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Abstract In this paper, we consider two-flavor QCD at zero
temperature and finite isospin chemical potential μI using a
model-independent analysis within chiral perturbation the-
ory at next-to-leading order. We calculate the effective poten-
tial, the chiral condensate and the pion condensate in the pion-
condensed phase at both zero and nonzero pionic source. We
compare our finite pionic source results for the chiral con-
densate and the pion condensate with recent (2+1)-flavor lat-
tice QCD results. Agreement with lattice results generally
improves as one goes from leading order to next-to-leading
order.

1 Introduction

Quantum Chromodynamics (QCD) has a rich phase struc-
ture as a function of temperature and quark chemical poten-
tials [1–3]. The phases are characterized by their symmetry
and symmetry-breaking properties. The QCD vacuum breaks
chiral symmetry, a symmetry which is unbroken at the level of
the Lagrangian itself (for massless quarks). The order param-
eter for chiral symmetry breaking of the QCD vacuum is the
chiral condensate,

〈ψ̄ψ〉0, (1)

a zero-momentum (spatially homogeneous) state analogous
to the energetically favored Cooper pairing due to the attrac-
tive phonon interactions in the Bardeen–Cooper–Schrieffer
(BCS) theory of superconductivity [4]. The analogy between
chiral symmetry breaking and Cooper-pair formation was
first pointed out by Nambu and Jona-Lasinio [5], a phys-
ical picture that is affirmed by the presence of Goldstone
modes, which are the low energy excitations around the chi-
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ral symmetry-broken QCD vacuum. The Goldstone modes
are the three pions (π±, π0) in QCD, whose symmetries are
consistent with Goldstone’s theorem [6] assuming the fol-
lowing symmetry breaking pattern

SU (N f )L × SU (N f )R → SU (N f )V (2)

for N f = 2. The symmetry group of the Lagrangian has
2(N 2

f − 1) generators and that of the vacuum has N 2
f − 1

generators, which leads to exactly N 2
f −1 Goldstone modes.

Surprisingly, while the evidence for chiral symmetry
breaking is convincing, the chiral condensate itself is not
a physical observable as is evident through the leading-order
Gell-Mann–Oakes–Renner (GOR) relation [7], valid at zero
temperature and density

m2
π f 2

π = −(mu + md)〈ψ̄ψ〉0 + O(m2
q f

2
π ) , (3)

where mπ is the pion mass, fπ is the pion decay constant,
mu and md are the up and down quarks masses respectively
and q = u, d. The GOR relation shows that only the product
of the quark mass and the chiral condensate can be measured
indirectly through a measurement of the pion mass mπ and
the pion decay constant fπ . Furthermore, in the chiral limit,
the pion mass is zero confirming Nambu’s physical picture
of chiral symmetry breaking.

The strength of chiral symmetry breaking, as measured by
the magnitude of the chiral condensate, changes depending
on the physical environment. In the presence of a magnetic
field particles are largely restricted to moving in the direc-
tion of the magnetic field, an effect known as dimensional
reduction [8]. This leads to the strengthening of the quark-
antiquark pairing in the chiral condensate channel, an effect
analogous to the guaranteed presence of bound states for
any potential well in one-dimensional quantum mechanics,
(i.e. Cooper’s theorem). The chiral condensate for the up-
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quark-up-antiquark pairing is more enhanced than that of the
down-quark-down-antiquark pairing.

On the other hand, thermal fluctuations, due to the pres-
ence of a heat bath, have an opposite effect on the strength of
the chiral condensate. Lattice calculations show that chiral
symmetry is “restored” at a temperature of approximately
T χ
c = 155 MeV [9–13] though strictly speaking the transi-

tion is only a crossover. The crossover temperature is defined
by the peak of the chiral susceptibility. This temperature is
slightly less than the crossover temperature for the decon-
finement transition, T decon

c ≈ 170 MeV. However this tem-
perature difference is observable dependent. In most cases,
T decon
c has been determined by the behavior of the Polyakov

loop. Recently, it has been defined by the behavior of the
quark entropy and in this case the two crossover tempera-
tures agree within errors [13].

A model-independent analysis within next-to-leading
order (NLO) chiral perturbation theory (χPT) shows that

〈ψ̄ψ〉T
〈ψ̄ψ〉0

= 1 −
2
3
N2

f −1
N f

8 f 2
π

T 2 + · · · (4)

with the chiral condensate decreasing quadratically with tem-
perature (T ) assuming T � 4π fπ , the regime of validity of
χPT, with the coefficient depending on the number of flavors
(N f ) [14–16].

