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Abstract We find multicenter (Majumdar–Papapetrou type)
solutions of Eddington-inspired Born–Infeld gravity cou-
pled to electromagnetic fields governed by a Born–Infeld-
like Lagrangian. We construct the general solution for an
arbitrary number of centers in equilibrium and then discuss
the properties of their one-particle configurations, including
the existence of bounces and the regularity (geodesic com-
pleteness) of these spacetimes. Our method can be used to
construct multicenter solutions in other theories of gravity.

1 Introduction

Among the many exact solutions of interest known within
general relativity (GR), we find the class of gravitating con-
figurations in self-equilibrium. Such is the case, for instance,
of geons [1], gravitating solitons [2,3] and skyrmions [4,5],
and other long-lived configurations [6]. There is a sub-class
of solutions of such a family corresponding to those where
the attractive gravitational field of a system of particles is
exactly balanced by a repulsive electrostatic force. Revolving
around some previous considerations by Weyl restricted to
axial symmetry [7], the first explicit solution of this kind, cor-
responding to the sourceless Einstein–Maxwell field equa-
tions, was first found by Majumdar [8] and, independently,
by Papapetrou [9]. It was latter shown by Hartle and Hawk-
ing [10] that the Majumdar–Papapetrou solution can actu-
ally be interpreted as a collection of extremal black holes in
static equilibrium [11], raising further interest on the topic
from different communities [12–15]. A particularly interest-
ing property of this solution is its lack of symmetry in the
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distribution of black holes. Many other solutions of this fam-
ily and generalizations have been subsequently found and
characterized in the literature regarding their astrophysical
features [16–22].

In the quest for counterparts of gravitating configurations
in extensions of GR a number of solid scores have been hit,
for instance, within rotating black holes [23], compact stars
[24], further horizonless compact objects [25], and so on. The
search for such configurations is suggested from the point of
view of finding alternatives to canonical GR objects (either
black holes or compact stars) whose properties can be tested
against the present and future stream of data from multimes-
senger astronomy [26], and act as observational discrimina-
tors with respect to GR predictions. In implementing this
program one faces the fundamental difficulty of the inher-
ently more involved equations of motion of most extensions
of GR, which largely prevents the construction of solutions of
theoretical and observational interest (among other troubles).
It is therefore timely and of great relevance the development
of novel methods and algorithms to shortcut the structure of
such field equations to find explicit solutions.

One such method has been developed recently [27]. It
works for theories of gravity including scalar objects built
out of contractions of the (symmetric part of the) Ricci ten-
sor with the metric, and formulated in metric-affine (Palatini)
spaces, where metric and affine connection are regarded as
independent entities. The resulting family of models are the
so-called Ricci-based gravities (RBGs), which yield second-
order, ghost-free equations of motion which are compatible
with all solar system and gravitational wave observations so
far. For these theories it is possible to introduce new vari-
ables such that the corresponding field equations are cast
in the Einstein frame, in such a way that the nonlinearities
are transferred to the matter sector. From this frame one can
take (when known) the corresponding GR solution, and find
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the counterpart in the RBG frame via purely algebraic trans-
formations. This is known as the mapping method, whose
reliability was originally proven for anisotropic fluids [27],
and has allowed to obtain new solutions for electromagnetic
[28] and scalar fields [29,30].

The main aim of this paper is to progress further in the
analysis of the capabilities of this mapping by working out
the counterpart of the Majumdar–Papapetrou (MP) solution
using one particular RBG, namely, the so-called Eddington-
inspired Born–Infeld (EiBI) gravity theory, popularized by
Ferreira and Banados [31], though first studied in the metric-
affine formalism by Vollick [32] inspired on a work by Deser
and Gibbons [33]. This choice is motivated on the plethora of
applications of this theory within astrophysics, black holes
physics and cosmology, as found in the last few years (see
[34] for a recent review). We shall explicitly cast the map-
ping method for this theory and the combination of fluid
and electromagnetic fields supporting the MP solution, and
then we will build its generalization within EiBI gravity. We
shall show that, depending on the sign of the EiBI param-
eter, the corresponding solutions can be understood as (i) a
collection of point-like objects with bounded stress-energy
density everywhere and that lose their (extremal) horizon
in the lower part of the mass spectrum, and (ii) as a set of
extremal black holes in equilibrium, each of which contains
a non-traversable wormhole (or black bounce [35–37]) in its
interior. We discuss the regularity properties of both families
of solutions regarding the completeness of geodesics and the
behavior of curvature scalars.

The paper is organized as follows: in Sect. 2 we introduce
the main elements of the MP solution in GR. The RBG fam-
ily of theories and the mapping with electromagnetic fields
is presented in Sect. 3. We then combine these two ingredi-
ents to present the counterpart of the MP solution in Sect. 4,
discussing its horizon structure and geodesic equation for
one-particle configurations. We finally conclude in Sect. 5
with a discussion and some perspectives.

2 Extreme counterpoised dust and the
Majumdar–Papapetrou solution

The Majumdar–Papapetrou family is a particular class of
solutions solving Einstein equations

Gμν = κ2 (Tm
μν + T em

μν

)
, (1)

where κ2 = 8πG is Newton’s constant, while the contribu-
tions to the energy-momentum tensors read

Tm
μν = ρ uμμν , (2)

which corresponds to a pressureless dust component, whereρ

is the energy density, uμ is the unit time-like vector properly

normalized according to uμuμ = −1 and

T em
μν = − 1

4π

(
Fα

μFαν − 1

4
gμνF

αβFαβ

)
, (3)

which corresponds to a standard (Maxwell) energy-momentum
tensor associated to the electromagnetic field, where Fμν =
∂μAν−∂ν Aμ is the field strength tensor of the vector potential
Aμ. The Einstein field equations (1) must be supplemented
with the matter field equations, which read

∇μF
μν = 4π J ν , (4)

where the charge density reads J ν = ρeuν . This is nothing
but Maxwell field equations sourced by a current generated
by the pressureless fluid (2).

