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Abstract We study the Einstein-aether theory in Weyl inte-
grable geometry. The scalar field which defines the Weyl
affine connection is introduced in the gravitational field equa-
tion. We end up with an Einstein-aether scalar field model
where the interaction between the scalar field and the aether
field has a geometric origin. The scalar field plays a signifi-
cant role in the evolution of the gravitational field equations.
We focus our study on the case of homogeneous and isotropic
background spacetimes and study their dynamical evolution
for various cosmological models.

1 Introduction

Alternative theories of gravity [1], where the Lorentz sym-
metry is violated, have drawn the attention of gravitation
physicists in the last decades. Hořava–Lifshitz gravity and
Einstein-aether gravity are two theories which have been
widely studied because they provide Lorentz violation.

Hořava–Lifshitz gravity is a power-counting renormaliza-
tion theory with consistent ultra-violet behavior exhibiting
an anisotropic Lifshitz scaling between time and space at
the ultra-violet limit, while general relativity is provided as a
limit [2]. There are various physical applications of Hořava–
Lifshitz gravity, some results on compact stars, black holes,
universal horizons, non-relativistic gravity duality and other
subjects are discussed in the review [3]. Recently, it has been
found that Hořava–Lifshitz gravity is in agreement with the
observations of the gravitational-wave event GW170817 [4].
Cosmological applications of Hořava–Lifshitz theory are dis-
cussed in [5–9] , while cosmological constraints on Hořava–
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Lifshitz theory using some of the recent cosmological data
can be found in [10].

On the other hand, in Einstein-aether theory, the Lorentz
symmetry is violated by the introduction of a unitary time-
like vector field, known as the ‘æther’, in the Einstein–
Hilbert action [11–15] . In particular, the terms quadratic
in the covariant derivatives of the kinetic part of the aether
lagrangian modify the gravitational action of general relativ-
ity. The Einstein-aether action is the most general second-
order theory which is defined by the spacetime metric gab
and the aether field ua involving no more than two deriva-
tives [14,15]. A main property of the Einstein-aether theory
is that it can be seen as the classical limit of Hořava–Lifshitz
gravity. This means that exact solutions of Einstein-aether
theory are solutions of Hořava–Lifshitz theory; however, the
inverse is not true. While the two theories are equivalent in
terms of exact solutions, in general, the equivalence is not
true when the full field equations are considered [16].

Black hole solutions in Einstein-aether gravity are dis-
cussed in [17], where it was found that the exterior solution
is close to the Schwarzschild solution of general relativity. On
the other hand, the interior solution differs from that of gen-
eral relativity. In [18], the authors studied spherically sym-
metric spacetimes with fluid source which describe neutron
stars. A detailed study of spherically symmetric spacetimes
with perfect fluid models in Einstein-æther theory was per-
formed in Ref. [19]. The authors studied the local stability
of the equilibrium points for the gravitational field equa-
tions for various perfect fluid models. The results of [19]
describe inhomogeneous cosmological models and astro-
physical objects. Kantowski–Sachs Einstein-aether perfect
fluid models were studied in [20]. In the presence of a scalar
field, static spherically symmetric solutions were determined
in [21,22]. Moreover, exact solutions of homogeneous and
anisotropic spacetimes were found recently in [23,24]. In
addition, exact solutions in the presence of a modified Chap-
lygin gas or in the presence of a Maxwell field can be found in
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[25,26] while the Einstein-aether theory has been studied as
dark-energy candidate to explain the late-time acceleration
phase of the universe in [27,28].

A Lorentz violating inflationary model has been proposed
by Kanno and Soda [29]. More precisely, it has been proposed
a nonminimally coupling of a scalar field with the aether field,
where the Einstein-aether coefficients become functions of
the scalar field. In this model, the inflationary stage is divided
into two parts; the Lorentz-violating stage and the standard
slow-roll stage. In the first stage, the universe expands as
an exact de Sitter spacetime, although the inflaton field is
rolling down the potential. Another Einstein-aether scalar-
field inflaton model coupled bilinearly to the expansion of
the aether was proposed by Donnelly and Jacobson in [30].
In Friedmann–Lemaître–Robertson–Walker (FLRW) space-
time the inflaton-aether expansion coupling leads to a driv-
ing force on the inflaton that is proportional to the Hubble
parameter. This force affects the slow-roll dynamics, but still
allows a graceful exit of inflation. In [32], several families
of inflationary exact solutions were derived for the model
of Donnelly and Jacobson, while the effects of the Lorentz
violation during the slow-roll period were studied in [33].
Recently, homogeneous and isotropic exact solutions for an
Einstein-aether scalar field model were determined in [34–
37], while studies of homogeneous and anisotropic models
in the Einstein-aether scalar field model can be found in [38–
40].