Furthermore, the presence of matter can also have an effect
on the chiral condensate. For instance, within nucleons, the
valence quarks can expel the chiral condensate as has been
shown (in a model-independent calculation [17]) using the
Feynman–Hellman theorem. The physics is quite intuitive
– the gluons that couple quarks or quarks and antiquarks,
favor the formation of protons and neutrons when the quark
chemical potential is approximately a third of the proton mass
(nucleon density at saturation). As more gluons become con-
fined in protons and neutrons, fewer are confined within the
chiral condensate leading to its reduction. The deviation from
the vacuum value of the chiral condensate 〈ψ̄ψ〉0 at low
nuclear densities ρN is

〈ψ̄ψ〉ρ
〈ψ̄ψ〉0

= 1 − σN

m2
π f 2

π

ρN + · · · , (5)

where σN is the pion-nucleon sigma term and ρN is the
nucleon density. We note that σN = 59 ± 7 MeV and has
been determined empirically using modern scattering data
and baryon χPT at O(p3) [18]. The nucleon density at com-
plete expulsion is

ρ
χ
N ≡ m2

π f 2
π

σN
∼ (110 MeV)3 , (6)

which is smaller than the scale (4π fπ )3, well within the
regime of validity of χPT [17]. The uncertainty in the satu-
ration density arises largely due to the uncertainty in deter-
mining σN [18]. In this paper, we focus on the nature of
condensates within next-to-leading order, finite isospin χPT,
which is the effective field theory of QCD valid at energies
much lower than the typical hadronic scales, i.e.

pχ

4π fπ
� 1, (7)

where pχ is a parameter with mass dimension 1. The quanti-
ties relevant for this paper include momentum p, the isospin
chemical potential μI and a pseudoscalar, pionic source
j [19].

We will focus not only on the behavior of the chiral con-
densate but also on the pion condensate

〈π±〉μI . (8)

In the vacuum phase of QCD, i.e. for values of |μI | ≤ μc
I ≡

mπ it vanishes, while for larger values of μI , it is nonzero
and we enter the pion-condensed phase of QCD. It is fur-
ther known that pion condensates due to their electromag-
netic charge form currents in a superconducting phase when
a weak external magnetic field is present [20,21]. For larger
magnetic fields, the pion condensate attains a spatially inho-
mogeneous structure in the form of a single vortex or a tri-
angular vortex lattice similar in nature to the vortex lattice
in type-II superconductors [22,23] explained by BCS the-
ory [4].

Chiral perturbation theory at tree-level shows that the
decrease in the size of the chiral condensate that occurs due
to the formation of pion condensates is exactly compensated
for by an increase in the pion condensate. In particular,

〈ψ̄ψ〉2
μI

+ 〈π+〉2
μI

= 〈ψ̄ψ〉2
0. (9)

At low isospin chemical potentials,

μI − mπ

mπ

� 1, (10)

the behavior of the chiral condensate in the pion-condensed
phase relative to the normal vacuum from model-independent
and tree-level calculations within χPT [24] is

〈ψ̄ψ〉μI

〈ψ̄ψ〉0
= 1 − 1

2mπ f 2
π

nI + · · · (11)

where nI is the tree-level isospin density, which at low den-
sities scales linearly with the isospin chemical potential. It is
worth noting that the ratio of the medium to vacuum chiral
condensates (due to the expulsion of the chiral condensate
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by the formation of the pion condensed phase) is analogous
in structure to the ratio found in nucleons due to expulsion
of the chiral condensate through the pairing of the valence
quarks 〈qqq〉ρ .

Recently there have been lattice computations of finite
isospin QCD [25], which does not suffer from the fermion
sign problem. This is due to the complex phase cancella-
tion between the up and down quarks which have equal and
opposite isospin numbers. Lattice QCD shows that the chiral
structure of Eq. (9) is not preserved away from the critical
isospin chemical potential. This violation is also observed
in model-dependent calculations within the Nambu–Jona-
Lasinio (NJL) model [27,28]. For a recent review of meson
condensation, see Ref. [28].

In this paper, we perform model-independent calculations
of the chiral and pion condensates in the pion-condensed
phase at next-to-leading order within χPT. This requires the
effective potential Veff at NLO in the presence of a pionic
source. This part of the calculation turns out to be a general-
ization of the result obtained in [29].

The paper is organized as follows. In the next section, we
briefly discuss the chiral Lagrangian and the ground state
in the presence of a nonzero isospin chemical potential. In
Sect. 3, we derive the effective potential at next-to-leading
order in χPT including a pionic source. In Sect. 4, we cal-
culate the zero-temperature quark and pion condensates at
finite μI . In Sect. 5, we plot the quark and pion condensates
using lattice QCD parameters. At finite pionic source, we
compare our results with the available lattice QCD data.

2 χPT Lagrangian

The Lagrangian of massless two-flavor QCD has a local
SU (3) gauge symmetry in addition to the global SU (2)L ×
SU (2)R × U (1)B symmetries. For nonzero quark masses
in the isospin limit, i.e for mu = md , the symmetries
are SU (2)V × U (1)B . Adding a quark chemical potential
μq for each quark, the symmetry is U (1)I3 × U (1)B =
U (1)u × U (1)d . In the pion-condensed phase, the U (1)I3
symmetry is broken and one of the mass eigenstates becomes
a Goldstone boson, which is a linear combination of both the
charge eigenstates (π±).