Assuming purely electric fields, Aμ = δtμφ, Weyl showed
[7] that the most general relation between the metric and the
electric potential solving both the Einstein and electromag-
netic equations must be of the form (A, B some constants)

gtt = A + Bφ + φ2 , (5)

supported by axially symmetric spatial symmetry. The MP
solution generalizes the proposal of Weyl to any spatial sym-
metry by imposing the following more stringent restriction on
the relation between the metric and the electrostatic potential

gtt =
(
C ± φ√

2

)2

. (6)

Enforcing this condition, it can be proved that the solution
is static with the density of the dust that equals the electric
charge distribution, namely ρe = ρ, which is known as an
extreme counterpoised dust. Moreover, the spatial sections
are conformally flat when the pressure is set to zero [38].
Under these conditions, the MP background spacetime metric
(in Cartesian coordinates) can be expressed as

ds2 = − 1

U (x, y, z)2 dt
2 +U (x, y, z)2d �x · d �x , (7)

where U is a function characterizing the geometry that is
related to the electrostatic potential through the MP condition
(6). Since the Einstein–Maxwell field equations only depend
on derivatives of φ, this potential can be redefined to cancel
the constant C so that (6) simplifies as

U = ±
√

2

φ
. (8)

This is the choice of [10] up to a choice of units of the electric
charge that can reabsorb the

√
2 factor. On the other hand,

from the line element (7) the matter field equations (4) result
in the following Poisson equation

∇2U = −4πρ U 3 , (9)

that reduces to Laplace equation for the electrovacuum solu-
tion, recovering the original MP solution.
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In summary, MP solutions are a particular subset of the
Einstein–Maxwell-dust system in which the mass is exactly
tuned to the electric charge. For instance, any collection of
extreme Reissner-Nordström black hole solutions (m2 = q2)
located at will is a particular MP solution [11], without any
need to impose additional symmetries. For this reason, these
configurations are sometimes called multicenter solutions.
In any case, of particular interest are those configurations
enjoying spherical symmetry, in which case Eq. (7) can be
expressed as

ds2 = −U−2(R)dt2 +U 2(dR2 + R2(dθ2 + sin2 θdφ2)) , (10)

and thus Eq. (9) remains formally the same but now the
Lagrangian and its functional dependencies are expressed
in terms of R. A further coordinate change may bring the
line element into standard Schwarzschild form, that is

ds2 = −A(r)dt2 + B(r)dr2 + r2(dθ2 + sin2 θdφ2) , (11)

via the identifications r = RU (R), A(t) = U−2(R) and
B(r)−1/2 = 1 + R

U dU (R)/dR. Either under form (10) or
(11), there are typically two paths followed in the literature
to solve the corresponding field equations: (i) one assumes
a functional form for U (R) and solves (9) to find the matter
energy density ρ(R) threading the geometry [39,40] or (ii)
a function ρ(R) for the inner region is set [41], and resort to
numerical methods to resolve the corresponding differential
equation in order to get U (R). Perhaps the most well known
example of the first path is the so-called Bonnor stars [42],
where one sets two different regions as

UE = 1 + m

r
, r ≥ r0 (12)

U I = 1 + m

r0
+ m(r2

0 − r2)

2r0r3
0

, 0 ≤ r ≤ r0 , (13)

where the exterior solution, UE corresponds to an extreme
Reissner–Norström black hole, which is matched to the inte-
rior solution at a certain r = r0.

3 Ricci-based gravities and the mapping for
electromagnetic fields

3.1 Ricci-based gravities

To describe the mapping procedure for electromagnetic fields
and the main elements required for our analysis, let us begin
by defining the action of RBGs as

SRBG =
∫

d4x
√−g

[LG(gμν,R(μν)(�)) + Lm(gμν, ψm)
]

,

where g is the determinant of the spacetime metric gμν .
The functional dependence of the gravitational Lagrangian
LG must be through traces of powers of the object Mμ

ν ≡

gμαR(αν), whereR(αν)(�) is the symmetric part of the Ricci
tensor,1 which is solely built out of the affine connection
� ≡ �λ

μν (not necessarily symmetric [45]), the latter being a
priori independent of the metric (Palatini approach). Regard-
ing the matter Lagrangian Lm(gμν, ψm), it depends on a set
of matter fields ψm minimally coupled to the spacetime met-
ric.

The field equations for RBGs can be conveniently written
as [27,44]

Gμ
ν(q) = κ2T̃μ

ν(q) , (14)

where Gμ
ν(q) is the Einstein’s tensor of a new rank-two

tensor related to the spacetime metric via the fundamental
relation

qμν = gμα�α
ν . (15)

Here �α
ν is dubbed as the deformation matrix, and can

always be written on-shell as a function of the stress-energy

tensor Tμν(g) ≡ − 2√−g
δ
√−gLm
δgμν . The relation between

Tμ
ν(g) and T̃μ

ν(q) follows from the original RBG field
equations and takes the form

T̃μ
ν(q) = 1

|�̂|1/2

[
Tμ

ν(g) − δμ
ν

(
LG + T (g)

2

)]
, (16)

where vertical bars denote a determinant and T ≡ gμνTμν

is the trace of the stress-energy tensor. This effective stress-
energy tensor T̃μ

ν(q) can be similarly derived from another

Lagrangian density L̃m , that is, T̃μν(q) ≡ − 2√−q
δ
√−qL̃m
δqμν .

