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Abstract We report a new symmetry of the Einstein–
Friedmann equations for spatially flat Friedmann- Lemaître-
Robertson-Walker universes. We discuss its application to
barotropic perfect fluids and its use as a solution-generating
technique for scalar field universes.

1 Introduction

In general-relativistic cosmology, the matter content of
the universe is typically modelled by a perfect fluid with
energy density ρ(t) and isotropic pressure P(t) related by
a barotropic equation of state P = P(ρ). This fluid is
described by the stress-energy tensor

Tab = (P + ρ) uaub + Pgab , (1)

where uc is the fluid four-velocity, which coincides with the
time direction of comoving observers (here we follow the
notations of Ref. [1], using units in which the speed of light
is unity).

Assuming spatial homogeneity and isotropy, the geome-
try is necessarily the Friedmann-Lemaître-Robertson-Walker
(FLRW) one, with line element

ds2 = gabdx
adxb = −dt2

+a2(t)

(
dr2

1 − Kr2 + r2dΩ2
(2)

)
(2)

in comoving coordinates (t, r, ϑ, ϕ), where gab is the metric
tensor, a(t) is the cosmic scale factor, K is the curvature
index, and dΩ2

(2) = dϑ2 + sin2 ϑ dϕ2 is the line element
on the unit 2-sphere [1]. In this geometry, the Einstein field
equations

Rab − 1

2
gabR + Λgab = 8πGTab (3)
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(where Rab is the Ricci tensor, R ≡ gabRab, and Λ is the cos-
mological constant) reduce to the Einstein–Friedmann equa-
tions of relativistic cosmology

H2 ≡
(
ȧ

a

)2

= 8πG

3
ρ + Λ

3
− K

a2 , (4)

ρ̇ + 3H (P + ρ) = 0 , (5)
ä

a
= − 4πG

3
(ρ + 3P) + Λ

3
, (6)

where an overdot denotes differentiation with respect to t ,
H(t) ≡ ȧ/a is the Hubble function, and the constant K
describes a closed universe if it is positive, a spatially flat
one if it vanishes, or a hyperbolic one if K < 0.

Out of the three Einstein–Friedmann equations (7)-(9),
only two are independent. If any two are given, the third one
can be derived from them. Without loss of generality, we
take the Friedmann equation (4) and the energy conservation
equation (5) as primary, with the acceleration equation (6)
following from them.

Symmetries are important for any physical theory and,
naturally, there is a wealth of literature on the symmetries
of the Einstein–Friedmann equations. Some of these stud-
ies are inspired by string dualities, although they are not
always directly related to them [2–22]; others are based
on methods of supersymmetric quantum mechanics [23–
25], and other times FLRW symmetries are studied in rela-
tion with solution-generating techniques (e.g., [2,16,18,26–
42]). There is increasing interest also in symmetries of the
Einstein–Friedmann equations formulated in conformal time
in the context of Penrose’s conformal cyclic cosmology [43]
and of hidden conformal symmetries [44–46]. Further moti-
vation comes from classic and recent studies of inflation in
which the symmetries of the relevant equations are used to
generate solutions from known ones with different scalar
field potentials [47,48]. This goal can be achieved while pre-
serving the slow-roll approximation while the old solution
is mapped into a new one [47,48]. Here we propose a new
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symmetry of these equations and discuss its possible uses for
FLRW universes filled with a perfect fluid with barotropic,
linear, and constant equation of state and for scalar fields
minimally coupled to the spacetime curvature. This symme-
try generalizes one previously introduced in Ref. [2] (see also
[3,4,6,10,11,14,15,21]) and studied recently in Ref. [26].

2 A new symmetry of the Einstein–Friedmann
equations

The new symmetry transformation involves a rescaling of the
comoving time t (and, consequently, of the Hubble function
H and of all first time derivatives), and the fluid energy den-
sity and pressure. Since, in general, the pressure is rescaled
differently than the energy density, the equation of state
changes under the symmetry transformation. The Einstein–
Friedmann equations remain invariant in form. This symme-
try only applies to spatially flat universes and is given by

dt → dt̄ = f (ρ)dt , (7)

ρ → ρ̄ =
(
1 − f 2

)
8πG f 2 Λ + ρ

f 2 = (1 − f 2)

f 2 ρΛ + ρ

f 2 , (8)

P → P̄ = −ρ̄ +
[
4πG f − (8πGρ + Λ) f ′]

4πG f 3 (P + ρ)

