range Δa(3), ref
μ ±

δintΔa(3)
μ .

5.1.4 Choice of Σmatch(r, φ)

The function Σmatch(r, φ) in Eq. (39) contains the mass
parameter m and the polynomial P(x, y), which has been
set equal to zero so far. We have argued in Sect. 4.2 that
m should be chosen considerably smaller than the mass M
of the lightest resonances contributing to Π̄1 in addition to
the ground-state pseudoscalar mesons. For this reason, for
the reference interpolant we set m2 = 0.5 GeV2. Here we
discuss the effects of alternative choices for this parameter
within a range between mmin and mmax.

Since according to Sect. 4.2 a conservative choice for the
upper end of the range is mmax � M , we set m2

max = 1 GeV2.
In order to determine an appropriate value for mmin, one has
to estimate isovector contributions beyond the π0-pole. Fol-
lowing our argument in Sect. 4.2, it is sufficient to restrict
ourselves to single-particle intermediate states and focus on
the one giving the largest effect at energies around m. We
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Fig. 3 The figure displays the dispersive pion pole contribution, the
reference interpolant and the (orange) band corresponding to the var-
ious choices of the parameter m. The blue line indicates the value of

the matching surface for m2 = m2
min. The green band shows the sum

of the π0- and π(1300)-pole contributions, where the latter has been
calculated using input from RχT and phenomenology, including errors

assumed this to be given by the pseudoscalar π(1300) for the
following reasons. Models for tensor mesons around 1 GeV
give similar or smaller contributions to aHLbL

μ [16,86,87].
For ground-state axials, recent studies based on different
approximations and hadronic models yield quite different
numerical results, see e.g. Refs. [40,41,86,88], leading to
large uncertainties. If future model-independent analyses
show that axial-meson exchanges are responsible for signif-
icant effects in Π̄

(3)
1 also at relatively small momenta, then

these contributions should be added to the pion pole before
the matching is performed since our procedure relies on a
sufficiently precise knowledge of Π̄

(3)
1 below Σmatch(r, φ).

Neglecting issues related to model dependence, in Sect. 5.4
we will discuss the inclusion in our procedure of information
from holographic QCD on the lightest axial meson.

As for the light pseudoscalars, the interaction of π(1300)

with two photons can be described by a TFF, which deter-
mines the contribution to Π̄1 as in Eq. (10). In our analysis
we used as input the π(1300) TFF derived in Ref. [89] in
the framework of Resonance Chiral Theory (RχT) [90]. We
fixed the free parameters in Eq. (69) of Ref. [89] by requir-
ing that (i) the π0-TFF satisfies the Brodsky–Lepage condi-
tion, i.e. Fπ0γ ∗γ ∗(−Q2, 0) = 2Fπ/Q2 + O(Q−4) and (ii)
the two-real-photon limit of the excited pion TFF is in the
range Fπ(1300)γ ∗γ ∗(0, 0) ∈ [0, 0.0544] GeV−1, argued for in
Ref. [33] based on experimental results [91,92]. The upper
boundary of this interval leads to the most conservative error
estimate in our analysis, and is used in the following.

Our procedure to determine mmin can be illustrated by
means of Fig. 3. Given a value of mmin, at large enough

Σ , the range of interpolants (orange band) spanned by m ∈
[mmin, mmax] safely includes the green band representing the
sum of the contributions from π0 and π(1300), including
errors on the latter due to the range for Fπ(1300)γ ∗γ ∗(0, 0).

Since this is not the case at small Σ , the contribution to along
μ

from this region is underestimated in our approach. To gauge
this effect, we calculated the integral in Eq. (9) with

Π̄1 = Π̄
π0-pole
1 + Π̄

π(1300)-pole
1 − Π̄

(3), int
1 (m = mmin) (51)

using the maximal π(1300) contribution and restricting the
Σ-domain to the region below the point where the bands start
to fully overlap (as a function of r and φ). This integral gives
the missed contribution a(3), missed

μ at a fixed mmin. Repeat-
ing this calculation for different values of mmin yields the
function a(3), missed

μ (mmin) and by inverting this, we deter-

mined mmin by fixing a(3), missed
μ to values well below the

accuracy goal set by forthcoming experimental results. For
a(3), missed
μ = 0.5 × 10−11 we obtained m2

min, 1 = 0.35 GeV2

and for a(3), missed
μ = 0.2 × 10−11, m2

min, 2 = 0.13 GeV2.