In this paper, we study the extension of Einstein-aether
theory in Weyl geometry, specifically in Weyl integrable the-
ory [41]. Weyl geometry is a torsion-free manifold equipped
with a connection which preserves the conformal structure.
In the case, where the conformal structure is analogous to a
scalar field, we have the Weyl Integrable theory where the
connection structure of the geometry differs from the Levi–
Civita connection by a scalar field of the conformal metric,
which defines the Levi–Civita connection. Hence, a scalar
field can be introduced in the gravitational action integral
by geometric quantities of the underlying manifold. For var-
ious applications of Weyl integrable theory in gravitational
physics, we refer the reader to [42–47] and references therein.
As we shall see from the following analysis, in our approach
we are able to introduce a geometric scalar field coupled to
the aether field, by considering the Einstein-æther action in
Weyl geometry. The scalar field is introduced by the sym-
metric parts of the covariant derivatives for the aether field.
We consider the simplest scenario of a homogeneous and
isotropic spacetime, where we observe that the scalar field
is introduced by the expansion rate of the aether field. The
presence of an additional matter source is also discussed. The
plan of this paper is as follows.

In Sect. 2, we briefly discuss the main properties of Weyl
geometry and present the Einstein–Hilbert action in Weyl
integrable theory. In Sect. 3, we present the model of our

study, which is Einstein-aether theory in Weyl geometry. We
produce the gravitational field equations and we focus on the
case of a FLRW background space. We find that the field
equations can be solved explicitly, where the scale factor can
describe an accelerated universe for a specific range for the
values of the free parameters of the model. In Sects. 4 and 5
we consider cosmological models with a dust fluid source, or
with a non-zero scalar field potential respectively. Finally, in
Sect. 7 we discuss our results and we draw our conclusions.

2 Weyl integrable gravity

Consider a four-dimensional manifold M described by the
metric tensor, gμν , and the covariant derivative, ∇̃μ, defined
by the affine connection �̃κ

μν with the property,

∇̃κgμν = ωκgμν, (1)

where ωμ is a gauge field which defines the geometry.
By definition (1), it follows that the affine connection �̃κ

μν

is related to the Christoffel symbols �κ
μν (g) of the metric

tensor gμν by the relation

�̃κ
μν = �κ

μν − ω(μδκ
ν) + 1

2
ωκgμν, (2)

from which we observe the importance of the gauge vector,
ωμ. When ωμ is a gradient vector field, that is, when there
exists a scalar field, φ, such that ωμ = φ,μ, then the Weyl
geometry reduces to the so-called Weyl integrable geometry.

In Weyl integrable geometry, the Ricci tensor R̃μν is
related to the Riemannian Ricci tensor Rμν by [48],

R̃μν = Rμν − ∇̃ν

(
∇̃μφ

)
− 1

2

(
∇̃μφ

) (
∇̃νφ

)

−1

2
gμν

(
1√−g

(
gμν√−gφ

)
,μν

−gμν
(
∇̃μφ

) (
∇̃νφ

))
, (3)

from which the Ricci scalar follows:

R̃ = R − 3√−g

(
gμν√−gφ

)
,μν

+ 3

2

(
∇̃μφ

) (
∇̃νφ

)
. (4)

The simplest gravitational action Integral which can be
defined in Weyl integrable theory as an extension of the
Einstein–Hilbert action has been proposed to be,

SW =
∫

dx4√−g
(
R̃ + ξ

(
∇̃ν

(
∇̃μφ

))
gμν

)
, (5)

where ξ is an arbitrary coupling constant,
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Variation with respect to the metric tensor of (5) provides
the field equations [48],

G̃μν + ∇̃ν

(
∇̃μφ

)
− (2ξ − 1)

(
∇̃μφ

) (
∇̃νφ

)

+ξgμνg
κλ

(
∇̃κφ

) (
∇̃λφ

)
= 0, (6)

while variation with respect to the field φ gives

(
∇̃ν

(
∇̃μφ

))
gμν + 2gμν

(
∇̃μφ

) (
∇̃νφ

)
= 0 (7)

where G̃μν is the Einstein tensor in Weyl theory, that is,
G̃μν = R̃μν − 1

2 R̃gμν.

However, we always write the field equations by using the
geometric definitions of Riemannian geometry, which means
that Eq. (6) are written in a similar form

Gμν − ζ

(
φ,μφ,ν − 1

2
gμνφ

,κφ,κ

)
= 0, (8)

where 2ζ ≡ 4ξ − 3, while for the scalar field φ, the second-
order differential equation (7) is the usual Klein–Gordon
equation gμν∇ν∇μφ = 0.

The origin of the scalar field φ is geometrical and it is
related to the nature of the affine connection, �̃κ

μν .

3 Einstein-aether theory in Weyl integrable gravity

We consider the contribution of a timelike vector field, the
so called aether field uμ, in the gravitational action integral.
In particular, we assume the gravitational action Integral

SAE = SW + SAE , (9)

where SW is the action integral (5), and SAE is the action
integral which is defined by the aether field defined in the
Weyl manifold, that is, [12]

SAE =
∫

d4x
√−g̃

(
K̃ αβμν∇̃αuμ∇̃βuν + λ

(
g̃μνu

μuν + 1
))

,

(10)

where the Lagrange multiplier λ ensures the unitarity of the
aether field, i.e. g̃μνuμuν = −1, and the fourth-rank ten-
sor K αβμν is expressed as follows:

K̃ αβμν ≡ c1g̃
αβ g̃μν + c2 g̃

αμg̃βν + c3g̃
αν g̃βμ + c4g̃

μνuαuβ.