This procedure establishes a correspondence or mapping
between RBGs coupled to Lm and GR coupled to L̃m , as
established in [27–30]. Note that, in general, both Lm and
L̃m will contain fields of the same kind (that is, scalar fields
map into scalar fields, electromagnetic into electromagnetic,
and so on), though the functional dependence will be differ-
ent, yielding in general non-canonical Lagrangians in one (or
both) sides.

3.2 The mapping for Eddington-inspired Born–Infeld
gravity

In this work we shall be interested in the case where we
choose the following RBG Lagrangian density

LG = 1

εκ2

(√∣∣gμν + εRμν

∣∣− λ
√−g

)
, (17)

where ε is a constant with dimensions of length squared,
and the theory features an effective cosmological constant
�e f f = λ−1

ε
. This is the well known and well studied

1 Note that this requirement safeguards the resulting theory from poten-
tial instabilities associated to the loss of projective symmetry induced
by the antisymmetric part of the Ricci tensor, see [43,44] for details. To
lighten the notation, from now on parenthesis will be dropped.
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Eddington-inspired Born–Infeld (EiBI) gravity [31,34]. We
shall first perform a few manipulations in order to apply the
mapping above (i.e. Eq. (16)) to this setting. The equations
of motion for EiBI gravity are obtained by variation of the
action (17) with respect to the connection and the metric as
the two sets of nonlinear equations (here Sν

αγ represents the
torsion tensor)

∇μ

(√−g
∂LG

∂Rβγ

)
δμν
αγ = (

Sν
αγ + 2Sσ

σ [αδν
γ ]
)√−g

∂LG

∂Rβγ

2κ2 ∂LG

∂Rμρ

gρν = λδμ
ν − εκ2Tμ

ν , (18)

respectively. Following [45] we can introduce an auxiliary
metric qμν defined by the equation

√−qqμν = 2κ2√−g
∂LG

∂Rμν

, (19)

and after performing a projective transformation2

�̃ρ
μν = �ρ

μν + 2

3
Sλ

λμδρ
ν , (20)

it is possible to reduce the field equations associated to the
variation of the connection to the metric compatibility con-
dition, ∇̃ρqμν = 0.3 Equation (19) applied to (17) reveals
that the auxiliary metric appearing in Eq. (15) is

qμν = gμν + εRμν , (21)

which is a well known result since the seminal paper [31].
Using the following general recipe of [48] to generate the
metric for the EiBI gravity (17) coupled to any matter theory

gμν = qμν − εκ2
(
T̃μν − 1

2
T̃ qμν

)
, (22)

it is straightforward to find the following relation between
the metrics in the case of any nonlinear electrodynamics

gμν =
[

1 + εκ2

(

L̃m − 2K̃
∂L̃m

∂ K̃
− G̃

∂L̃m

∂G̃

)]

qμν

+2εκ2 ∂L̃m

∂ K̃
K̃μν , (23)

where we have introduced the two invariants of the electro-
magnetic field

K̃ ≡ −1

2
Fμν F̃

μν , G̃ ≡ 1

4
Fμν

� F̃μν , (24)

2 For recent discussions on the interpretation of projective transforma-
tions in metric-affine gravities see [44,46,47].
3 From now on tildes over quantities will indicate those variables
defined in the GR frame; in particular this implies that indices are
raised and lowered with the qμν metric. Conversely, when the tildes
are dropped it will mean that indices are raised and lowered with the
gμν metric instead.

with �Fμν = 1
2εμναβFαβ the dual of the field strength tensor

Fμν = ∂μAν − ∂ν Aμ and K̃μν ≡ Fμα F̃α
ν Choosing the

standard Maxwell Lagrangian on the GR side, that is

L̃m = K̃

8π
. (25)

the expression above boils down to

gμν =
(

1 − εκ2 K̃

8π

)

qμν + εκ2

4π
K̃μν . (26)

This equation provides a direct shortcut to find any solution
on the EiBI side (as given by gμν) starting from a seed solu-
tion on the GR side (as given by qμν). In the next section we
shall use this powerful result in order to generate the coun-
terpart of the MP solution within EiBI gravity coupled to BI
electrodynamics.

Let us now focus on electromagnetic fields. Following the
procedure detailed in [48,49], the field equations (18) can be
reduced to the standard Einstein equations written in terms
of the auxiliary metric and the tilted connection if and only
if the matter sector in the EiBI frame is related to the matter
sector in the GR frame through the following parametrization
[48]

Lm(g, ψ) = 1

εκ2

⎧
⎪⎪⎨

⎪⎪⎩
λ −

1 − εκ2
(
L̃m(g, ψ) − T̃ /2

)

√
det
[
δ
μ
ν − εκ2

(
L̃m(g, ψ) − T̃ /2

)]

⎫
⎪⎪⎬

⎪⎪⎭

(27)

that reduces to (cfr. Eq. (5.11) of Ref. [49]) (here κ̃2 ≡
κ2/8π )

Lm = 1

εκ2

⎡

⎣ (εκ̃2 K̃ − 1)

1 − (εκ̃2)2
(
K̃ 2 + 4G̃2

) + λ

⎤

⎦ , (28)

provided that we choose the matter content on the GR side
as given by Maxwell electrodynamics in (25). Our next goal
is to express (28) in terms of quantities in the EiBI frame
by writing the invariants of the qμν frame, which are those
appearing in the Lagrangian density (28), in terms of those
of the RBG frame (the untilted variables). Using the inverse
mapping between metrics (21), a little algebra allows to find
the following relations between the field invariants in the GR
and RBG frames [48]:

K̃ = 2
(
K + 4εκ̃2G2

)

ε2κ̃4
(
K 2 + 4G2

)

×
(

1 − εκ̃2K ±
√

1 − 2εκ̃2K − 4ε2κ̃4G2
)

(29)

G̃ = − 2G

ε2κ̃4
(
K 2 + 4G2

)
√

1 − 2εκ̃2(K + 2εκ̃2G2)

×
(√

1 − 2εκ̃2(K + 2εκ̃2G2) ± (1 − εκ̃2K )
)

. (30)
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Replacing these expressions into the parametrization (28)
one gets the form of the matter Lagrangian in the EiBI frame
as

Lm = (2λ − 1) ±√1 − 2εκ̃2(K + 2εκ̃2G2)

εκ2 . (31)

Now, if we take from now on, for simplicity, asymptot-
ically flat solutions, λ = 1, and make the identification
β2 = 4π/(εκ2) choosing the minus sign solution, then the
Lagrangian density above becomes

Lm = β2

4π

⎛

⎝1 −
√

1 − K

β2 − G2

β4

⎞

⎠ , (32)

which is the well known Born–Infeld (BI) theory of elec-
trodynamics. Therefore, we have just seen that GR coupled
to Maxwell electrodynamics maps into EiBI gravity coupled
to BI electrodynamics. Note, however, that the sign of ε is
not a priori restricted to be positive, which implies that β2

could also be negative despite being written as the square of
a parameter β.

4 Mapping multicenter solutions

4.1 The Majumdar–Papapetrou solution in EiBI

Now that we have all the necessary elements of the mapping
for this scenario under control, the derivation is remarkably
simple. Indeed, in order to extract the counterpart of the MP
solution (7) within EiBI gravity we just need to compute the
extra corrections appearing in Eq. (26) via the ansatz (10).
First we find that

K̃μνdx
μdxν = (∇U )2

U 6 dt2 − UidxiU jdx j

U 2 , (33)

where {i, j} = x, y, z, which allows to find

K̃ = − (∇U )2

U 4 , (34)

so that after a bit of algebra Eq. (26) reads

ds2 = − 1

U 2

(
1 + εκ2

16π

(∇U )2

U 4

)
dt2 + εκ2

8π

(dU )2

U 2

+U 2
(

1 − εκ2

16π

(∇U )2

U 4

)
d �x2 , (35)

which is the counterpart of the MP solution, given by a cer-
tain U (�x), within EiBI gravity (17) coupled to Born–Infeld
electrodynamics (32), as obtained via the mapping. Nice and
easy.

To construct multicenter solutions out of the above solu-
tion one can consider a collection of N solutions of this type

such that the metric function (in GR) is written as

U = 1 +
N∑

i

mi√
(�x − �xi )2

(36)

where mi labels the mass of each object, and (�x − �xi )2 =
(x − xi )2 + (y − yi )2 + (z − zi )2, where (xi , yi , zi ) are the
coordinates labeling the center of each solution. If instead
of Cartesian coordinates one labels the centers by means
of spherical coordinates, each vector �xi becomes �xi =
ri (sin θ cos ϕ, sin θ sin ϕ, cos θ) such that

(�x − �xi )2 = r2 + r2
i − 2rri (sin θ sin θi cos(θ − θi )

+ cos θ cos θi ) (37)

Inserting back the ansatz (36) into the line element (35) one
would find the counterpart of the multicenter solutions of
GR. However, the resulting such expressions are not very
illuminating, so in the next section we shall further constrain
this setting.

4.2 Features of the solutions near individual center

For the sake of the discussion of the features of the gener-
alized MP solutions, it is much more convenient to rewrite
the generalized MP solution (35) in terms of the electrostatic
potential. This can be done after noting that the expression of
the electrostatic potential Aμ(x, y, z) = (φ(x, y, z), �0) with
φ(x, y, z) = 1/U (x, y, z) allows to write �∇U/U 2 = −�∇φ,
which simplifies many expressions. Replacing this into the
line element (35), and suitably rearranging terms one finds

ds2 = −φ2
(

1 + εκ2

16π
(∇φ)2

)
dt2 + εκ2

8πφ2 ( �∇φ · d�r)2

+ 1

φ2

[(
1 − εκ2

16π
(∇φ)2

)
(dr2 + r2d�2)

]
, (38)

where d�2 = dθ2 + sin2 θdϕ2 is the usual unit volume ele-
ment of the two-spheres. In order to understand the properties
of this multicenter solution, it is useful to have a careful look
at individual centers, which will provide a reasonable approx-
imation of the geometry for sufficiently separated objects.
Corrections depending on the separation could be computed
by perturbative methods and the general case should take into
account the exact line element (38).