Numerically, mmax = 1 GeV leads to the shift δ−
m Δa(3)

μ =
1.20 × 10−11 and the two values mmin, 1 and mmin, 2 yield
δ+′

m,1Δa(3)
μ = 0.81 × 10−11 and δ+′

m,2Δa(3)
μ = 3.66 × 10−11,

respectively. If we add a(3), missed
μ (mmin, {1, 2}) to the latter

numbers, we obtain the conservative estimates

δ−
m Δa(3)

μ = 1.20 × 10−11,

δ+
m,1Δa(3)

μ = 1.31 × 10−11, δ+
m,2Δa(3)

μ = 3.86 × 10−11.

(52)
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In the following we will use δ+
m,1Δa(3)

μ for the main results

and keep δ+
m,2Δa(3)

μ as an alternative, even more conservative
uncertainty.

We also considered a different parameterization for the
π(1300) TFF, namely the one given by the Regge model in
Refs. [32,33]. Using the empirical mπ(1300) = 1.30 GeV
instead of the Regge-model value of 1.36 GeV used in
these references and following the same procedure discussed
above, we obtained m2

min, 1 = 0.53 GeV2 and m2
min, 2 =

0.20 GeV2. This leads to

δ+
m,1Δa(3)

μ = 0.36 × 10−11 , δ+
m,2Δa(3)

μ = 2.63 × 10−11,

(53)

where we again added amissed
μ to the uncertainties in the

upward direction. For our final result we use the more con-
servative uncertainty estimates given in Eq. (52).

In order to study the effects of the polynomial in
Σmatch(r, φ), Eq. (40), we set M = 2 and sampled the free
parameters according to a standard normal distribution. Since
the pion pole gives an excellent approximation of Π̄1 for very
small Σ at any (r, φ), we only allowed for parameters giving
Σmatch(r, φ) > Σt for all (r, φ), where Σt is defined as the
smallest value of Σ such that

Π̄
π(1300)-pole
1 (Σ, r, φ)

Π̄
π0-pole
1 (Σ, r, φ)

= 0.02 (54)

holds for some (r, φ). With Π̄
π(1300)-pole
1 calculated using

RχT, we obtained Σt = 0.57 GeV2. This condition ensures
that there are no large contributions from our interpolation
at points where RχT predicts a very small excited pion con-
tribution. From this we calculated a distribution of results
for Δa(3)

μ , which features a Gaussian-like peak close to the
reference result and asymmetric tails, and read off the 16%
quantiles from both sides corresponding to the 1σ errors for
a Gaussian. This gives

δ+
P(x,y)Δa(3)

μ = 0.39 × 10−11,

δ−
P(x,y)Δa(3)

μ = 0.32 × 10−11. (55)

We have checked that this result is stable against the inclusion
of terms of order 3 in the polynomial and moderate changes
in the value of the ratio in Eq. (54).

5.1.5 Estimate of the effects of longitudinal SDCs in the
isovector channel

The π0-column of Table 1 collects all uncertainties in our
estimate of the effects of longitudinal SDCs in the isovector
channel, as described in the previous subsections. By com-
bining them in quadrature we get

δ+
totΔa(3)

μ = 1.55 × 10−11, δ−
totΔa(3)

μ = 1.44 × 10−11.

Table 1 The effects on aHLbL
μ of longitudinal SDCs assuming that the

low-energy region is dominated by ground-state pseudoscalar poles,
whose contributions are taken as input. In each flavor channel the results
are presented as the shifts Δaμ,ref with respect to the pole contributions
for a specific reference set of parameters and a list of uncertainties
corresponding to different choices for each of these parameters. In the
last two rows, these uncertainties are added in quadrature and the final
range is symmetrized. See main text for details

π0 η η′

Δaμ,ref × 1011 2.56 2.58 3.91

δTFFΔaμ × 1011 +0.06
−0.13 0.47 0.30

δpQCD fitΔaμ × 1011 0.09 0.08 0.14

δNLO OPEΔaμ × 1011 +0.01
−0.00

+0.01
−0.00

+0.02
−0.00

δNLO pQCDΔaμ × 1011 0.36 0.36 0.55

δintΔaμ × 1011 0.62 +0.61
−0.65

+0.74
−0.84

δm,1Δaμ × 1011 +1.31
−1.20

+1.27
−1.17

+1.68
−1.60

δP(x,y)Δaμ × 1011 +0.39
−0.32

+0.31
−0.33

+0.32
−0.43

δtotΔaμ × 1011 +1.55
−1.44

+1.56
−1.50 1.97

Δaμ × 1011 2.6 ± 1.5 2.6 ± 1.5 3.9 ± 2.0

Fig. 4 Relative contributions to the total uncertainty in the isovector
channel. For asymmetric errors the mean of the squared errors is used