(11)

where g̃μν = eφgμν is the conformal related metric associ-
ated with the covariant derivative ∇̃μ. Moreover, parameters
c1, c2, c3 and c4 are dimensionless constants and define the
coupling between the æther field and gravity.

The gravitational field equations are

G̃μν + ∇̃ν

(
∇̃μφ

)
− (2ξ − 1)

(
∇̃μφ

) (
∇̃νφ

)

+ξgμνg
κλ

(
∇̃κφ

) (
∇̃λφ

)
= T̃æ

μν, (12)

where T̃ æ
μν is the energy momentum tensor which correspond

to the Aether field defined in the Weyl manifold.
The energy momentum tensor T̃æ

μν is derived by varia-
tion with respect to to the coformal metric g̃μν , because the
energy momentum tensor to be defined in the Weyl integrable
manifold, see also the discussion in [41,49],

T̃æ
μν = 2c1(∇̃μu

α∇̃νuα − ∇̃αuμ∇̃βuν g̃
αβ)

+ 2λuμuν + g̃μν
̃u

− 2[∇̃α(u(μ J̃
α

ν)) + ∇̃α(uα J̃(aν)) − ∇̃α(u(μ J̃ν)
α)]

− 2c4

(
∇̃αuμu

α
) (

∇̃βuνu
β
)

, (13)

where now J̃ am and 
u are defined as

J̃μ
ν = −K̃μβ

να∇̃βu
α , 
̃u = −K̃μβ

αμ∇̃μu
α∇̃βu

μ .

Moreover, the Lagrange multiplier λ is defined by the con-
straint equation

c4g̃
μνuα∇̃βuν∇̃αuμg̃

κβ − c4g̃
μκ g̃αλ∇̃βuλu

β∇̃αuμ

−c4g̃
μκuα∇̃βu

β∇̃αuμ − K̃ αβμκ ∇̃β∇̃αuμ − λuκ = 0,

(14)

and the field φ satisfies Eq. (7). The energy-momentum ten-
sor (13) has similar covariant form with the Einstein-aether
theory, where now it is defined in Weyl manifold.

Using the kinematic quantities for the timelike vector field
defined in they Weyl manifold, that is, the expansion rate θ̃ ,

the shear σ̃μν , the vorticity ω̃μν , and the acceleration α̃μ, the
action integral (10) becomes [31],

SE A =
∫ √−g̃dx4

(cθ

3
θ̃2 + cσ σ̃ 2 + cωω̃2 + cαα̃2

)
, (15)

where the new parameters cθ , cσ , cω, ca are functions of
c1, c2, c3 and c4, i.e.

cθ = (c1 + 3c2 + c3) , cσ = c1 + c3 ,

cω = c1 − c3 , ca = c4 − c1, (16)

and σ̃ 2 = σ̃μνσ̃
μν, ω̃2 = ω̃μνω̃

μν , and α̃2 = α̃μα̃μ.

3.1 FLRW background spacetime

For the homogeneous and isotropic FLRW spacetime with
zero spatial curvature

ds2 = −dt2 + a2 (t)
(
dx2 + dy2 + dz2

)
, (17)
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we calculate for the comoving aether field

σ̃ 2 = 0 , ω̃2 = 0 and α̃2 = 0 (18)

while the energy-momentum tensor T̃æ
μν can be written in the

simplest form

T̃æ
μν = ρæ uμuν + pæh̃μν (19)

where ρæ = − cθ
3 θ̃2, pæ = cθ

3

(
2θ̃,t + θ̃2

)
and h̃μν is the

projection tensor hμν = g̃μν + uμuν .
At this point we remark that θ̃ is the expansion rate defined

in the Weyl manifold, and it is expanded as θ̃ = θ − φ̇, where
θ is the expansion rate of General Relativity. From the latter
it is clear that an interaction between the scalar field and the
aether field exists. That interaction has geometric origin and
it is direct related with the affine connection �̃κ

μν .
For the line element (17), the gravitational field equations

are

θ2

3
− ρφ − ρæ = 0 (20)

θ̇ + θ2

3
+ 1

2

(
ρφ + 3pφ

) + 1

2

(
ρæ + 3pæ) = 0 (21)

where θ is the expansion rate of general relativity, and ρφ =
ζ
2 φ̇2, pφ = ζ

2 φ̇2 are the energy density and pressure for the
field φ.