Chiral perturbation theory is a low-energy effective the-
ory for QCD based on the symmetries and degrees of free-
dom [30–33]. In two-flavor QCD, the degrees of freedom are
the pions, while for three-flavor QCD we have additionally
the charged and neutral kaons as well the eta. In the low-
energy expansion of the Lagrangian in χPT, each covari-
ant derivative counts as order p, while a quark mass term
counts as order p2. We begin with the chiral Lagrangian in
the isospin limit at O(p2)

L2 = f 2

4
Tr

[
∇μΣ†∇μΣ

]
+ f 2

4
Tr

[
χ†Σ + Σ†χ

]
,

(12)

where Σ parameterizes the Goldstone boson manifold (see
Eqs. (18)–(22) below), f is the bare pion decay constant,

χ = 2B0M + 2i B0 j1τ1 + 2i B0 j2τ2, (13)

where M = diag(m,m) is the quark mass matrix and − f 2B0

is the tree-level quark condensate. We have introduced a pio-
nic source in χ , which is necessary for calculating the pion
condensate. τa represent the Pauli matrices and the covariant
derivatives are defined as

∇μΣ ≡ ∂μΣ − i
[
vμ,Σ

]
, (14)

∇μΣ† = ∂μΣ† − i[vμ,Σ†], (15)

with

vμ = δμ0diag(μu, μd)

= δμ0diag

(
1

3
μB + 1

2
μI ,

1

3
μB − 1

2
μI

)
, (16)

where μI = μu − μd is the isospin chemical potential and
μB = 3

2 (μu +μd) is the baryon chemical potential. We also
set μB = 0 for the purpose of this paper.1

In the two-flavor case, the ground state in χPT is
parametrized as [24]

Σα = eiα(φ̂1τ1+φ̂2τ2) = 1 cos α + i(φ̂1τ1 + φ̂2τ2) sin α,

(17)

where α at tree level can be interpreted as a rotation angle
and φ̂2

1 + φ̂2
2 = 1 to ensure the normalization of the ground

state, i.e. Σ†
αΣα = 1. In the remainder of the paper we

choose φ̂1 = 1 and φ̂2 = 0, without loss of generality. There
will be no reference to j2 in this case and we write j1 = j
in the remainder. The matrix τ1 generates the rotations and
we can write the rotated vacuum as Σα = AαΣ0Aα , where
Aα = ei

α
2 τ1 and Σ0 = 1 is the trivial vacuum.

We also need to parametrize the fluctuations around the
condensed vacuum, which requires some care. Since the vac-
uum is rotated, we must also rotate the generators of the fluc-
tuations in the same manner. This was discussed in Ref. [34]
and an explicit example was given in Ref. [29]. The field Σ

is written as

Σ = LαΣαR
†
α, (18)

with

Lα = AαU A†
α, (19)

Rα = A†
αU

†Aα. (20)

1 In the pion-condensed phase, physical quantities are independent of
μB [35,36].
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HereU is the SU (2) matrix that parametrizes the fluctuations
around the ground state Σ0 = 1

U = ei
φa τa

2 f . (21)

Combining Eqs. (18)–(20), the expression for Σ is

Σ = Aα(UΣ0U )Aα = AαU
2Aα, (22)

which reduces to Σ = U 2 for α = 0 as required.
In order to calculate the effective potential and the con-

densates to NLO, we need to evaluate the path integral in the
Gaussian approximation. In order to do so, we must expand
the Lagrangian L2 in the fields φa as

L2 = Lstatic
2 + Llinear

2 + Lquadratic
2 + · · · , (23)

where the terms we need are

Lstatic
2 = 2 f 2B0m j + 1

2
f 2μ2

I sin2 α, (24)

Llinear
2 = f

(
−2B0m̄ j + μ2

I sin α cos α
)

φ1

+ f μI sin α∂0φ2, (25)

Lquadratic
2 = 1

2
∂μφa∂

μφa − 1

2
m2

aφ
2
a

+μI cos α(φ1∂0φ2 − φ2∂0φ1) (26)

and the source-dependent masses are

m j = m cos α + j sin α, (27)

m̄ j = m sin α − j cos α, (28)

m2
1 = 2B0m j − μ2

I cos 2α, (29)

m2
2 = 2B0m j − μ2

I cos2 α, (30)

m2
3 = 2B0m j + μ2

I sin2 α. (31)

The Lagrangian up to quadratic order reduces to that of Ref.
[29] by setting j = 0. We get for the inverse propagator:

D−1 =
(
D−1

12 0
0 P2 − m2

3

)
, (32)

where P = (p0, p), P2 = p2
0 − p2, and the 2 × 2 submatrix

is given by

D−1
12 =

(
P2 − m2

1 i p0m12

−i p0m12 P2 − m2
2

)
. (33)

Here the off-diagonal mass is defined as

m12 = 2μI cos α. (34)

At next-to-leading order in the low-energy expansion, there
are ten different operators in the Lagrangian [31]. The terms
relevant for the present calculations are [14]

L4 = 1

4
l1

(
Tr

[
∇μΣ†DμΣ

])2

+1

4
l2Tr

[
∇μΣ†DνΣ

]
Tr

[
DμΣ†DνΣ

]

+ 1

16
(l3 + l4)(Tr[χ†Σ + Σ†χ ])2

+1

8
l4Tr

[
∇μΣ†DμΣ

]
Tr[χ†Σ + Σ†χ ]