= −ρ̄ +
[
f − 2 (ρ + ρΛ) f ′]

f 3 (P + ρ) , (9)

where f (ρ) is a regular, positive, and dimensionless function,
f ′ is its derivative, and ρΛ ≡ Λ/ (8πG) is the effective
energy density of the cosmological constant. Since ρ = ρ(t),
the new differential dt̄ = f (ρ(t))dt is exact, with t̃(t) =∫
dt f (ρ(t)). The inverse transformation is

dt = dt̄

f
, (10)

ρ = f 2ρ̄ +
(
f 2 − 1

)
ρΛ , (11)

P + ρ = f 3

f − 2 (ρ + ρΛ) f ′
(
P̄ + ρ̄

)
. (12)

Using

ȧ ≡ da

dt
= da

dt̄

dt̄

dt
= f

da

dt̄
, (13)

H = f H̄ ≡ f

a

da

dt̄
, (14)

and Eq. (11), the Friedmann equation (4) with K = 0 yields

f 2 H̄2 = 8πG

3

(
f 2 ρ̄ + f 2

8πG
Λ

)
(15)

and, finally,

H̄2 = 8πG

3
ρ̄ + Λ

3
. (16)

Let us verify the covariant conservation equation in the barred
variables. We have

dρ̄

dt̄
= 1

f

d

dt̄

[
(1 − f 2)

f 2 ρΛ + ρ

f 2

]

= f − 2 (ρ + ρΛ) f ′

f 4 ρ̇ , (17)

so that

dρ̄

dt̄
+ 3H̄

(
P̄ + ρ̄

)

=
[
f − 2 (ρ + ρΛ) f ′

f 4

]
[ρ̇ + 3H (P + ρ)] = 0 (18)

by virtue of the “old” conservation equation (5). The accel-
eration equation in barred variables is automatically satisfied
since it can be easily derived from the other two Einstein–
Friedmann equations (16) and (18).

The symmetry (7)–(9) is not contained in those discussed
in Refs. [22,49]. When Λ = 0, Eq. (9) simplifies consider-
ably and gives

f (ρ) =
√

ρ

ρ̄
, (19)

and then the symmetry (7)–(9) reduces to the one found by
Chimento [2] and studied recently in [26]. In fact, this trans-
formation consists of [2]

ρ → ρ̄(ρ) , (20)

H → H̄ =
√

ρ̄

ρ
H , (21)

P + ρ → P̄ + ρ̄ = (P + ρ)

√
ρ

ρ̄

dρ̄

dρ
. (22)

The comparison of Eq. (20) and our Eq. (9) with Λ = 0
yields ρ̄(ρ) = ρ/ f 2 and

f (ρ) =
√

ρ

ρ̄
, (23)

using which, Eq. (22) gives our Eq. (9). Furthermore, using
Eq. (13), the comoving time rescaling (7) gives immedi-
ately the rescaling (21) of the Hubble function. Therefore,
our transformation (7)–(9) constitutes a generalization of the
symmetry (20)–(22) of Ref. [2] to the case in which a cos-
mological constant Λ is present.

A de Sitter universe fueled by a positive cosmological
constant is a fixed point of the transformation. In fact, if
Λ > 0 and P = ρ = 0, Eq. (9) yields P̄ = −ρ̄ = const.,
while Eq. (9) gives

ρ̄ = (1 − f 2)

f 2 ρΛ ; (24)

however, since ρ̄ is constant, it must be f = const. Then,
the constant f can be absorbed into a change of unit of the
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comoving time t and set to unity. Hence, the transforma-
tion (7)–(9) reduces to the identity and maps a de Sitter space
into itself.

Explicit examples of transformations mapping perfect
fluid universes with an equation of state of the form P = wρ,
w = const. into FLRW universes with a fluid with non-linear
equations of state and Λ are shown in the Appendix.

3 Perfect fluids with w = const.

Perfect fluids with barotropic, linear, and constant equation
of state of the form P = wρ with w = const. are of great
interest in cosmology. Therefore, it is particularly relevant to
consider symmetry transformations that map one such fluid
into another one. Beginning from a fluid with equation of
state P = wρ and writing P̄ = (w̄ + 1) ρ̄, Eq. (9) gives

w̄ + 1 = (w + 1)
ρ

ρ + (1 − f 2)ρΛ

f − 2 (ρ + ρΛ) f ′

f
;
(25)

by imposing that w̄ ≡ P̄/ρ̄ = const. and introducing

s ≡ w̄ + 1

w + 1
= const., (26)

one finds an ordinary differential equation that must be sat-
isfied in order to take a perfect fluid with constant equation
of state into another:

f ′ + (s − 1) f

2 (ρ + ρΛ)
+ s f

(
1 − f 2

) ρΛ

2ρ (ρ + ρΛ)
= 0 . (27)

This equation is nonlinear and, in general, it is difficult to
find analytic solutions f (ρ). However, we can present one.
Consider the choice

f (ρ) =
√

ρ + ρΛ

γρα + ρΛ

, (28)

where α and γ are constants, with α dimensionless and
[
γ
] =[

ρ1−α
]
.