The field equations (20)–(21) can be written in an equiv-
alent way, as follows:

(1 + cθ )
θ2

3
− 2

3
cθ θφ̇ −

(
ζ

2
− cθ

3

)
φ̇2 = 0, (22)

(1 + cθ )

3
θ̇ + (1 + cθ ) θ2 − 2

3
cθ θφ̇

+
(cθ

3
+ ζ

)
φ̇2 − cθ φ̈ = 0, (23)

while for the field φ, we have

(2cθ − 3 (1 + cθ ) ζ ) φ̈+3ζcθ φ̇
2−3 (1 + cθ ) ζ θφ̇ = 0. (24)

From (23) and (24), we find

θ̇

θ2 = −1

3
− cθ

3 (1 + cθ ) (3ζ (1 + cθ ) − 2cθ )

(
φ̇

θ

)

+ (2cθ − 3ζ ) (cθ + 3ζ (1 + cθ ))

3 (1 + cθ ) (3ζ (1 + cθ ) − 2cθ )

(
φ̇

θ

)2

, (25)

from which we infer that the parameter for the equation of
state for the effective fluid is we f f = −1 − 2 θ̇

θ2 .

We have introduced a scalar field in Einstein-aether the-
ory by using the Weyl geometry. Other attempts to introduce
a scalar field in Einstein-aether theory have been proposed
before by Kanno and Soda in [29] and latter by Donnelly and
Jacobson in [30]. In both attempts, the scalar field interacts

with the aether field. In [29], the interaction has been pro-
posed to be in the coupling parameters cI of the aether field. A
more general consideration has been proposed in [30], where
an arbitrary potential for the scalar field has been introduced
in the action integral such that kinematic quantities of the
aether field are included. Our approach is totally geometric
and the interaction between the scalar field and the aether
field is introduced by the covariant derivative which defines
the kinematic quantities and the affine connection �̃κ

μν of the
Weyl geometry.

3.1.1 Exact solution

We select the new dimensionless variable x (t) = 2cφ
1+cφ

φ̇
θ

, to
write the field equations as,

− 12c2
θ (3ζ + cθ (3ζ − 2))

dx

d ln a

= x
(

8c2
θ (cθ + 3ζ (1 + cθ )) − 8c2

θ (cθ + 3ζ (1 + cθ)) x
)

+ x3 (1 + cθ )
(

3cθ (1 − 3ζ ) ζ − 9ζ 2 + (2 + 6ζ ) c2
θ

)
,

(26)

while the constraint equation becomes,

1 +
(

(1 + cθ ) (2cθ − 3ζ )

8cθ

x − 1

)
x = 0. (27)

From the latter algebraic equation we get,

x± = 2cθ

1 + cθ

2cθ ± √
6ζ + cθ (6ζ − 4)

2cθ − 3ζ
, 2cθ − 3ζ �= 0.

(28)

The points are real when 6ζ + cθ (6ζ − 4) ≥ 0 .These two
points provide ideal-gas exact solutions with an equation of
state parameter,

we f f
(
x± (cθ , ζ )

)

= −1 − 2
θ̇

θ2

= 9ζ 2 + c2
θ (6ζ − 4) + 3ζcθ

(
3ζ + 2

√
6 (1 + cθ ) ζ − 4cθ

)

(2cθ − 3ζ ) (3 (1 + cθ ) ζ − 2cθ )
.

(29)

In the special limit where ζ = 0, the exact solution is that
of a stiff fluid, that is, we f f

(
x± (cθ , 0)

) = 1.
In Fig. 1 we present the region in the space of parameters

{cθ , ζ } in which the exact solutions at the critical points x±
describe accelerated universes, that is, we f f

(
x± (cθ , ζ )

)
<

− 1
3 .
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Fig. 1 Region plots in the space of parameters {cθ , ζ }. The exact solutions at the critical points x+ (left fig.) and x− (right fig.) describe accelerated
universes

4 In the presence of matter

If we consider now the existence of a pressureless fluid
source, then the field equations become,

Gμν − ζ

(
φ,μφ,ν − 1

2
gμνφ

,κφ,κ

)
= T æ

ab+T (m)
μν , (30)

where T (m)
μν = e− φ

2 ρmuμuν , while the conservation equation
for the matter field reads ∇̃νT (m)μν = 0.

For the spatially-flat FLRW line element (17), the conser-
vation equation for the dust fluid reads,

ρ̇m + (
θ − φ̇

)
ρm = 0, (31)

while the rest of the field equations become

(1 + cθ )
θ2

3
− 2

3
cθ θφ̇ −

(
ζ

2
− cθ

3

)
φ̇2

−e− φ
2 ρm = 0, (32)

(1 + cθ )

3
θ̇ + (1 + cθ ) θ2 − 2

3
cθ θφ̇

+
(cθ

3
+ ζ

)
φ̇2 − cθ φ̈ + 1

2
e− φ

2 ρm = 0, (33)

while the Klein–Gordon equation is modified as

(2cθ − 3 (1 + cθ ) ζ ) φ̈ + 3ζcθ φ̇
2 − 3 (1 + cθ ) ζ θφ̇

+3 (1 − cθ ) ρme
− φ

2 = 0. (34)

With the use of the dimensionless variables,

x ≡ 2cφ

1 + cφ

φ̇

θ
and �m ≡ 3e− φ

2 ρm

(1 + cθ ) θ2 , (35)

the field equations reduce to the following algebraic-
differential system,

�m = 1 +
(

(1 + cθ ) (2cθ − 3ζ )

8cθ

x − 1

)
x, (36)

−16c2
θ (3 (1 + cθ ) ζ − 2cθ )

dx

d ln a

=
(
(1 + cθ ) (2cθ − 3ζ ) x2 + 8c2

θ (1 − x)
)

× ((1 + cθ ) (cθ + 3ζ ) x + 2 (1 − cθ ) cθ ) . (37)

The stationary points of Eq. (37) are,

x± = 2cθ

1 + cθ

2cθ ± √
6ζ + cθ (6ζ − 4)

2cθ − 3ζ
and

x0 = 2cθ (cθ − 1)

(1 + cθ ) (cθ + 3ζ )
.