+1

2
h1Tr[χ†χ ]. (35)

Here li and hi are bare couplings. The relations between the
bare and renormalized couplings lri (Λ) and hri (Λ) are [32]

li = lri (Λ) − γiΛ
−2ε

2(4π)2

[
1

ε
+ 1

]
, (36)

hi = hri (Λ) − δiΛ
−2ε

2(4π)2

[
1

ε
+ 1

]
, (37)

where Λ is the renormalization scale in the modified minimal
subtraction (MS) scheme. The constants γi and δi are [32]

γ1 = 1

3
, γ2 = 2

3
, γ3 = −1

2
, (38)

γ4 = 2, δ1 = 0. (39)

Taking the derivative of Eqs. (36)–(37) with respect to Λ and
using that the bare couplings are independent of the scale,
one finds that the running couplings satisfy the equations,

Λ
d

dΛ
lri = − γi

(4π)2 , (40)

Λ
d

dΛ
hri = − δi

(4π)2 . (41)

These equations can be easily solved for the running cou-
plings lri and hri , The relations between the running couplings
and the so-called low-energy constants l̄i and h̄i in two-flavor
χPT are

lri (Λ) = γi

2(4π)2

[
l̄i + log

M2

Λ2

]
, (42)

hri (Λ) = δi

2(4π)2

[
h̄i + log

M2

Λ2

]
. (43)

Up to a prefactor, the low-energy constants are the running
couplings evaluated at the scale Λ2 = M2. We return to this
in the Sect. 5. Note that, due to δ1 = 0, Eq. (43) does not
apply and Eq. (41) shows that hr1(Λ) does not run. Moreover,
in the original paper [31], the authors used another set of
invariant operators than the ones (partially) listed in Eq. (35).
Using the equations of motion one can obtain one from the
other. This implies relations among couplings, h1 = h̃1 − l̃4,
where l̃i and h̃i refer to the original couplings from Ref. [31].
The corresponding values of γ̃i and δ̃i are the same as above,
except δ̃1 = 2 implying that h̃1 runs.
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3 Effective potential

Since the terms Lstatic
2 , Llinear

2 , and Lquadratic
2 as well as Lstatic

4
(see below) can be obtained from the results in Ref. [29] by
using source-dependent mass parameters, the calculation of
the effective potential here is a straightforward generalization
of the calculation therein. However, for completeness, we
include the details here. At tree level, the effective potential
V0 is given by −Lstatic

2 ,

V0 = −2 f 2B0m j − 1

2
f 2μ2

I sin2 α. (44)

The value of α that minimizes the tree-level potential V0 is
given by ∂V0

∂α
= 0 or 2B0m̄ j − μ2

I sin α cos α = 0. The lin-
ear term Llinear

2 in Eq. (25) then vanishes at the minimum
of the tree-level potential, as required. (The surface term,
f μI sin α∂0φ2, can be ignored.) At next-to-leading order,
there are two contributions to the effective potential, namely
the static term V static

1 = −Lstatic
4 and the one-loop contribu-

tion V1 arising from the Gaussian path integral involving the
quadratic terms in the Lagrangian, L2, given by Eq. (26).

The static part of the NLO effective potential is

V static
1 = −(l1 + l2)μ

4
I sin4 α − 2l4B0m jμ

2
I sin2 α

−4(l3 + l4)B
2
0m

2
j−4h1B

2
0 [m2

j + m̄2
j ], (45)

which acts as counterterms in the NLO calculation.
After performing the Gaussian integral to obtain the one-

loop correction, V1, to the effective potential, we Wick rotate
to Euclidean space. The one-loop contribution to the effective
potential in Euclidean space of a free massive boson is given
by

V1 = 1

2

∫

P
log[P2 + m2], (46)

where now P2 = p2
0 + p2 and the integral is defined as

∫

P
=

∫
dp0

2π

∫

p
=

∫
dp0

2π

(
eγEΛ2

4π

)ε ∫
dd p

(2π)d
. (47)

We use dimensional regularization to regulate ultraviolet
divergences with the momentum integral generalized to d =
3 − 2ε dimensions. Then the integral in Eq. (46) becomes
∫

P
log[P2 + m2] =

∫

p

√
p2 + m2

= − m4

2(4π)2

(
Λ2

m2

)ε [
1

ε
+ 3

2
+ O(ε)

]
.