(56)

Since we do not regard the reference parameterization as
the central value, we symmetrized the uncertainty to finally
obtain the range

Δa(3)
μ = (2.6 ± 1.5) × 10−11 . (57)

Using instead δ+
m,2Δa(3)

μ in Eq. (52), the final result would
be (3.8 ± 2.7) × 10−11. Notice that, despite the fact that it
likely overestimates the range of longitudinal short-distance
effects, this interval is still definitely compatible with the
current precision goal.

Figure 4 shows the contributions to the quadratic error
from the different sources discussed above. The vastly dom-
inant effect stems from the interpolation between low and
high energies, with an especially crucial role played by the
choice of m, the scale at which the matching between the low-
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energy representation of Π̄1 and the interpolant is performed.
The uncertainties δint, δm and δP(x,y) could be reduced by
additional low-energy input concerning further intermediate
states and higher-order terms in the symmetric and asym-
metric OPEs, which would help constrain the coefficients
bi (r, φ) in the interpolants in Eqs. (37) and (38). The uncer-
tainties related to the perturbative corrections are consid-
erably smaller. While we do not expect that calculations
of αs corrections will crucially improve the final estimate,
these perturbative results will definitely be important to bet-
ter assess the regime of validity of the asymptotic constraints
and thereby verify and sharpen some of our assumptions.

We have also checked that our results are robust against
the choice of different reference sets of parameters. For
example, if we set mref equal to the previous boundary
values for the uncertainty in the reference configuration,
namely m2

ref = 0.35 GeV2 and m2
ref = 1 GeV2 and choose

m2 ∈ [0.35, 1] GeV2 as the range for the error estimation as
before, we get

Δa
(3), m2

ref=0.35 GeV2

μ = (2.8 ± 1.7) × 10−11,

Δa
(3), m2

ref=1.00 GeV2

μ = (2.4 ± 1.5) × 10−11, (58)

where all other sources of uncertainty are included. We
obtained similar results by selecting as reference different
interpolants or different values of the number of free param-
eters N contained therein.

5.2 The isoscalar contributions

In this section the procedure presented above for the isovec-
tor case is applied to the isoscalar channels with η/η′-poles
as low-energy input. In our analysis, we employed the Can-
terbury TFFs from Ref. [51] in the reference solution.14

We determined the parameters encoding η − η′-mixing as
explained in Sects. 2.2 and 2.4 and obtained

Cη = 0.164, Cη′ = 0.219, δ0 = 0.110, (59)

which shows that δ0 is indeed sizable.
Following the same procedure for the construction of the

reference interpolant as in Sect. 5.1, we found

Δaη
μ,ref = 2.58 × 10−11, Δaη′

μ,ref = 3.91 × 10−11. (60)

The uncertainty estimation proceeds in the same way as
in the isovector channel up to minor modifications. Since
error bands for the doubly-virtual TFFs in all kinematic
configurations are not available in the literature, we esti-
mated uncertainties by considering another TFF represen-
tation, namely the one based on Dyson–Schwinger equa-
tions (DSE) [52]. This yields Δaη

μ,ref = 2.11 × 10−11 and

14 In the conventions of Ref. [51], we used the C1
2 approximant with

aη/η′;1,1 = 2b2
η/η′ as for the pion.

Δaη′
μ,ref = 4.20 × 10−11. The fact that individual results for

η and η′ channels differ by 18 and 8%, but the sum only by
3% can be understood by comparing the mixing parameters

CDSE
η = 0.148, CDSE

η′ = 0.228, δDSE
0 = 0.127, (61)

against those obtained from the Canterbury parameteriza-

tion. These coefficients enter Π̄
(8/0)−η/η′, asymp
1 quadrati-

cally, which leads to a reshuffling between a(8/0)−η
μ and

a(8/0)−η′
μ . Due to Eq. (24) this effect drops out in the sum

up to the anomaly correction affecting the OPE regime. As

TFF contribution to the uncertainty on Δa(8/0)−η/η′
μ we took

the absolute value of the differences between the results from
the Canterbury and DSE TFFs.