Points x± are the critical points of the vacuum case,
�m

(
x±) = 0, while point x0 provides

�m

(
x0

)
= cθ + 9ζ 2

(cθ + 3ζ )2 − 3 (1 + cθ (cθ − 10)) ζ

(1 + cθ ) (cθ + 3ζ )2 . (38)

Point x0 is physically accepted when 0 ≤ �m
(
x0

) ≤ 1,
as presented in Fig. 2.

As far as the equation of state for the cosmological solution
at point x0 is concerned, it is calculated to be,

we f f

(
x0 (cθ , ζ )

)
= 1 − cθ

2 (cθ + 6ζ )
. (39)

The point x0 describes an accelerated universe, i.e.
w

(
x0 (cθ , ζ )

)
< − 1

3 , when ζ, cθ take values in the range
of Fig. 2.
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Fig. 2 Region plots in the space of parameters {cθ , ζ }, where the critical point x0 is physically accepted (left fig.) and the exact solution at this
point describes an accelerated universe (right fig.)

As far as the stability of the stationary points is concerned,
we determine the eigenvalue e (x (cθ , ζ )) of Eq. (37). A sta-
tionary point is an attractor when Re (e (x (cθ , ζ ))) < 0 . In
particular, we find that e

(
x0 (cθ , ζ )

) = (1+cθ )(cθ+3ζ )
6(1+cθ )ζ−4cθ

�m
(
x0

)
,

while, for the other two points, it follows

e
(
x± (cθ , ζ )

) = 18ζ 2 + 6cθ (3ζ − 1) + c2
θ (6ζ − 4) ∓ 3 (ζ − cθ (2 + 9ζ ))

√
6 (1 + cθ ) ζ − 4cθ

2 (2cθ − 3ζ ) (3 (1 + cθ ) ζ − 2cθ )
. (40)

In Fig. 3, we present the regions in the space of parame-
ters, (cθ , ζ ), where the stationary points are stable.

In the limit where ζ = 0, for point x0 it follows �m
(
x0

) =
1
cθ

and we f f
(
x0 (cθ , 2)

) = − 1
2 (1 − cθ ) , hence it follows

that point x0 is physically accepted when cθ ≥ 1 while for
cθ > 3 the exact solution describes an accelerated universe.
That is a very interesting result because �m

(
x0

)
becomes

zero only for very large values of the coupling constant cθ ,
while e

(
x0 (cθ , 0)

)
is found to be always negative for cθ > 1

which means that x0 is a future attractor.

5 Evolution of a scalar field under potential V (φ) in
vacuum

In the presence of a potential term V (φ), the field equations
(20)–(21) become,

(1 + cθ )
θ2

3
− 2

3
cθ θφ̇ −

(
ζ

2
− cθ

3

)
φ̇2 − V (φ) = 0,

(41)
(1 + cθ )

3
θ̇ + (1 + cθ ) θ2 − 2

3
cθ θφ̇

+
(cθ

3
+ ζ

)
φ̇2 − cθ φ̈ − V (φ) = 0, (42)

while the field φ obeys,

(2cθ − 3 (1 + cθ ) ζ ) φ̈ + 3ζcθ φ̇
2 − 3 (1 + cθ ) ζ θφ̇

−3 (1 + cθ ) V,φ = 0. (43)

We define the new dimensionless variables, x, from (35)
and y2 ≡ 3V (φ)

(1+cθ )θ2 , and the field equations become,

1 +
(

(1 + cθ ) (2cθ − 3ζ )

8cθ

x − 1

)
x − y2 = 0, (44)

−24c2
θ (3 (1 + cθ ) ζ − 2cθ )

dx

d ln a

=
(
(1 + cθ ) (2cθ − 3ζ ) x2 + 8c2

θ (1 − x)
)

× (x (2cθ + 3 (1 + cθ ) (2ζ + λcθ ))

−6λcθ (1 + cθ )) , (45)

where λ = − Vφ

V . For the scalar field, we assume the exponen-
tial potential V (φ) = V0e−λφ where λ =constant. The expo-
nential potential is of special interest, mathematically and
physically. In terms of mathematics, it reduces the dimension
of the dynamical system, while, in terms of physics ,when
λ = 2, it includes the case of the cosmological constant term
in Weyl integrable theory [48].