(48)

The contribution from π0 can be calculated analytically in
dimensional regularization using Eq. (48),

V1,π0 = 1

2

∫

P
log

[
P2 + m2

3

]
. (49)

The contribution from the charged pions requires a little more
work. Using Eq. (48), we obtain

V1,π+ + V1,π− = 1

2

∫

P
log[(p2

0 + E2
π+)(p2

0 + E2
π−)]

= 1

2

∫

p

[
Eπ+ + Eπ−

]
, (50)

where the energies Eπ± are found by calculating the zeros
of the inverse propagator D−1

12 and read

E2
π± = p2 + 1

2
(m2

1 + m2
2 + m2

12)

±1

2

√
4p2m2

12+(m2
1 + m2

2 + m2
12)

2 − 4m2
1m

2
2. (51)

In order to eliminate the divergences, their dispersion rela-
tions are expanded in powers of 1/p as

Eπ+ + Eπ− = 2p + 2(m2
1 + m2

2) + m2
12

4p

−8(m4
1 + m4

2) + 4(m2
1 + m2

2)m
2
12+m4

12

64p3

+ · · · (52)

To this order, the large-p behavior in Eq. (52) is the same as
the sum E1 + E2, where the energies and masses are E1,2 =√
p2 + m2

1,2 + 1
4m

2
12 =

√
p2 + m̃2

1,2, m̃2
1 = m2

3 and m̃2
2 =

2B0m j . We can then write

V1,π+ + V1,π− = V div
1,π+ + V div

1,π− + V fin
1,π+ + V fin

1,π− , (53)

where

V div
1,π+ + V div

1,π− = 1

2

∫

p
[E1 + E2] , (54)

V fin
1,π+ + V fin

1,π− = 1

2

∫

p

[
Eπ+ + Eπ− − E1 − E2

]
. (55)

The divergent integrals in Eq. (54) can be done analytically
in dimensional regularization. The subtraction integral (55)
is finite and can be computed numerically.

Using Eq. (48), the divergent part of the one-loop contri-
bution can be written as

V div
1 = V1,π0 + V div

1,π+ + V div
1,π−

= − m̃4
1

4(4π)2

[
1

ε
+ 3

2
+ log

(
Λ2

m̃2
1

)]

− m̃4
2

4(4π)2

[
1

ε
+ 3

2
+ log

(
Λ2

m̃2
2

)]

− m4
3

4(4π)2

[
1

ε
+ 3

2
+ log

(
Λ2

m2
3

)]
. (56)

Renormalization is now carried out by adding Eqs. (44), (45),
and (56), using Eqs. (36)–(37). Using Eq. (42), the renormal-
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ized effective potential is

Veff = −2 f 2B0m j − 1

2
f 2μ2

I sin2 α

− 1

(4π)2

[
3

2
− l̄3 + 4l̄4 + log

(
M2

m̃2
2

)

+2 log

(
M2

m2
3

)]
B2

0m
2
j

− 1

(4π)2

[
1

2
+ l̄4 + log

(
M2

m2
3

)]
2B0m jμ

2
I sin2 α

− 1

2(4π)2

[
1

2
+ 1

3
l̄1 + 2

3
l̄2 + log

(
M2

m2
3

)]
μ4
I sin4 α

− 4

(4π)2 h̄1B
2
0

[
m2

j + m̄2
j

]
+ V fin

1,π+ + V fin
1,π− . (57)

For zero pionic source, j = 0, Eq. (57) reduces to the result
of Ref. [29] after subtracting the constant term proportional
to h̄1. We note that since hr1 does not run due to Eq. (41), we
have defined h̄1 = (4π)2hr1 = (4π)2h1.

4 Quark and pion condensates

In Refs. [29,35,36], we studied the thermodynamic proper-
ties of the pion-condensed phase of QCD at T = 0 at next-
to-leading order by calculating the first quantum correction
to the tree-level potential. It was shown that the transition
from the vacuum phase to a pion-condensed phase is second
order and takes place at a critical isospin chemical potential
μc
I = mπ , where mπ is the physical pion mass. We con-

tinue the study of the pion-condensed phase by calculating
the quark and pion condensates.

In the isospin limit, the quark condensates 〈ūu〉 and 〈d̄d〉
are equal and in the following we denote each of them by
〈ψ̄ψ〉. The quark and pion condensates at finite isospin are
then defined as 2

〈ψ̄ψ〉μI = 1

2

∂Veff

∂m
, 〈π+〉μI = 1

2

∂Veff

∂ j
. (58)

At tree level, the condensates are given by the partial deriva-
tives of V0, which yields

〈ψ̄ψ〉tree
μI

= − f 2B0 cos α = 〈ψ̄ψ〉tree
0 cos α, (59)

〈π+〉tree
μI

= − f 2B0 sin α = 〈ψ̄ψ〉tree
0 sin α, (60)

2 Note that in the finite isospin lattice QCD simulation of Ref. [25],
〈ψ̄ψ〉 = 〈ūu〉 + 〈d̄d〉 but in our notation 〈ψ̄ψ〉 = 〈ūu〉 = 〈d̄d〉.
Consequently, there is an explicit factor of 1

2 in our definition of 〈ψ̄ψ〉.
Additionally, compared to Ref. [25], we define the pion condensate
with an extra factor of 1

2 . The pionic source λ in Ref. [25] corresponds
exactly to j in this paper.

where 〈ψ̄ψ〉tree
0 = − f 2B0 denotes the quark condensate in

the vacuum phase. Equations (59)–(60) show that we can
interpret α as a rotation angle such that the quark condensate
is rotated into a pion condensate. As we shall see below, this
interpretation is not valid at next-to-leading order and is not
seen on the lattice. At next-to-leading order in the low-energy
expansion, the quark condensate is

〈ψ̄ψ〉μI = − f 2B0 cos α

[
1 + 1

(4π)2

(
− l̄3 + 4l̄4

+ log
M2

m̃2
2

+ 2 log
M2

m2
3

)
B0m j

f 2

+ 1

(4π)2

(
l̄4 + log

M2

m2
3

)
μ2
I sin2 α

f 2

]

− 4

(4π)2 h̄1B
2
0m + 1

2

∂V fin
1,π+

∂m
+ 1

2

∂V fin
1,π−

∂m
. (61)

In the limit of vanishing source j and α = 0, Eq. (61) is inde-
pendent of the isospin chemical potential and are consistent
with expressions given in Refs. [31,32].