In the case of having only one center, the angular con-
tributions to the anisotropy vanish and only the radial part
remains, allowing us to write �∇φ · d�r = φr dr . The line
element (38) can then be written as

ds2 =
[

1 + εκ2

16π
φ2
r

](
−φ2dt2 + 1

φ2 dr
2
)

+
[

1 − εκ2

16π
φ2
r

]
r2

φ2 d�2 . (39)
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Given that for one-particle configurations one has the elec-
trostatic potential φ = r/(r + m), where m is its mass,
it is easy to go from the current isotropic coordinates to
Schwarzschild-like ones by redefining the factor r2/φ2 =
R2 = (r + m)2, which turns the above one-particle line ele-
ment into

ds2 =
[

1 + s
R4
c

R4

](
−φ2(R)dt2 + 1

φ2(R)
dR2

)

+
[

1 − s
R4
c

R4

]
R2d�2 , (40)

where now φ(R) = 1−m/R, the parameter s = ±1 denotes

the sign of ε, and R4
c ≡ |ε|κ2m2

16π
becomes a fundamental scale

that characterizes the features of these solutions.
A glance at the factor that multiplies the two-spheres in

the above line element shows that if s = +1 then the area
of the two-spheres vanishes at R = Rc, which suggests to
introduce a new coordinate ρ2 = R2 − R4

c/R
2 that allows

to rewrite the line element in such a way that the center
would be located at ρ = 0. By contrast, for s = −1 we
find that the two-spheres have a non-vanishing minimum
area at R = Rc, which can be interpreted as representing
the throat of a wormhole which satisfies the flare-out con-
dition for sustainability (see e.g. [50], while for a detailed
account of wormhole physics see [51]) or, alternatively, as
a black bounce [35–37]. The two signs, therefore, describe
quite different objects, namely, point-like particles if s = +1
and wormholes if s = −1. In light of this observation, in the
following sections we will study the properties of these one-
center extremal solutions4 considering the two cases s = ±1
separately.

4.2.1 Curvatures of individual centers

A look at the curvature scalars provides a useful comparison
with the GR solutions. In GR (s = 0), the Ricci scalar van-
ishes and the Kretschmann diverges at R = 0 as ∼ m4/R8.
When s = +1, we find that as R → Rc the Ricci scalar goes
like ∼ 1/(R− Rc)

2 and the Kretschmann as ∼ 1/(R− Rc)
4,

having a softer behavior if Rc = m, where they become
(2m)−1/(R − Rc) and (2m)−2/(R − Rc)

2, respectively. If
s = −1, we find that as R → Rc the Ricci scalar goes like
∼ 1/(R − Rc)

3 and the Kretschmann as ∼ 1/(R − Rc)
6,

having also a softer behavior if Rc = m, where they become
− 3

2 (2m)−1/(R−Rc) and 9
4 (2m)−2/(R−Rc)

2, respectively.
Since this s = −1 case represents a wormhole, with its throat
at R = Rc, it is also relevant to look at the curvature scalars
in the limit R → 0, where the area of the two-spheres goes
to infinity again. In this region, we find that both the Ricci
and the Kretschmann scalars are finite, taking the values

4 For an exhaustive discussion of the one-center solutions away from
extremality and with rotation, see [52].

36m2/R4
c and 408m4/R8

c , respectively. We thus see that in
all cases the relevant curvature divergences of these solutions
are much weaker than in the GR case.

4.2.2 Horizons of individual centers

For static individual centers, spherical symmetry allows us
to identify the location of horizons by finding R =constant
hypersurfaces with vanishing norm. Regarding such hori-
zons, the case s = +1 has the same structure as the GR
solution, with a degenerate horizon located at R = m, when-
ever m > Rc (equivalently m > (|ε|κ2/16π)1/2). If m < Rc

(equivalently m < (|ε|κ2/16π)1/2) then there is no degen-
erate horizon because the area of the two-spheres vanishes
at R = Rc > m and the geometry cannot be extended fur-
ther below. Note that for such small mass configurations if
one assumes that |ε| ∼ l2Planck , then m � mPlanck . The case
Rc = m presents a degenerate horizon at R = m of vanishing
area.

In the case s = −1, it is important to note that precisely
at R = Rc, where the two-spheres reach their minimum, the
gtt component vanishes while gRR diverges, which requires
a more careful analysis. The situation can be clarified if
we transform the line element (40) to ingoing Eddington-
Finkelstein coordinates via the change dv ≡ dt + f (R)dR,
with f (R) = ±1/φ(R), such that the line element (40)
becomes

ds2 = −
[

1 + s
R4
c

R4

]
φ2dv2 − 2

[
1 + s

R4
c

R4

]
dvdR

+
[

1 − s
R4
c

R4

]
R2d�2 . (41)

Now, in order to avoid the coordinate singularity at R = Rc

due to the vanishing of the off-diagonal term dvdR when s =
−1, a further change of variables is necessary to absorb the

factor
[
1 − R4

c
R4

]
in a new radial coordinate. For this purpose

we consider the choice

dy = ±
[

1 − R4
c

R4

]
dR , (42)

with the plus sign corresponding to R > Rc and the minus
sign to R < Rc to guarantee that y(R) is a monotonic func-
tion on all the domain R ∈]0,∞[ (see Fig. 1). The explicit
relation between y and R can be integrated as

y =
⎧
⎨

⎩
R + R4

c
3R3 if R ≥ Rc

8
3 Rc −

(
R + R4

c
3R3

)
if 0 < R ≤ Rc

, (43)

with y(Rc) ≡ yc = 4Rc/3. This construction guarantees the
continuity and derivability of the change of coordinates, as
can be seen in Fig. 1. Note that in the neighborhood of Rc,
one has y ≈ yc ± 2

Rc
(R − Rc)

2. As a result of this change of
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Fig. 1 The change of coordinates (43) for y(R) (blue) and its derivative
y′(R) (orange). Note that both functions are everywhere continuous

coordinates, (41) becomes

ds2 = −
[

1 − R4
c

R4(y)

]
φ2dv2 − 2dvdy

+
[

1 + R4
c

R4(y)

]
R2(y)d�2 , (44)

which covers the whole range y ∈] − ∞,+∞[ with a single
chart and avoids coordinate metric singularities everywhere
(except, obviously, in the angular sector).