The latter dynamical system admits the stationary points
x± and x1 = 2cθ λ

3ζ+cθ λ
. The new stationary point x1 describes
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Fig. 3 Region plots in the space of parameters {cθ , ζ }, where the stationary points: x0 (left fig.), x+ (middle Fig.) and x− (right fig.) are attractors
for the cosmological model with a dust fluid source

a universe where the scalar field potential also contributes to
the effective cosmological fluid, while the equation of state
parameter we f f

(
x1

)
for the effective fluid at the stationary

point is found to be,

we f f

(
x1 (cθ , ζ, λ)

)
= λ (cθ (λ − 1) + λ) − 3ζ

3ζ + cθλ
. (46)

The corresponding eigenvalues are derived

2(3(cθ + 1)ζ − 2cθ )(cθ λ + 3ζ )2e
(
x1 (cθ , ζ, λ)

)

= −12ζ 2(3(cθ + 1)ζ + cθ )

+ cθ (cθ + 1)λ3(3(cθ + 1)ζ − 2cθ )

+ 2cθ λ
2(3(cθ + 1)ζ − 2cθ )

− 2cθ ζλ(15(cθ + 1)ζ − 4cθ ) (47)
E1e

(
x+ (cθ , ζ, λ)

)

=
(

8cθ
2 − 4cθ

(√
6(cθ + 1)ζ − 4cθ + 2

))

×
(

3cθ (cθ + 1)2λ(2cθ − 3ζ ) − cθ

(√
6(cθ + 1)ζ − 4cθ + 2

) ×
(6(cθ + 1)ζ + 3(cθ + 1)cθ λ + 2cθ )

)

− 8(cθ − 1)cθ
2
(√

6(cθ + 1)ζ − 4cθ − cθ + 1
)

× (6(cθ + 1)ζ + 3(cθ + 1)cθ λ + 2cθ ). (48)
E1e

(
x− (cθ , ζ, λ)

)

= 8(cθ − 1)cθ
2
(√

6(cθ + 1)ζ − 4cθ + cθ − 1
)

× (6(cθ + 1)ζ + 3(cθ + 1)cθ λ + 2cθ )

+ 4cθ

(√
6(cθ + 1)ζ − 4cθ + 2cθ − 2

)

+
(

3cθ (cθ + 1)2λ(2cθ − 3ζ ) + cθ

(√
6(cθ + 1)ζ − 4cθ − 2

)
×(6(cθ + 1)ζ + 3(cθ + 1)cθ λ + 2cθ )

)
.

(49)

where E1 = 12c2
θ (cθ + 1)(2cθ − 3ζ )(2cθ − 3(cθ + 1)ζ ).

We focus on the special value where λ = 2 which, as we
described before, corresponds to the case of the cosmological
constant. In Fig. 4, we present the regions in the space of the
free parameters (cθ , ζ ) , where the three stationary points
x1, x± are attractors, while in Fig. 5 we present the region of

the free parameters (cθ , ζ ) where we f f
(
x1 (cθ , ζ, λ)

)
< − 1

3
for λ = 2.

Recall that for point x1 is physically acceptable as
long as y2

(
x1

) ≥ 0, where for λ = 2 we find the
range

{
cθ ≤ −1, ζ �= − 2

3cθ

}
, {−1 < cθ < 0, ζ <

2
3cθ , ζ > 2

3

}
,

{
0 < cθ ≤ 1 , ζ �= − 2

3cθ

}
, {cθ > 1 , ζ

�= − 2
3cθ , ζ < 2

3 , ζ > 2
3cθ

}
.

In the case where ζ = 0, point x1 is physically
accepted when cθ ≥ 1, while we f f

(
x1 (cθ , ζ, λ)

) = −1 +
λ

(
1 + 1

cθ

)
, and the point is an attractor when λ ≤ −1 or{−1 < λ < 0, cθ > − (

1 + 2
λ

)}
.

6 Evolution of a scalar field with potential V (φ) and
matter

In this example the Friedmann equation, Raychaudhuri, and
Klein–Gordon equations are, respectively,

(2cθ − 3ζ )φ̇2 − 4cθ θφ̇ + 2(cθ + 1)θ2

− 6ρme
− φ

2 − 6V (φ) = 0, (50)

6cθ θ̇ − 4cθ θφ̇ + 2(cθ + 1)θ2 − 6cθ φ̈

+ 2cθ φ̇
2 + 6ζ φ̇2 + 6θ̇ + 3ρme

− φ
2 − 6V (φ) = 0, (51)

3(cθ − 1)ρm − 2e
φ
2

(
3ζ φ̇

(
cθ θ − cθ φ̇ + θ

)

+(3(cθ + 1)ζ − 2cθ )φ̈ + 3(cθ + 1)V ′(φ)
) = 0, (52)

plus the conservation equation (31).