Since NLO results are not available for the η/η′ TFFs, we
estimated the NLO OPE uncertainty by simply rescaling the
one in the pion channel by the ratio of the reference outcomes.
Due to the smallness of this uncertainty, this is expected to
be sufficiently accurate.

For the range [mmin, mmax] and the minimal allowed value
Σt for Σmatch in the Monte Carlo simulation for P(x, y), we
took the results from the isovector channel. We rescaled the
π(1300) term below the matching surface by the ratio of ref-

erence results when adding this contribution to δma(8/0)−η/η′
μ .

This is justified by the fact that the first excited pseudoscalars
in the three flavor channels have similar masses, despite the
large mass difference of the pseudo-Goldstone bosons.

All results are collected in Table 1 and our final estimate
for the longitudinal short-distance effects in a(8/0)−η/η′

μ reads

Δa(8/0)−η
μ = (2.6 ± 1.5) × 10−11,

Δa(8/0)−η′
μ = (3.9 ± 2.0) × 10−11 . (62)

The relative contributions to the uncertainties are similar to
the pion case illustrated in Fig. 4. A more precise description
of η−η′-mixing would of course help better separate the two
isoscalar channels but would not play an important role in
their sum leading to negligible shifts in the total contribution
from longitudinal SDCs.

5.3 Sum over the flavor channels and comparison with
literature

Combining the results from Sects. 5.1 and 5.2, obtained under
the assumption that the ground-state pseudoscalar mesons
dominate the low-energy region, our estimate for the total
effect of the longitudinal SDCs on HLbL amounts to

Δalong
μ = Δa(3)

μ + Δa(8/0)−η
μ + Δa(8/0)−η′

μ

= (9.1 ± 5.0) × 10−11 , (63)

where we have combined the three uncertainties linearly
since they originate from the same sources in all three chan-
nels.
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This result is remarkably close to what is expected based
on flavor symmetry considerations. If the U (3) symme-
try emerging in the combined chiral and large-Nc limit is

assumed, then Δa(8/0)−η
μ + Δa(8/0)−η′

μ = 3Δa(3)
μ . Using

our isovector uncertainty and adding linearly a standard 30%
U (3) breaking effect, we obtain

Δalong
μ = (10.4 ± 8.3) × 10−11. (64)

For this reason we do not expect that a more refined analy-
sis of the subtler isosinglet contributions is going to change
substantially our final results.

References [32,33] have recently studied the possibility
of saturating SDCs away from the chiral limit by including a
tower of excited pseudoscalar states in the context of a Regge
model matched to the pQCD quark loop. Their outcome is
Δalong

μ = (13 ± 6) × 10−11, which is well compatible with
ours within errors. For theη′-channel, the Regge model yields

Δa(8/0)−η′
μ = (6.5±2.0)×10−11, which is somewhat larger

than our result but still compatible within errors.15 This can
partly be explained by the different value for Cη′ used in Refs.
[32,33], namely Cη′ = 0.239, which results from imposing
that Eq. (24) holds exactly.

Figure 5 shows Δa(3)
μ as a function of a lower cutoff on

Q2
3 in our approach as well as the large-Nc Regge model 1

of Refs. [32,33]. In order to obtain this plot, we calculated
the integral in Eq. (9) as a function of a lower limit on Q2

3

(which depends on Σ , r and φ) for both the full a(3)
μ as well

as the pion pole contribution (cf. Eq. (41)). The Regge model
result lies within our error band for all Q2

3,min.
Our estimate of longitudinal short-distance effects as well

as the one in Refs. [32,33] are smaller than the shift obtained
in Ref. [25], Δalong

μ = 23.5×10−11, which even increases to
about 38×10−11 if up-to-date TFF input is used [33]. These
large values are due to two features of the MV model: the fact
that the singly-virtual TFF is set to a constant over the whole
integration region and not only in the OPE regime, and the
fact that in the symmetric asymptotic limit the parametric
momentum dependence is correct but its coefficient is too
large. Both of these features can be clearly seen in Fig. 5 and
are responsible for the discrepancies in the slope at small
Q2

3,min and the values at large Q2
3,min, respectively.