In these coordinates one finds that the normal vector to
the hypersurfaces y =constant becomes null at R = m (if
m ≥ Rc) and at R = Rc (always). The time-like Killing
vector χ = ∂v also has vanishing norm there, confirming that
these two locations represent Killing horizons (if m ≥ Rc).

4.2.3 Surface gravity

The properties of the horizons in the s = −1 model require
further attention because while at R = m one generically
finds zero surface gravity, this quantity diverges at Rc as

|κ| ≈ lim
R→Rc

(Rc − m)2

2R2
c (R − Rc)

. (45)

The reason lies on the fact that the surface gravity is defined as

the limit |κ| = limy→yH |Ay |, where A(y) =
[
1 − R4

c
R4(y)

]
φ2

and yH represents the location of the horizon. Since near the
R = Rc �= m horizon one finds that A(y) ≈ 4(R−Rc)/Rc =√

(y − yc)/2Rc has a square root dependence on (y − yc),
then its derivative necessarily induces a divergence in the
denominator of κ . Only when Rc = m does κ vanish at
Rc because then A(y) ∼ (y − yc)3/2. The divergence of
the surface gravity in this one-center solution is a generic
property that only disappears when a specific charge-to-mass
relation is satisfied, which includes the case Rc = m but also
other cases with non-vanishing temperature [52].

To deepen into the physical meaning of this infinite surface
gravity, it might be useful to have a look at the properties of
the matter field there. Given that for the GR solution one has
K̃ = m2/R4, one readily finds that

K = m2

R4

1
(

1 + s R4
c

R4

)2 (46)

Lm = m2

16πR4
c

(R4
c/R

4)
(

1 + s R4
c

R4

) (47)

ρ = m2

16πR4
c

(R4
c/R

4)
(

1 − s R4
c

R4

) , (48)

where ρ represents the field energy density.
When s = −1, it is evident that both the electric field

intensity squared and the electromagnetic Lagrangian (28)
diverge at R = Rc, but the energy density is always finite
and positive.

On the other hand, for s = +1 all those quantities have
the reversed behavior, namely, the electric field intensity
squared and electromagnetic Lagrangian (which is related
to the transversal pressures of the field) are finite and well
behaved, though the energy density diverges. We thus see that
the divergence of curvature scalars at x = Rc is totally uncor-
related with the behavior of the matter fields, which may or
may not be divergent at that location. It is thus unclear if there

Table 1 Summary of the features of the one-center solutions of GR (s = 0) and of the two families of configurations studied in this paper (s = ±1).
The case in which Rc = m is considered separately in Sect. 4.2.5

s Type Ricci scalar Kretschmann Horizons Surf. grav. κ FμνFμν ρ

0 Point-like 0 ∼ 1
R8 Double at R = m 0 m2

R4 → ∞ m2

R4 → ∞
∼ 1

(R−Rc)2 if Rc > m ∼ 1
(R−Rc)4 if Rc > m Double at R = m

+1 Point-like if m > Rc 0 Finite at R = Rc ∞ at R = Rc

∼ 1
(R−Rc)

if Rc = m ∼ 1
(R−Rc)2 if Rc = m Naked otherwise

∼ 1
(R−Rc)3 if Rc > m ∼ 1

(R−Rc)6 if Rc > m Double at R = m �= Rc ∞ at Rc �= m

−1 Wormhole ∞ at R = Rc Finite at R = Rc

∼ 1
(R−Rc)

if Rc = m ∼ 1
(R−Rc)2 if Rc = m Single at R = Rc 0 otherwise
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Fig. 2 The effective potential Vef f in Eq. (50) for timelike (k = −1)
radial (L = 0) geodesics for m/Rc = 5 as a function of R/Rc. The
solid (red) curve represents the case s = +1 while the dashed (green)
curve is for s = −1. Note that in this figure the wormhole throat is
located at R = Rc = 1, where V−

e f f vanishes

is any physical reason or implication for the divergence of
the surface gravity at the wormhole throat when Rc �= m.

The features discussed above of both s = ±1 cases regard-
ing the behaviour of curvature scalars, horizons, surface grav-
ity, electric fields, and energy density, have been summarized
in Table 1, together with their comparison with GR expecta-
tions.

4.2.4 Geodesic structure of individual centers

For spherically symmetric spacetimes the geodesic equation
can be written in a simple form [53], which for the line ele-
ment (40) becomes
([

1 + s
R4
c

R4

]
dR

du

)2

= E2 − Vef f (R(y)) , (49)

where u is here the affine parameter and E the energy per unit
mass. As usual, this geodesic equation is akin to the motion
of a single particle in a one-dimensional effective potential,
which in the present case reads explicitly

Vef f =
(

1 + s
R4
c

R4

)(
1 − m

R

)2
⎛

⎝ L2

R2 − s R4
c

R2

− k

⎞

⎠ , (50)

with k = 0,−1 for null and timelike geodesics, respectively,
and L denotes the angular momentum per unit mass.

Let us consider first the case s = +1. As we approach the
center, R → Rc, the effective potential is dominated by the
term

Vef f ≈ L2(Rc − m)2

2R3
c (R − Rc)

, (51)

which represents a divergent barrier for any nonzero angular
momentum (see Fig. 2) as long as Rc �= m. Thus, light rays
and massive particles will bounce before reaching the center

and will never get there. For exactly radial motions, L = 0,
then Vef f ≈ −2k(Rc−m)2/R2

c , which vanishes for null rays
and becomes a finite positive barrier for time-like observers
(k = −1). Thus, particles with E2 > 2(Rc − m)2/R2

c will
be able to reach the center in finite affine time.