Defining x ≡ 2cφ
1+cφ

φ̇
θ

and �m ≡ 3e− φ
2 ρm

(1+cθ )θ2 , y2 ≡ 3V (φ)

(cθ+1)θ2 ,
we obtain the dynamical system:

x ′ = − (cθ + 1)2(2cθ − 3ζ )(cθ + 3ζ )x3

16c2
θ (3(cθ + 1)ζ − 2cθ )

+ x

(
−3c2

θ − 3cθ ζ + cθ − 3ζ

6(cθ + 1)ζ − 4cθ
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Fig. 4 Region plots in the space of parameters {cθ , ζ }, where the stationary points: x1 (left fig.), x+ (middle fig.) and x− (right fig.) are attractors
for the dynamical system with an exponential potential and λ = 2

Fig. 5 Region plots in the space of parameters {cθ , ζ }, where the sta-
tionary point x1 describes and accelerated universe when λ = 2, that is
we f f

(
x1 (cθ , ζ, 2)

)
< − 1

3

+ (cθ + 1)y2(cθ (2λ − 1) + 3ζ )

4cθ − 6(cθ + 1)ζ

)

+ (cθ − 1)cθ

3(cθ + 1)ζ − 2cθ

+ (cθ + 1)(cθ (6cθ + 9ζ − 2) + 3ζ )x2

8cθ (3(cθ + 1)ζ − 2cθ )

+ cθ (2(cθ + 1)λ − cθ + 1)y2

3(cθ + 1)ζ − 2cθ

, (53)

2y′ = − (cθ + 1)2(2cθ − 3ζ )(cθ + 3ζ )x2y

8c2
θ (3(cθ + 1)ζ − 2cθ )

+ xy

(
cθ (cθ + 1)

3(cθ + 1)ζ − 2cθ

− (cθ + 1)λ

2cθ

)

+ (cθ + 1)y3(−2cθλ + cθ − 3ζ )

3(cθ + 1)ζ − 2cθ

− (cθ + 1)(cθ − 3ζ )y

3(cθ + 1)ζ − 2cθ

, (54)

where λ = − Vφ

V and for the scalar field potential we assume
the exponential potential V (φ) = V0e−λφ with constant λ.
The fractional energy density of matter is

�m = (cθ + 1)(2cθ − 3ζ )x2

8c2
θ

− x − y2 + 1. (55)

Therefore, the phase plane is defined by

{
(x, y) : 0 ≤ x − (cθ + 1)(2cθ − 3ζ )x2

8c2
θ

+ y2 ≤ 1, y ≥ 0

}
.

(56)

The stationary points of the dynamical system (53), (54)
are the points x0, x±, x1 and a new point x2, with coordinates

x2 =
(

4cθ

(1 + 2λ) (cθ + 1)
,

√−2cθλ + cθ + 6ζ + 2λ + 1√
cθ + 1(2λ + 1)

)
.

For the exact solution at the point x2 we find �m
(
x2

) =
2(λ(1−cθ+2(1+cθ )λ)−6ζ )

(1+cθ )(1+2λ)2 and

3(cθ + 1)(2λ + 1)2(3(cθ + 1)ζ − 2cθ )we f f

(
x2 (cθ , ζ, λ)

)

= 36(cθ + 1)ζ 2 + 4(cθ + 1)λ2(cθ (3cθ − 1) − 3(cθ + 1)ζ )

− 2λ(6(cθ + 1)(cθ + 2)ζ + cθ (cθ (3cθ − 10) − 5))+
− 3(cθ (15cθ + 2) + 3)ζ + 6cθ (cθ 1), (57)

which means that the stationary point x2 describes a scal-
ing solution. The point is physically acceptable when 0 ≤
�m

(
x2

) ≤ 1. For the specific cases, λ = 0 and λ = 2,

in Fig. 6 we present the range of the parameters {cθ , ζ } for
which the point is physically acceptable. We continue with
the stability analysis of the stationary points.

123



Eur. Phys. J. C (2020) 80 :1099 Page 9 of 12 1099

Fig. 6 Region plots in the space of parameters {cθ , ζ }, where the stationary point x2 is physically acceptable, for λ = 2 (left fig.) and λ = 0 (right
fig.)

For point x0, the eigenvalues of the linearized system are
derived

e1

(
x0 (cθ , ζ, λ)

)

= −18(cθ + 1)ζ 2 + 3((cθ − 10)cθ + 1)ζ − 2cθ (cθ + 1)

4(cθ + 3ζ )(3(cθ + 1)ζ − 2cθ )
,

e2

(
x0 (cθ , ζ, λ)

)
= −2cθλ + cθ + 6ζ + 2λ + 1

4cθ + 12ζ
.