References [40,41] have studied how the inclusion of
an infinite tower of axial-vector mesons could help satisfy
the OPE SDCs, focusing for this purpose on the relevant
TFFs in the context of holographic QCD models. According
to Ref. [40], the tower of axial-vector mesons contributes
(29−41)×10−11 to aHLbL

μ of which (57–58)% are attributed

to along
μ . Using instead holographic QCD input only for the

15 The quoted result does not include the matching to the pQCD quark
loop, which has only been performed for the sum of all channels in
Refs. [32,33].

momentum dependence of the TFF and fixing its normaliza-
tion from experiment reduces the estimate of the contribution
to aHLbL

μ from the tower of axials to (22 ± 5) × 10−11. Ref-

erence [41] finds 14 × 10−11 for the effect of axials on along
μ .

Thus, the results of these studies appear to be at the high
end of our range in Eq. (63). However, we stress that com-
paring these numbers with our result is not properly justified.
Indeed, while in these models the parametric Σ-dependences
implied by pQCD and the OPE in the respective limits are
correctly reproduced, the coefficients thereof are typically
too small. In addition, the lightest multiplet of axials signif-
icantly alters Π̄1 at small photon virtualities, which implies
that in our approach its contribution should be included in
the low-energy representation. This aspect will be discussed
in the next section, also to show how information on addi-
tional states in the 1 GeV region can be incorporated in our
analysis.

5.4 Including ground-state axial mesons at low energies

Here we adopt a model-dependent approach to illustrate the
application of our procedure to the case of the inclusion in the
low-energy region of the lightest of the axial-vector mesons,
for which no dispersive treatment in the BTT formalism is
available yet. According to the holographic QCD models in
Refs. [40,41] and using the notation of Ref. [40], the con-
tribution to Π̄1 of an axial meson of mass MA in the flavor
channel a can be written as

Π̄
(a), axial
1 = − 9 C2

a

16π4 M2
A

[
Q2

1 A(Q2
1, Q2

2) + Q2
2 A(Q2

2, Q2
1)

]

×A(Q2
3, 0), (65)

where A(Q2
1, Q2

2) is the axial TFF.
Among the various scenarios analyzed in Ref. [40], the

hard-wall model by Hirn and Sanz (HW2) [93], which was
also studied in Ref. [41] with different parameters, repro-
duces best the measured mass, the measured equivalent two-
photon decay width and the singly virtual momentum depen-
dence measured by L3 for the lightest multiplet [94,95]. Fur-
thermore, it yields asymptotic axial TFFs whose momentum
dependence is consistent with the behavior derived in Ref.
[29]. The infinite tower of axials has the correct momentum
scaling in the asymmetric asymptotic regime dictated by the
OPE constraint, but the coefficient is 38% too small [40].

We focused on the isovector channel, which is suffi-
cient for our illustrative purposes, and thus on the inclusion
of the a1 meson. Based on the HW2 model, we obtained
aa1
μ,HW2 = 3.3 × 10−11 for the a1 contribution to along

μ . The
rest of the tower of isovector axial mesons in this model yields
Δa(3), A, HW2

μ = 0.8 × 10−11, implying that in this frame-
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Fig. 5 Δa(3)
μ as a function of a lower limit on Q2

3 in Eq. (9): our ref-
erence result and corresponding error band against the tower of excited
pseudoscalars in the large-Nc Regge model 1 of Refs. [32,33] and the
curve from the MV model [25] evaluated using the up-to-date disper-
sive pion TFF. At small non-vanishing Q2

3,min, our reference curve is

constant due to the finite Σmatch, which for P(x, y) = 0 corresponds
to m2 = Q2

3 = const., whereas the Regge model has a slope due to
the absence of such a cutoff. The upper end of our error band shows
a slope because of the inclusion of the π(1300) contribution in that
region ss

work about 80% of the total effect comes from the lightest
state.16

By matching the interpolant in Eq. (37) to the contribu-
tions from the pion and the holographic a1 with the reference
set of assumptions in Sect. 5.1, we obtained17

Δa(3), A
μ = a(3), A

μ − aπ0-pole
μ,disp − aa1

μ,HW2 = 1.9 × 10−11.

(66)

This result is more than twice as large as the resummed tower
in HW2, Δa(3), A, HW2

μ , but the significance of this discrep-
ancy could only be assessed by a more sophisticated analy-
sis including uncertainties, which is beyond the scope of this
work. However, in the holographic model the infinite tower
of axials does not fully saturate the pQCD nor the OPE con-
straints, which suggests that additional degrees of freedom
besides axials should be included in a more realistic model.