Substituting the putative solution (28) into the first order
equation (27), straightforward manipulations lead to

(s − α) (ρ + ρΛ) = 0 , (29)

which is satisfied if α = s.
If ρ = ρΛ, then the perfect fluid is a cosmological con-

stant, the solution is de Sitter space, f =
√

2
γ ρα−1

Λ +1
is con-

stant and can be absorbed into a redefinition of the unit of
time.

Under the transformation (7)–(9) with the choice (28) of
the function f (ρ), the energy density and pressure transform
as

ρ → ρ̄ = γ ρα , (30)

P → P̄ = γ [α(w + 1) − 1] ρα . (31)

Combining these two equations yields P̄ = [α(w + 1) − 1] ρ̄

or P̄ = w̄ ρ̄ with

w̄ = α (w + 1) − 1 , (32)

where the constant γ disappears from the equation of state.
Special choices of the constants w and α include the follow-
ing.

• w = −1 implies w̄ = −1 ∀α: this is again the result
that de Sitter space is a fixed point of the transformation.

• A dust with w = 0 is mapped into a perfect fluid with
w̄ = α − 1. If α = 1, a FLRW space with dust is a fixed
point and is mapped into another FLRW space filled with
dust. This is a special case of the more general result
below.

• If α = 1, one has w̄ = w, that is, any fluid with
w = const. is a fixed point of the transformation with
function

f1(ρ) =
√

ρ + ρΛ

γ ρ + ρΛ

. (33)

This result could have been guessed from the fact that
the (now dimensionless) constant γ disappears from the
barred equation of state, therefore one could choose it to
be unity, making f ≡ 1.

• If α = 4/3, then w̄ = (4w + 1)/3 and a dust (w = 0) is
mapped into radiation (w̄ = 1/3).

• If α = 3/2, a radiation fluid (w = 1/3) is mapped into a
stiff fluid (w̄ = 1).

4 Scalar fields

A scalar field φ minimally coupled to the curvature in a
FLRW space behaves as an irrotational perfect fluid [50–
56]. A choice of the scalar field potential V (φ) corresponds,
roughly speaking, to a choice of the equation of state for the
effective fluid, but this is not a one-to-one correspondence
[51,57,58].

The energy density and pressure are

ρφ = φ̇2

2
+ V (φ) , (34)

Pφ = φ̇2

2
− V (φ) , (35)

respectively. The covariant conservation equation for this
effective fluid coincides with the Klein-Gordon equation

φ̈ + 3H φ̇ + dV

dφ
= 0 . (36)
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It is clear from Eqs. (34) and (35) that a free massless scalar
field behaves like a stiff fluid with equation of state P =
ρ. We will attempt to generate scalar field solutions with a
potential V (φ) in a spatially flat FLRW starting from this
free field solution.

We begin by noting that, since dφ/dt̄ = f −1 dφ/dt , after
the symmetry transformation (7)–(9), the “new” energy den-
sity of this effective scalar field fluid is

ρ̄ = 1

2 f 2

(
dφ

dt

)2

+ (1 − f 2)

f 2 ρΛ

= 1

2

(
dφ

dt̄

)2

+ (1 − f 2)

f 2 ρΛ . (37)

By choosing

f =
√

ρΛ

ρΛ + V (φ)
, (38)

whereV (φ) is the scalar field potential that we want to obtain,
one has

ρ̄ = 1

2

(
dφ

dt̄

)2

+ V (φ) , (39)

which is the energy density of a new scalar field φ(t̄) obtained
by changing the time variable t → t̄(t). This transformation,
which is only defined for a strictly positive Λ, is still implicit,
as is the function f (ρ) in Eq. (38), which can be written down
explicitly only after expressing φ as a function of the “old”
density ρ.

For a free scalar field φ in a FLRW universe, the Klein-
Gordon equation (36) is immediately integrated to

φ̇ = C

a3 , (40)

where C is an integration constant. If the energy density is
written as ρ = ρ0/a6 as usual in the fluid description, then
ρ0 = C2/2.