Similarly, for the rest of the points we find

e1
(
x+ (cθ , ζ, λ)

)

= √
6(cθ + 1)ζ − 4cθ

(
3

3ζ − 2cθ

− 4

3(cθ + 1)ζ − 2cθ

)

+ 3cθ

3ζ − 2cθ

+ 1,

e2
(
x+ (cθ , ζ, λ)

)

=

⎛
⎜⎝−8c2

θ (cθ − 3ζ ) − 16c3
θ

(
2c2

θ +cθ (2−3ζ )λ−3ζλ
)

√
6c2

θ (cθ +1)ζ−4c3
θ −2c2

θ

− 16(cθ +1)c4
θ (2cθ −3ζ )(cθ +3ζ )(√

6c2
θ (cθ +1)ζ−4c3

θ −2c2
θ

)2

⎞
⎟⎠

16c2
θ (3(cθ + 1)ζ − 2cθ )(cθ + 1)−1

,

e1
(
x− (cθ , ζ, λ)

)

= √
6(cθ + 1)ζ − 4cθ

(
3

3ζ − 2cθ

+ 4

3(cθ + 1)ζ − 2cθ

)

+ 3cθ

3ζ − 2cθ

+ 1,

e2
(
x− (cθ , ζ, λ)

)

=

⎛
⎜⎝−8c2

θ (cθ − 3ζ ) + 16c3
θ

(
2c2

θ +cθ (2−3ζ )λ−3ζλ
)

2c2
θ +

√
6c2

θ (cθ +1)ζ−4c3
θ

− 16(cθ +1)c4
θ (2cθ −3ζ )(cθ +3ζ )(

2c2
θ +

√
6c2

θ (cθ +1)ζ−4c3
θ

)2

⎞
⎟⎠

16c2
θ (3(cθ + 1)ζ − 2cθ )(cθ + 1)−1

,

e1

(
x1 (cθ , ζ, λ)

)

= (cθ + 1)
(
λ2(3(cθ + 1)ζ − 2cθ ) − 18ζ 2

)

2(3(cθ + 1)ζ − 2cθ )(cθ λ + 3ζ )
,

e2

(
x1 (cθ , ζ, λ)

)
= λ(2(cθ + 1)λ − cθ + 1) − 6ζ

2cθ λ + 6ζ
,

and

e1

(
x2 (cθ , ζ, λ)

)
= −3ζ(cθ (λ − 1) + λ + 1) + 2cθλ

2(2λ + 1)(3(cθ + 1)ζ − 2cθ )

+ �

2(2λ + 1)(3(cθ + 1)ζ − 2cθ )
,

e2

(
x2 (cθ , ζ, λ)

)
= − �

2(2λ + 1)(3(cθ + 1)ζ − 2cθ )

− 3ζ(cθ (λ − 1) + λ + 1) + 2cθλ

2(2λ + 1)(3(cθ + 1)ζ − 2cθ )
,

where � = √ (
3ζ

(−8cθ (1 + cθ ) + 15(−1 + cθ )
2ζ

+72(1 + cθ )ζ
2
) + 2(−1 + cθ ) (−2cθ (1 + cθ ) + 3(1 + cθ

(4 + cθ ))ζ − 27(1 + cθ )ζ
2
)
λ + (

4cθ

(
4 + cθ + 4c2

θ

)
−12(−2 + cθ )(1 + cθ )(−1 + 2cθ )ζ − 63(1 + cθ )

2ζ 2
)
λ2+

8
(−1 + c2

θ

)
(−2cθ + 3(1 + cθ )ζ )λ3

)
.

In Figs. 7 and 8 we present the regions in the space of
parameters {cθ , ζ } where the stationary points of the dynam-
ical system (53), (54) are attractors for λ = 2 and λ = 0.

7 Conclusions

In this work, we considered the extension of Einstein-aether
theory in Weyl geometry. In particular, we considered the
Einstein-aether action integral in the Weyl integrable geom-
etry, where a geometric scalar field is introduced. The scalar
field plays a significant role in the geometry since it defines
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Fig. 7 Region plots in the space of parameters {cθ , ζ }, where the stationary points x0, x±, x1 and x2 are attractors, for λ = 2
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Fig. 8 Region plots in the space of parameters {cθ , ζ }, where the stationary points x±, x1 and x2 are attractors, for λ = 0. Point x0 always describes
an unstable solution

the deviation of the Weyl affine connection from that of the
Levi–Civita connection.

The action integral is considered in an isotropic and homo-
geneous (FLRW) background spacetime. We observe that the
scalar which defines the Weyl affine connection is introduced
into the gravitational field equation and it is dynamically cou-
pled to the aether field. The scalar field is introduced two-fold
from the Weyl Ricci scalar, and from the symmetric compo-
nent of the covariant derivatives for the aether field; from
the latter terms, the coupling then follows. This approach is
an alternative way to create an Einstein-aether scalar field
cosmological model. In the case of a spatially-flat vacuum
FLRW spacetime, the field equations admit an exact solution

where the scale factor is power-law and the parameter for the
equation of state can describe acceleration.

We studied the cosmological models where a scalar field
potential is included in the field equations, or dust fluid source
contributes to the gravitational field equations, and when
these two terms exist together. For these three additional
systems, we study the dynamics and we find all the possi-
ble asymptotic behaviour of the field equations. We demon-
strate our results by presenting some specific applications.
We remark that the results of this work differ from the previ-
ous studies on the Einstein-aether scalar field cosmological
models; however, it is clear that this model can describe an
alternative inflationary behaviour. In a future work, we plan
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to study the stability of the small inhomogeneities for this
scalar field model.
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