At next-to-leading order in the low-energy expansion, the
pion condensate is

〈π+〉μI = − f 2B0 sin α

[
1 + 1

(4π)2

(
− l̄3 + 4l̄4

+ log
M2

m̃2
2

+ 2 log
M2

m2
3

)
B0m j

f 2

+ 1

(4π)2

(
l̄4 + log

M2

m2
3

)
μ2
I sin2 α

f 2

]

− 4

(4π)2 h̄1B
2
0 j + 1

2

∂V fin
1,π+

∂ j
+ 1

2

∂V fin
1,π−

∂ j
. (62)

We note that the pion condensate vanishes in the normal
vacuum since α = 0 and such a vacuum only exists if the
pion source is zero. However, in the presence of a pionic
source, i.e. j �= 0, the pion condensate is non-zero not only
due to α-dependent contributions but also a term proportional
to j , which is independent of α. The term arises due to the
non-dynamical contribution 1

2h1Tr[χ†χ ] in the O(p4) χPT
Lagrangian.

5 Results and discussion

In this section, we present our numerical results for the chiral
condensate and the pion condensate both at zero and non-zero
pionic source. We compare the non-zero pionic source results
with lattice simulations for which lattice data are available.
Finite isospin QCD on the lattice is studied by adding an
explicit pionic source since spontaneous symmetry breaking
in finite volume is forbidden. Obtaining the chiral and pion
condensate then requires not just taking the continuum limit

123



Eur. Phys. J. C (2020) 80 :1028 Page 7 of 11 1028

but also extrapolating to a zero external source, which is
technically challenging on the lattice

The quark condensate is given by Eq. (61), while the pion
condensate is given by Eq. (62). The value of α in the equa-
tions is found by extremizing the effective potential, i.e. solv-
ing of Eq. (57), ∂Veff

∂α
= 0.

5.1 Definitions and choice of parameters

The chiral condensate depends on the low-energy constant h̄1

of two-flavor χPT, which is unphysical and undeterminable
within χPT [37,38]. Furthermore, h̄1 is scale-independent
and does not affect the ground state value of α. Consequently,
we define the quark and pion condensate deviations relative
to the values of the respective condensates at zero isospin
and zero pionic source. The definitions of the condensate
deviations 3 are [39]

Σψ̄ψ = − 2m

m2
π f 2

π

[
〈ψ̄ψ〉μI − 〈ψ̄ψ〉 j=0

0

]
+ 1, (63)

Σπ = − 2m

m2
π f 2

π

〈π+〉μI , (64)

where m is the degenerate mass of the up and down quarks,
mπ is the pion mass, and fπ is the pion decay constant. 〈O〉μI

is the value of the condensate O at an isospin chemical poten-
tial μI and a pionic source j . 〈ψ̄ψ〉 j=0

0 is the value of the
chiral condensate when μI = 0 and j = 0. The definition
of the chiral condensate deviation, Σψ̄ψ , ensures that it is
equal to 1 when μI = 0 and j = 0 and the definition of the
pion condensate deviation does not contain a trivial subtrac-
tion of the pion condensate at zero pionic source and zero
isospin, 〈π+〉 j=0

0 , since it equals zero. Since the pion con-
densate deviation, Σπ , is a rescaled, dimensionless quantity
proportional to the pion condensate of Eq. (62), it is worth
noting again that just like the pion condensate it vanishes in
the absence of a pionic source if α = 0 but when a pionic
source is turned on, the deviation becomes non-zero not only
due to α-independent terms but also a term proportional to j
that is independent of α. Furthermore, the definitions of the
deviations ensure that the following constraint is satisfied at
tree level including for any pionic source j

(
Σ tree

ψ̄ψ

)2 + (
Σ tree

π

)2 = 1 , (65)

which is consistent with Eqs. (59) and (60). However the
constraint is not satisfied at next-to-leading order as will be
evident.

3 Note that compared to Ref. [25], our definitions of the condensate
deviations carry an explicit factor 2, which is exactly compensated by
the difference of a factor of 1

2 each in our definitions of 〈ψ̄ψ〉 and 〈π+〉.