The scale factor for a stiff fluid plus positive cosmological
constant is (see, e.g., [57,59])

a(t) = a0

[
sinh

(√
3Λ t

)]1/3
, (41)

where

a0 =
(

ρ0

ρΛ

)1/6

=
(

C2

2ρΛ

)1/6

. (42)

We can then integrate explicitly the first integral (40) obtain-
ing

φ(t) = C

a3
0

∫
dt

sinh
(√

3Λ t
) = φ0 ln

[
tanh

(√
3Λ

2
t

)]
,

(43)

where

φ0 = C√
3Λ a3

0

. (44)

The energy density is

ρ(t) = φ̇2

2
= C2

2a6
0

1

sinh2
(√

3Λ t
) . (45)

Let us express ρ as a function of the scalar field φ; if this
relation can be inverted, we will then obtain the explicit form
of the function f (ρ) that achieves Eq. (39).

Exponentiating both sides of Eq. (43) gives

eφ/φ0 = tanh

(√
3Λ t

2

)
(46)

and algebraic manipulations yield

e
√

3Λ t = − coth

(
φ

2φ0

)
. (47)

Then, it is straightforward to obtain

sinh
(√

3Λ t
)

= − 1

sinh (φ/φ0)
(48)

and finally Eq. (45) gives

φ = φ0 arcsinh

(√
2 a3

0

C

√
ρ

)
, (49)

which allows us to write explicitly the function f (ρ) appear-
ing in the symmetry transformation as

f (ρ) = 1√
1 + V/ρΛ

= 1√
1 + V

(
φ0 arcsinh

(√
2 a3

0
√

ρ/C
))

/ρΛ

. (50)

In terms of the comoving time t , we have

f (t) = 1√
1 + V

(
φ0 ln tanh

(√
3Λ t
2

))
/ρΛ

. (51)

The solution is not complete, though, because we need φ(t̄)
instead of φ(t), which means using the first transformation
equation (7) to obtain t̄(t) and then inverting this relation and
substituting the result into Eq. (43). This means computing
explicitly the integral

t̄(t) =
∫

dt√
1 + V

(
φ0 ln tanh

(√
3Λ t
2

))
/ρΛ

, (52)

and then inverting this relation to obtain t (t̄). Unfortunately,
these steps are usually not possible.
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Table 1 The possible combinations of variables involved in a symmetry
transformation of the Einstein–Friedmann equations

ρ, a, t, P ρ, a, t ρ, a, P ρ, t, P

a, t, P H, ρ, P ρ, a ρ, t

ρ, P a, t a, P t, P

H, ρ H, P – –

5 Conclusions

General symmetries of the Einstein–Friedmann equations
involve transformations of the variables a, t, H, ρ, and P .
If a or t are transformed, H cannot be transformed, and if H
is transformed (as in [2]), then the only remaining choices
are transforming ρ or P , since H is constructed out of a and
t .

Here, the term “general” symmetry means that no rela-
tion is imposed between any two variables. For example, it
is common in cosmology to impose the equation of state
P = wρ with w = const. while searching for symmetries
(as in [49]), in which case one transforms the set of vari-
ables (ρ, a, t, P), but the relation imposed between P and ρ

restrict the generality. Table 1 reports the possible combina-
tions of variables involved in a symmetry transformation of
the Einstein–Friedmann equations.

The (H, ρ, P) case has already been partially covered by
Chimento [2]. In this work, we have studied an extension
of his symmetry transformations for Λ > 0. Any symmetry
transforming the scale factor cannot be made more general,
because it demands a restriction of variables (these symme-
tries are still of interest when the barotropic, linear, and con-
stant equation of state P = wρ is imposed).

The possible general symmetries transforming only two
variables include (ρ, t) , (ρ, P) , (t, P) , (H, ρ), and (H, P).
However, it can be easily shown that these are not suitable
for generating general symmetries. Only one possible general
symmetry remains, i.e., the one involving (ρ, t, P) and, to the
best of our knowledge, this was not discussed in the literature
yet (however, if one does not touch a, rescaling the time t is
equivalent to rescaling H together with ρ and P , which was
done in [2] for vanishing cosmological constant).