If m > Rc it is unclear if the curvature divergence at
the center will do any harm to infalling observers because
physical objects have a finite extension and, as we have just
seen, any nonzero L will experience a bounce before reach-
ing the center. One expects that the internal forces that keep
the object cohesive will slow down the infinitesimal elements
falling radially (L = 0) and make them bounce with the rest
of the body. Nonetheless, a detailed analysis of the behavior
of geodesic congruences and/or the interaction of waves with
these objects would be necessary to further explore the reg-
ularity of these solutions [54]. In any case, the fact that the
energy density is divergent at the center suggests a physical
obstruction to the extension of null radial geodesics in these
configurations.

Let us now consider the wormhole case, s = −1. The
shape of the effective potential is depicted in Fig. 2 for
the case of time-like (k = −1) radial (L = 0) geodesics,
though we point out that for geodesics with non-zero angular
momentum the qualitative behaviour is similar. Only those
geodesics with energy E larger than the maximum of the
effective potential will be able to go to the interior region
of these solutions and interact with the wormhole throat. In
the limit m � Rc this maximum is located at R ≈ 31/4Rc

and grows as Vmax ≈ 2m2

3
√

3R2
c

. In general, at R = Rc we

have Vef f = 0 (see Fig. 2), leading there to (uc being an
integration constant)

± E(u − uc) ≈ (y − yc) , (52)

for all null (with angular momentum) and time-like geodesics
(recall Eq. (42)). This solution is exactly the same as the one
corresponding to null radial geodesics (k = 0, L = 0), for
which Vef f = 0 everywhere, and indicates that null rays and
massive particles reach the surface R = Rc in finite affine
time. Whether geodesics can be extended beyond this point
is a subtle issue with no straightforward answer. On the one
hand, Eq. (52) shows that the relation between the radial
coordinate y and the affine parameter u is smooth across the
throat. However, one could argue that the divergence of cur-
vature scalars (and of the surface gravity) at Rc should pre-
clude the extensibility of geodesics, though there are exam-
ples which contradict this view [54–57] (see also [58–60])
based on the fact that the energy density at Rc is finite. In
addition, it has been shown in [52] that radial null geodesics
in the one-center solutions are insensitive to the charge and
mass parameters, existing a specific combination of them
for which all curvature scalars are finite. Since there are no
reasons to believe that geodesics should not be extended in
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Fig. 3 The affine parameter for timelike (k = −1) radial (L = 0)
geodesics as a function of R/Rc (note the inversion of axis), obtained
by integration of the geodesic Eq. (49) with the effective potential (50),
taking E = 6, m/Rc = 10 and uc = 2. Note that in this figure the
wormhole throat is located at R = Rc = 1. As is apparent from this fig-
ure, u can be indefinitely extended across the wormhole throat towards
u → +∞ at R = 0

that specific case and the geodesics satisfy exactly the same
equation, it seems natural to conclude that they are always
extensible across x = Rc.

In Fig. 3 we illustrate the case of time-like (k = −1) radial
(L = 0) geodesics assuming that they can be extended across
the wormhole throat R = Rc (note that there is no numerical
problem in doing so).

Provided that we have continued the geodesics across R =
Rc, to see what happens with them in the asymptotic region
R → 0 we need to study the effective potential (50) that for
massive particles goes like

Vef f ≈ −m2R4
c

R6 , (53)

while for null non-radial geodesics (k = 0, L �= 0) one has

Vef f ≈ − L2m2

R4 . (54)

In both cases, the effective potential is attractive and diver-
gent. In the latter case, one finds that the geodesic equation
(49) can be integrated as

u = ∓ R3
c

mLR
, (55)

while for the former (k = −1) we have instead

u = ± R2
c

m
ln R , (56)

where the minus sign in (55) corresponds to outgoing
geodesics and to ingoing geodesics in (56). Both of the
above expressions show that as R → 0 the affine param-
eter diverges, u → ±∞ (see Fig. 3), confirming in this way
that all such geodesics are complete from that side since they
would take an infinite affine time to get there.

Let us finally point out that the case of radial null geodesics
is trivial, since from Eq. (49) one immediately finds that

y = ±Eu , (57)

and y ∈] − ∞,∞[ (as follows from (43)). Thus, the region
corresponding to R → 0 (or y → −∞) represents a regular
boundary of this spacetime, since it cannot be reached in
finite affine time by any geodesic.

Table 2 summarizes the above discussion on the geodesic
completeness of both s = ±1 cases, together with their com-
parison with GR expectations.

4.2.5 The limiting case Rc = m

This case deserves particular attention because it represents a
limiting situation with peculiar features. From (41) it is easy
to see that for s = +1 the center of the object is located at
R = Rc = m and represents a degenerate horizon. This fact
has a deep impact on the corresponding Penrose diagram of
this configuration. In fact, when m > Rc the basic building
block of the space-time global structure can be depicted by
the diagram in Fig. 4, where curvature divergences arise at
R = Rc (time-like wavy line), while the two degenerate
horizons are found at R = m. If m > Rc then the curvature
divergences at R = Rc become naked, with no degenerate
horizons, as shown in Fig. 5, while for Rc = m we find an
intermediate situation, with the center R = Rc becoming
a degenerate horizon (see Fig. 6). Regarding geodesics, the
case Rc = m is quite different from the others with Rc �= m.
In the latter, the potential barrier diverges as R → Rc, forcing
all L �= 0 geodesics to bounce before reaching it. However,
when Rc = m, the potential barrier goes to zero linearly as
R − Rc as the center is approached. Thus, all geodesics with
L �= 0 and enough energy to overcome the maximum of the
centrifugal barrier will be able to get to R = Rc and hit the
curvature divergence. Note, in this respect, that the strength
of the divergence in this case is much weaker than in GR (see
Table 1).