We then considered the choice of parameters made in
Ref. [41] and referred to as HW2(UV-fit) in Ref. [40]. This
model is constructed to obey the OPE constraint exactly,
but fails to describe low-energy physics like the ρ-meson
mass, the pion TFF and the axial TFFs measured by L3.
The longitudinal contribution from a1 in this case amounts
to aa1

μ, HW2(UV-fit) = 3.4 × 10−11 and the tower of states

16 We thank Josef Leutgeb for checking these numbers and the ones
for HW2(UV-fit) below.
17 We had to shift C2

π by 1.7% in order to account for the a1 at small
Q2

3 and asymptotic Q2
1 ∼ Q2

2.

increases the value by Δa(3), A,HW2(UV-fit)
μ = 0.8 × 10−11.

Our reference interpolant leads to Δa(3), A
μ = 1.4 × 10−11,

which is again larger than the model result. However, also
in HW2(UV-fit) the pQCD constraint is not fully fulfilled by
the tower of axials.

Neglecting issues related to intrinsic model dependence
in the low-energy input, our method based on interpolants
that by construction satisfy all constraints indicates that the
effects of longitudinal SDCs are relatively small compared to
the dominant low-energy contributions, and what is crucial
in order to achieve higher precision is to gain control over
the latter. We stress that a reliable prediction with a robust
uncertainty estimate of the effects of axial meson exchanges
would require model-independent input information.

6 Conclusions

In this paper we have introduced a novel approach to incor-
porate longitudinal SDCs into the calculation of the HLbL
contribution to the muon g−2. At variance with the previous
estimates based on hadronic models, we have constructed
general functions interpolating between low-, mixed- and
high-energy regions, without resorting to specify which and
how hadronic intermediate states are responsible for saturat-
ing the constraints. Furthermore, our method allows us also
to study in detail the role played by parameters and assump-
tions in a transparent and numerically efficient way.
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Our main premise is that an accurate low-energy represen-
tation of the longitudinal function Π̄1(Q2

1, Q2
2, Q2

3) entering
the HLbL integral can be obtained by taking into account
only intermediate states that are under good theoretical and
numerical control. For the π0, due to the location of its pole,
the form of this low-energy representation can be straight-
forwardly extended even to large Q2

1 and Q2
2 as long as Q2

3
stays small. Using available input for the π0-pole term, we
find that the shift due to longitudinal SDCs on the isovector
part of aHLbL

μ is in the range (2.6 ± 1.5)× 10−11. By includ-
ing in the analysis also the isoscalar components, which
the η- and η′-poles are assumed to dominate at low ener-
gies, we obtained that longitudinal SDCs increase aHLbL

μ by
(9.1 ± 5.0) × 10−11 in total. The quoted ranges encompass
uncertainties in the low-energy input, perturbative correc-
tions and fitting errors at asymptotic momenta, parametric
variations of the functional form of the interpolants and of
the matching surface, at which these functions are matched
to the low-energy input, with the latter dominating the total
uncertainty. Thus, according to our analysis, infinite towers
of states heavier than 1 GeV, albeit crucial for the saturation
of SDCs, give a relatively small contribution to aHLbL

μ and
this effect can be estimated with sufficient precision using our
method. Conversely, states with masses around 1 GeV con-
tributing significantly to the low-energy region play a deci-
sive role also in a precision determination of short-distance
effects.

Our result for the effects of longitudinal SDCs on aHLbL
μ

agrees with recent model estimates [32,33], fulfills the accu-
racy goal set by the forthcoming experimental results and is
significantly smaller than the earlier model result of Ref. [25],
especially when up-to-date TFF input is used. Furthermore,
neglecting issues concerning intrinsic model dependence and
the fact that holographic QCD calculations in Refs. [40,41]
do not completely saturate the SDCs, we find in agreement
with these studies that the infinite tower of axials has a rel-
atively small impact on the longitudinal part of aHLbL

μ if the
lightest multiplet is treated explicitly as a low-energy contri-
bution.