For our calculation of the condensate deviations, we
choose the following values of the quark masses [40]

mu = 2.15 MeV,md = 4.79 MeV, (66)

m = mu + md

2
= 3.47 MeV. (67)

Since we want to compare our results to those of recent
lattice calculations [41], we choose their values for the pion
mass and the pion decay constant,

mπ = 131 ± 3 MeV, fπ = 128 ± 3√
2

MeV. (68)

It is important to point out that the quark masses quoted
above from [40] are not the quark masses of [41] (they
are not known). The quark masses of [40] correspond to a
pion mass of approximately 135 MeV, i.e. approximately 3%
higher than the one used in the lattice simulations. In order to
improve the overall confidence in our comparison, we there-
fore vary the quark mass m by 5%, which is consistent with
uncertainties quoted in Ref. [40].

The LECs of two-flavor χPT and their respective uncer-
tainties are defined at the scale Λ2 = 2B0m through
Eq. (43) [42] 4

l̄1 = −0.4 ± 0.6, l̄2 = 4.3 ± 0.1, (69)

l̄3 = 2.9 ± 2.4, l̄4 = 4.4 ± 0.2 (70)

h̄1 = −1.5 ± 0.2. (71)

The LEC, h̄1, was deduced using the value of Hr
2 and its

uncertainties in Ref. [37] and the mapping of 3-flavor LECs
to 2-flavor LECs discussed in Ref. [32]. The chiral conden-
sate deviation is independent of h̄1 at all values of j but the
pion condensate deviation depends on h̄1 at finite j . There is
at least another choice of h̄1 in literature [31], which happens
to be model-dependent (calculations based on ρ-dominance).
However, the pion condensate deviation is not affected sig-
nificantly by this choice [43]. The physical pion mass mπ

and the physical pion decay constant fπ can be calculated
within χPT at NLO [31],

m2
π = 2B0m

[
1 − B0m

(4π)2 f 2 l̄3

]
, (72)

f 2
π = f 2

[
1 + 4B0m

(4π)2 f 2 l̄4

]
. (73)

Given the values mπ , fπ , l̄3, and l̄4, we can calculate the
parameters f and 2B0m appearing in the chiral Lagrangian:

mcen
π,0 = 132.49 MeV, f cen = 84.93 MeV, (74)

4 Note that we take the derivative of Veff w.r.t. the quark mass,m, before
we choose the scale Λ2 = 2B0m.
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Fig. 1 αgs as a function of μI /mπ from below for j = 0, j =
0.00517054mπ and j = 0.0129263mπ . Red solid lines are LO results
and blue dashed lines are NLO results

mmin
π,0 = 128.24 MeV, f min = 83.29 MeV, (75)

mmax
π,0 = 136.91 MeV, f max = 86.54 MeV, (76)

where m2
π,0 ≡ 2B0m. Using this relation, we can calculate

B0, which also depends on the tree-level pion mass and the
continuum value of the quark mass.

5.2 αgs

Before we discuss the condensates, we present the solution
αgs to the equation ∂Veff

∂α
= 0 as function of μI /mπ for three

different values of the source j . The resulting curves are
shown in Fig. 1. The red solid lines are the leading-order
results, while the dashed blue lines are the next-to-leading
order results. In all three cases, the difference is very small.

For j = 0 the curve for αgs is not smooth at μI = mπ ,
which simply reflects the second-order transition from the
vacuum phase to the pion-condensed phase. For nonzero
source, the isospin symmetry is explicitly broken resulting
in nonzero values of αgs for all values of μI . Moreover, the
curves are smooth, which is due to the cross-over nature of
the transition, rather than a second-order phase transition. In
the limit μI → ∞, the curves approach the asymptotic value
of αgs = π

2 .

5.3 Condensates at j = 0

In Fig. 2, we plot the T = 0 quark condensate deviation
(which is normalized to 1) and the pion condensate deviation
defined in Eqs. (63) and (64) respectively. In the upper panel
of Fig. 2, we plot the tree level chiral condensate deviation
in solid red and the next-to-leading order deviation in dashed
blue. Similarly, in the bottom panel of Fig. 2, we plot the
tree-level pion condensate deviation in solid red and the next-
to-leading order deviation in dashed blue. Note that at j = 0,

Fig. 2 Top: Quark condensate deviation (normalized to 1) from the
normal vacuum value, Σψ̄ψ , at T = 0. Bottom: Pion condensate devi-
ation from the normal vacuum value (which is 0), Σπ , at T = 0 and
j = 0. See text in Section 5.3 for details

the tree-level deviations are independent of the quark mass.
The light blue shaded regions in the two panels of Fig. 2
represent the uncertainty in the condensate deviations due
to the uncertainty in the values of the pion mass and the
pion decay constant from the lattice, the uncertainty in the
LECs, which arises due to experimental uncertainties, and
the uncertainty in the lattice quark masses at the 5% level
which is consistent with results in Ref. [40]. We note that
the uncertainty in the condensate deviations is dominated by
the uncertainties in the pion mass and pion decay constant
with the uncertainties in the LECs and the quark masses not
contributing significantly.