The situation in which the new symmetry reported here
would be most useful is in the generation of new scalar field
solutions for a specified potential V (φ) from the correspond-
ing solution for a free scalar field (plus positive Λ). Unfor-
tunately, although the generating method exposed in Sect. 4
carries through almost to the end, two obstacles will, in gen-
eral, forbid one to obtain results. First, one needs to compute
explicitly the integral (52) in terms of elementary functions,
which in general is not possible. Second, one needs to invert
analytically the relation t̄(t) thus obtained, which is also, by
all means, not guaranteed. It is interesting, however, that a tall

order such as generating solutions of the non-linear Einstein–
Friedmann–Klein–Gordon equations from a free field solu-
tion can be carried through to such an extent. In the case
Λ = 0 studied in [2], one cannot generate a potential V (φ)

as we did here and the free scalar field remains free after the
transformation is performed.

Overall, the conclusion emerging is that the general trans-
formations of the kind (7)–(9) (or their restriction to Λ = 0
studied in [2]) are not very useful in generating new infla-
tionary solutions for the early universe as one would have
hoped.
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Appendix A: Explicit examples of symmetry transforma-
tions

Here we show other explicit examples of transformations of
the kind (7)–(9) that carry a FLRW universe with a perfect
fluid and Λ > 0 into one with a fluid with non-linear equa-
tions of state plus Λ.

For perfect fluids with constant equation of state P = wρ,
the transformed equation of state is

P̄ = −ρ̄ + (w + 1)

[
f − 2 (ρ + ρΛ) f ′]

f 3 ρ ; (A.1)

this expression neds to be rewritten in terms of barred vari-
ables only. To this end, one can search for a function f (ρ)

such that
[
f − 2 (ρ + ρΛ) f ′]

f 3 ρ = g (ρ̄)

= g

((
1 − f 2

)
f 2 ρΛ + ρ

f 2

)
. (A.2)
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Certain functions g(ρ̄) allow the above ordinary differential
equation to be solved for interesting equations of state of the
form

P̄ =
[
g (ρ̄)

ρ̄
(w + 1) − 1

]
ρ̄ . (A.3)

Solving Eq. (A.2) with g (ρ̄) = αρ̄ we obtain

f (ρ) =
√

(ρ + ρΛ)

γρα + ρΛ

, (A.4)

which brings a perfect fluid with constant equation of state
into another one, and has been studied in Sect. 3.

Another example is given by solving Eq. (A.2) with
g (ρ̄) = α tanh ρ̄, which gives

f (ρ) =
√

ρ + ρΛ

arcsinh (γρα) + ρΛ

, (A.5)

where α and γ are constants, with α dimensionless and
[
γ
] =[

ρ−α
]
. Then, one obtains

ρ̄ = arcsinh
(
γ ρα

)
(A.6)

and

P̄ = α(w + 1) tanh ρ̄ − ρ̄ . (A.7)

The third example is generated by solving Eq. (A.2) with
g (ρ̄) = α eβ(ρ̄). This solution generates

f (ρ) =
√

− β (ρ + ρΛ)

ln
[
αβ (γ − ln(ρ/ρ0))

] − βρΛ

, (A.8)

with α, β, and γ dimensionless constants, while ρ0 is a con-
stant with the dimensions of an energy density. This choice
gives

ρ̄ = − ln
{
αβ

[
γ − ln(ρ/ρ0)

]}
β

(A.9)

and

P̄ = α(w + 1)eβ ρ̄ − ρ̄ . (A.10)

A fourth example is given by the solution g(ρ̄) = α/ρ̄ of
Eq. (A.2), which yields

f (ρ) =
√

ρ + ρΛ√
γ + 2α ln(ρ/ρ0) + ρΛ

, (A.11)

and

ρ̄ = √
γ + 2α ln(ρ/ρ0) , (A.12)

P̄ = α (w + 1)

ρ̄
− ρ̄ . (A.13)

Our last example is generated by g(ρ̄) = α ρ̄2 and the
subsequent

f (ρ) =
[
α (ln(ρ/ρ0) + γ ) (αρΛ ln(ρ/ρ0) + αγρΛ + 1)

]1/2

·
√

ρ + ρΛ

α
[
ln(ρ/ρ0) + γ

]
ρΛ

, (A.14)

which gives

ρ̄ = − ρΛ

α(ln(ρ/ρ0) + γ )ρΛ + 1
(A.15)

and

P̄ = [αρ̄(w + 1) − 1] ρ̄ . (A.16)

Rather cumbersome symmetry mappings, that we do not
report, are generated by the solutions g (ρ̄) = αρ̄3, αρ̄4 of
Eq. (A.2). For powers of ρ̄ higher than four, the relevant
expressions become very long and involved.
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