It will be straightforward to incorporate in our approach
model-independent information on further intermediate states
as well as higher-order corrections to asymptotic expres-
sions once these become available. Furthermore, our method
can be generalized to the case of transversal SDCs. There-
fore, it paves the way for a combination of all available
low- and high-energy information on HLbL into one model-
independent, accurate numerical estimate of this contribution
to the muon g − 2.
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Appendix A: Convergence of the interpolants

In this appendix we discuss under which conditions our inter-
polants in Eqs. (37) and (38) converge to the true Π̄

(a)
1

as N → ∞. To this end, we assume that Π̄
(a)
1 is known

exactly in the region below the matching surface, i.e. for
Σ < Σmatch(r, φ), and that Π̄

(a)
1 → Π̄

(a), asymp
1 for asymp-

totic Σ .
The BTT scalar function Π̄

(a)
1 is free of kinematic sin-

gularities and analytic except for poles and branch cuts for
configurations where the real part of at least one Q2

i is nega-

tive. For fixed (r, φ) with 0 ≤ r < 1 and 0 ≤ φ < 2π , Π̄
(a)
1

is an analytic function of Σ except for poles and branch cuts
for Re(Σ) < 0. Π̄(a), asymp

1 for fixed (r, φ) is also an analytic
function except for isolated poles at Σ ≤ 0 (see Eq. (34)).
The ratio Π̄

(a)
1 /Π̄

(a), asymp
1 therefore has the same singular-

ities as Π̄
(a)
1 and has a pole at the zero of Π̄

(a), asymp
1 , which

we assume to be at Σpole < Σmatch. We can thus write the
ratio as a Taylor series in Σ−1 at (Σmatch)−1,

Π̄
(a)
1 (Σ)

Π̄
(a), asymp
1 (Σ)

=
∞∑

i=0

ai

(
1

Σ
− 1

Σmatch

)i

. (A.1)

This series converges for Σ−1 ∈ (2(Σmatch)−1 − (Σpole)−1,

(Σpole)−1) or equivalently for Σ ∈ (Σpole,∞) if the relation
Σpole < Σmatch/2 holds, which will be checked below. Since
Π̄

(a)
1 /Π̄

(a), asymp
1 → 1 as Σ → ∞, we also know that

∞∑
i=0

ai (−Σmatch)−i = 1. (A.2)
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We can thus write

Π̄
(a)
1 (Σ) = Π̄

(a), asymp
1 (Σ)

∞∑
i=0

ai

(
1

Σ
− 1

Σmatch

)i

= Π̄
(a), asymp
1 (Σ)

∞∑
i=0

biΣ
−i ,

(A.3)

where the bi are linear combinations of the ai with coeffi-
cients depending on Σmatch. In particular, b0 = 1 due to
Eq. (A.2). Eq. (A.3) shows that Π̄

(a), int 1
1 converges to the

true Π̄
(a)
1 for N → ∞ if Σpole < Σmatch/2 for all (r, φ) in

the HLbL integration domain and Σ > Σpole. In the applica-
tions of our method, N is limited to rather low values since
Π̄

(a)
1 and its derivatives at the matching surface are deter-

mined only from the π0, η, η′-poles (and additionally from
the lightest axial in Sect. 5.4).

Let us now examine under which conditions the zero in
Π̄

(a), asymp
1 occurs for Σpole < Σmatch/2. This relation is

independent of the low-energy input but depends on the pseu-
doscalar mass in Π̄

(a), asymp
1 . In our reference interpolant

we set P(x, y) = 0 in Σmatch and m2 = 0.5 GeV2. For
these choices the zero in Π̄

(3), asymp
1 is at sufficiently low Σ

for all (r, φ) and m2 can be reduced down to 0.0019 GeV2

without violating the requirement Σpole < Σmatch/2. For
the iso-singlet cases there is no zero for positive Σ in

Π̄
(8/0)−η/η′, asymp
1 allowing all values for m. This does not

place a serious limitation on the values for m we consider in
the uncertainty estimation in Sect. 5.1.4.

Since Π̄
(a), asymp
1 for fixed (r, φ) in the integration domain

has poles only for Σ ≤ 0 and Π̄
(a)
1 has no kinematic zero,

also the ratio Π̄
(a), asymp
1 /Π̄

(a)
1 can be expanded in Σ−1 at

positive (Σmatch)−1. The same line of arguments thus proves
the convergence of interpolant 2 in Eq. (37) for N → ∞
and the requirement Σpole < Σmatch/2 is trivially fulfilled
due to Σpole = 0. The convergence of interpolant 3 given in
Eq. (38) also easily follows from that of interpolant 1, because
the logarithmic term can be written as a Taylor series at finite
(Σmatch)−1 so that the parameter b1 in Eq. (38) is redundant
as N → ∞.
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