We find that relative to the tree-level condensate devia-
tions, the next-to-leading condensate deviations are moder-
ately larger for the chiral condensate and significantly larger
for the pion condensate. The magnitude of the chiral conden-
sate deviation at next-to-leading order decreases more slowly
and the magnitude of the pion condensate increases more
rapidly compared to their respective tree-level values. Fur-
thermore, the tree-level pion condensate deviation asymp-

123



Eur. Phys. J. C (2020) 80 :1028 Page 9 of 11 1028

Fig. 3 Top: Quark condensate deviation from the normal vacuum
value, Σψ̄ψ , at T = 0. Bottom: Pion condensate deviation from the nor-
mal vacuum value (which is 0), Σπ , at T = 0 and j = 0.00517054mπ .
See text in Sect. 5.4 for details

totes to 1 very efficiently, a behavior which is absent at next-
to-leading order.

5.4 Condensates at finite j and comparison with lattice
QCD

In this section, we plot the chiral and pion condensate devi-
ations at T = 0 with a non-zero pionic source ( j �= 0) and
compare our results with lattice QCD [25,41]. We note that
while there is no lattice QCD data available for comparison
at j = 0, the comparison of finite- j condensate deviations
from χPT with the lattice allows us to gauge the quality
of our j = 0 results calculated at next-to-leading order in
χPT. A non-zero j is required to stabilize lattice simulations
and consequently j = 0 results are “cumbersome” to gener-
ate [39].

In Fig. 3, we show the chiral condensate deviation in the
top panel and pion condensate deviation in the bottom panel.
The deviations are calculated at j = 0.00517054mπ , which
is the smallest value of the pionic source for which lattice
QCD data is available at T = 0. In order to perform this com-
parison fairly, it is important to know the exact quark masses

in the continuum since this determines the χPT parameter,
B0, on which the condensates depend. As mentioned above,
continuum quark masses have not been calculated in the lat-
tice QCD study. Consequently, in order to make the compar-
ison quantitative we use the lattice continuum quark masses
from a separate lattice QCD simulation [40] while incorpo-
rating uncertainties at the 5% level which are consistent with
the uncertainties quoted. We find that condensate deviations
are not very sensitive to the quark masses but most sensitive
to the uncertainties in the pion mass and pion decay constants.

We also note that due to the presence of an external pionic
source, the ground state explicitly breaks isospin symme-
try. Consequently, there is no second order phase transition
as there is in the absence of the pionic source. Instead, the
transition is a crossover involving a range of isospin chemi-
cal potentials within which the chiral and pion condensates
change significantly.

The condensate deviations in Fig. 3 show very good agree-
ment with the lattice for isospin chemicals potential up to
μI ≈ 1.5mπ . For larger isospin chemical potentials, the
lattice chiral condensate deviation is slightly smaller than
the corresponding deviation from χPT at next-to-leading
order and the lattice pion condensate deviation is moderately
larger than the corresponding deviation from χPT at next-
to-leading order. For the quark condensate, the LO result is
slightly better than the NLO result for large values of μI .
For all values of the isospin chemical potential, the next-to-
leading order χPT pion condensate deviation is a significant
improvement over the tree-level results. In particular, there is
qualitatively different behavior for the pion condensate devi-
ation at large isospin chemical potential where the deviation
does not level off but increases, which is consistent with the
behavior of lattice QCD data. The difference between the
tree-level pion condensate deviation and the corresponding
lattice QCD deviation is significantly more prominent.

Finally, in Fig. 4, we show the chiral condensate devia-
tion on the top panel and the pion condensate deviation on the
bottom panel for j = 0.0129263mπ , including χPT results
at tree-level, next-to-leading order and lattice QCD includ-
ing uncertainties. As with the previous figure, the results
at next-to-leading order χPT are an improvement over tree
level deviations except for the chiral condensate deviation at
large isospin chemical potentials for which there is a mild
decrease in agreement and for the pion condensate at low
isospin chemical potentials, where the decrease in agreement
is even milder. The improvement is most significant in the
pion condensate deviation, which shows a qualitatively dif-
ferent asymptotic behavior – the next-to-leading order pion
condensate deviation does not asymptotically approach 1 as
the tree-level result does. The agreement of the deviations
with lattice QCD is very good especially for lower values
of isospin chemical potential consistent with the fact that
χPT is an effective theory with systematic corrections that
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Fig. 4 Top: Quark condensate deviation from the normal vacuum
value, Σψ̄ψ , at T = 0. Bottom: Pion condensate deviation from the nor-
mal vacuum value (which is 0), Σπ , at T = 0 and j = 0.0129263mπ .
See text in Sect. 5.4 for details

increase with the isospin chemical potential. We also note that
the discrepancy between the condensate deviations at larger
isospin chemical potentials is larger for j = 0.0129263mπ

than j = 0.00517054mπ , which is again consistent with
expectations for an effective theory. This is a general feature
up to the largest values of j used in the simulations.

In conclusion, we have performed a calculation of the
quark and pion condensates at next-to-leading order χPT in
the absence of an external pionic (pseudoscalar) source for
the first time – the results presented here can be used to gauge
the quality of future lattice calculation of the chiral and pion
condensate at zero source, a calculation that is currently quite
challenging to perform. We have also calculated the conden-
sates at finite pionic source and performed a qualitative com-
parison with the lattice which shows an improved agreement
after we include next-to-leading order corrections.
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