When s = −1 the global structure of the solutions is
completely different. As we already saw, if Rc �= m both
R = m and R = Rc are Killing horizons, with the degenerate
horizon R = m happening before R = Rc if m > Rc and
after otherwise, as shown in Fig. 7, which illustrates only the
case m > Rc. The critical case Rc = m leads to a completely
different scenario, shown in Fig. 8, in which the horizons
shrink to a line with a curvature divergence at the wormhole
throat, which is now located at R = Rc = m. The behavior
of geodesics in this case is qualitatively the same as discussed
above for the general case.
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Table 2 Properties of the geodesics of the one-center solutions of GR (s = 0) and of the two families of configurations studied in this paper
(s = ±1). For clarifications on what Complete∗ means, see the discussion in Sect. 4.2.4

s Time-like L �= 0 Time-like L = 0 Null L �= 0 Null L = 0

0 Complete Complete Complete Incomplete

+1 Complete if E2 <
2(Rc−m)2

R2
c

Complete Complete Incomplete

Incomplete otherwise

−1 Complete∗ Complete∗ Complete∗ Complete

Fig. 4 Conformal diagram of the case m > Rc when s = +1. The
diagram repeats itself in the vertical axis indefinitely. The wavy line
represents the location of curvature divergences

5 Conclusions

In this work we have considered a particular class of the
Majumdar–Papapetrou family of solutions of GR, given by a
collection of extreme black holes in equilibrium (multicen-
ter solutions), to build a new family of such objects within
modified gravity. The gravitational model considered here
is the Eddington-inspired Born–Infeld gravity, a particular
member of the Ricci-based gravities class, while to gener-
ate such solutions we have made use of a new powerful

Fig. 5 Conformal diagram of the case m < Rc when s = +1. The
center of the object becomes a naked singularity

tool dubbed as the mapping method. We have shown that
via this method, solutions of the Einstein–Maxwell system
are mapped into those of the EiBI gravity theory coupled to
a Born–Infeld-type electrodynamics. We then used the MP
multicenter solution on the GR side as the seed to gener-
ate a new family of solutions in our modified gravity model.
The resulting solutions represent a collection of exotic new
objects in equilibrium with important novelties as compared
to those of GR, whose properties critically depend on the
sign of the EiBI parameter ε.

On the one hand, when ε > 0, one finds a family of point-
like objects which look like extremal black holes for masses
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Fig. 6 Conformal diagram of the case m = Rc when s = +1. The
center of the object becomes a null hypersurface

Fig. 7 Conformal diagram of the case m > Rc when s = −1. The
diagram repeats itself in the vertical axis indefinitely. The wavy line
represents the location of curvature divergences

above the Planck scale but which loose their horizon in the
lower part of the mass spectrum. These objects have bounded
electric field at their centers but divergent energy density.

On the other hand, the interpretation of the case ε < 0
requires to play a bit to cast the corresponding line element
in suitable coordinates. There we have shown that for the case
of individual centers they are a kind of extremal black hole

Fig. 8 Conformal diagram of the case m = Rc when s = −1. The
diagram repeats itself in the vertical axis indefinitely. The wavy line
represents the location of curvature divergences

with an internal wormhole, whose throat represents a Killing
horizon with divergent surface gravity and curvature. In the
interior region, geodesics take an infinite affine time to get to
R → 0, which represents a boundary of infinite area. We have
interpreted these solutions as geodesically complete because
of results previously obtained in [52], though the coexistence
of a finite energy density at the throat with a divergent electric
field intensity is certainly inconvenient. Let us point out that
asymmetric wormhole solutions with incomplete geodesics
have been found in the EiBI theory coupled to scalar fields
[30,61], but in such a case the matter fields at the worm-
hole throat are well behaved while it is the innermost region
which becomes problematic. These results defy the intuitive
notion that wormholes always allow for the completeness of
geodesics, and raises further questions on the suitability of
different markers to characterize pathologies in the charac-
terization of spacetimes (for a broad discussion on singularity
regularization see [62,63]). The question on the stability of
the solutions presented here is intimately related to whether
the supersymmetry of the GR solution is preserved or broken
under the mapping transformation [64,65]. If the solutions
of the EiBI theory remain supersymmetric and represent the
corresponding Bogomol’nyi bound, stability would be guar-

123



1018 Page 12 of 13 Eur. Phys. J. C (2020) 80 :1018

anteed [66]. This is an aspect that lies beyond the scope of
the current work and will be explored elsewhere.

Using the methods presented in this work, it is possible to
generate multicenter solutions in other gravity theories, such
as f (R) and others, coupled to nonlinear electrodynamics
theories whose form depends on the specific target gravity
theory chosen. One thus may wonder if it would be possible to
find multicenter solutions in new gravity theories coupled to
Maxwell electrodynamics. This question is relevant because,
in particular, in the EiBI case coupled to Maxwell electro-
dynamics, individual wormhole solutions are known and are
better behaved than those found here [54–57] (some of them
are traversable, not hidden behind an event horizon). Thus
there is the hope of generating multiwormhole traversable
configurations on which ideas related to quantum entangle-
ment and the ER = EPR correlation could be tested [67].
Attempts to find such solutions have also been carried out
by the authors but without success so far. The key reason
for this negative result seems to lie on the lack of specific
symmetries in the field equations of the Einstein + nonlinear
electrodynamics system. On the other hand, applications of
these new multicenter configurations within the context of
supersymmetric theories is yet to be explored. Research in
these directions is ongoing and we hope to be able to report
on them elsewhere.
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