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Abstract Recently, a novel four-dimensional Gauss–Bonnet
theory has been suggested as a limiting case of the original
D-dimensional theory with singular Gauss–Bonnet coupling
constant α → α/(D−4). The theory is proposed at the level
of field equations. Here we analyse this theory at the level
of action. We find that the on-shell action and surface terms
split into parts, one of which does not scale like (D − 4).
The limiting D → 4 procedure, therefore, gives unphysical
divergences in the on-shell action and surface terms in four
dimensions. We further highlight various issues related to the
computation of counterterms in this theory.

1 Introduction

Higher-order curvature terms are expected to play a central
role in quantum gravity. It is generally expected that the low-
energy expansion of the quantum gravity, such as string the-
ory, will provide an effective Lagrangian containing higher-
order curvature terms [1]. Finding and analysing the solu-
tions of higher curvature Lagrangian are therefore of great
physical interest.

One of the most studied higher curvature Lagrangian is
the Gauss–Bonnet combination

LGB = Rμνρσ R
μνρσ − 4RμνR

μν + R2 . (1.1)

With LGB , the Einstein equations of motion still remain
second order in metric and it provides the simplest non-
trivial modification of general relativity. The Einstein–
Gauss–Bonnet gravity action [2–5]

SEGB = − 1

16πGD

∫
dDx

√−g

[
R + (D − 1)(D − 2)

L2

+α
(
Rμνρσ R

μνρσ − 4RμνR
μν + R2

) ]
.

(1.2)
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leads to the following field equation

Rμν − 1

2
gμνR − gμν

(D − 1)(D − 2)

2L2 + αHμν . (1.3)

and admits a consistent and non-trivial solutions for D ≥ 5

ds2 = − f (r)dt2 + dr2

f (r)
+ r2d�2

D−2, D ≥ 5 . (1.4)

where d�2
D−2 is the unit metric of the (D − 2)-dimensional

sphere. In Eq. (1.3), the Gauss–Bonnet contribution to field
equations reads

Hμν = 2
(
RRμν − 2Rμανβ R

αβ + Rμαβγ R
αβγ

ν − 2RμαR
α

ν

)

−1

2
gμν

(
Rαβρσ R

αβρσ − 4Rαβ R
αβ + R2) . (1.5)

Importantly, the Gauss–Bonnet term reduces to the Euler
number (or to a total derivative term) in four dimensions
and therefore does not contribute to the field equations. In
particular, Hμν vanishes identically in D = 4. Therefore, it
came as a big surprise when a four-dimensional Einstein–
Gauss–Bonnet theory was constructed in [6]. The authors of
[6] suggested that (i) by rescaling the Gauss–Bonnet cou-
pling parameter α → α̃/(D − 4), and then (ii) taking the
limit D → 4, a non-trivial black hole solution

ds2 = − f (r)dt2 + dr2

f (r)
+ r2d�2

f (r) = 1 + r2

2α̃

[
1 ±

√
1 + 4α̃

(
2M

r3 − 1

L2

)]
. (1.6)

in four dimensions can be obtained as a limiting case of
the D-dimensional theory. Interestingly, this novel four-
dimensional Gauss–Bonnet theory was suggested to bypasses
the Lovelock’s theorem [7–9] and, therefore, has created a
lot of excitement in the gravitational community.

The essential idea behind the work of [6] was the obser-
vation that the Gauss–Bonnet tensors Hμν scale like (D−4)

in D-dimensions and this (D − 4) factor can be cancelled
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consistently in the field equations by modifying the coupling
parameter α → α̃/(D − 4). At the equation of motion level,
the four-dimensional Gauss–Bonnet theory was suggested as
a limiting case of the original D-dimensional theory

lim
D→4

[
Rμν − 1

2
gμνR − gμν

(D − 1)(D − 2)

2L2

+ α̃

D − 4
Hμν

]
= 0 . (1.7)

The suggested four-dimensional gravity has already intrigued
a large amount of research work in applications, see for a
necessarily biased selection [10–38]. Recently, many works
addressing various ambiguities, even at the level of field
equations, when applying the method of [6] have also started
appearing, in particular, see [39–50].

Since the Gauss–Bonnet term also contributes to local
dynamics in the dimensional limiting procedure of [6],
thereby dethroning the Einstein gravity as a unique covariant
theory of gravity in four spacetime dimensions, greater and
rigorous scrutiny of this type of limiting procedure in various
physical scenarios is therefore essential to validate the claims
of proposed four-dimensional gravity theory. Undeniably,
there are many reasons to believe that this limiting proce-
dure might not be sensible. For instance, since the spacetime
tensor indices behave discretely and depend on the spacetime
dimensions, there is no continuous way to take the suggested
limit D → 4 in the higher dimensional action and equation of
motion. By taking the limit D → 4, one is not only breaking
the Riemannian geometric foundations of gravity but also
compromises the democratic nature of the higher dimen-
sional spacetime coordinates. Perhaps, one of the strongest
arguments against the insensible nature of the D → 4 lim-
iting procedure is that it goes against the very essence of
Lovelock’s theorem [7,8]. In particular, the gravity action
with an integrand which is quadratic in the curvature com-
ponent, from which the entire set of Riemannian geometry
in four dimensions can be extracted, can be a linear com-
bination of only two terms (R2 and RμνRμν), i.e. all other
curvature invariant terms (such as RμνρλRμνρλ) are redun-
dant in the formation of field equations in four dimensions
[9]. However, the same is not true in higher dimensions where
other quadratic curvature invariants can exist. The Lovelock’s
theorem, therefore, does directly imply the impossibility of
obtaining a consistent four-dimensional quadratic curvature
action from the naive D → 4 limiting procedure.

It is important to emphasize that the novel four dimen-
sional theory was suggested at the level of field equation.
In particular, the defining equation of the four dimensional
Gauss–Bonnet theory was suggested as a D → 4 limiting
case of the original D-dimensional field equation. Moreover,
in this suggested theory, one further has to assume or demand
some symmetries at the level of D-dimensional solution, such

that (or rather hope that) the structure of the rest (D − 4)

fiducial dimensions does not appear in the four dimensional
solution. This could be the case, for example, for conformally
flat geometries, including the FLRW solution or maximally
symmetric solutions. However, in general, this is not the case.
The prescription of [6], even if correct, undoubtedly corre-
sponds to a highly constrained gravity set-up. Since the Love-
lock’s theorem does not directly apply to such a constrained
setup, the work of [6] therefore does not suggest the break-
down of Lovelock’s theorem. Indeed, as shown in [39], there
is no covariant Gauss–Bonnet tensor in four-dimensions as
assured by the Lovelock theorem.

Even though the four dimensional Gauss–Bonnet theory
was formulated at the level of field equations, nonetheless,
it is instructive and important to probe different aspects of
this theory, particularly to those which are not restricted to
the field equation alone. This will not only add other impor-
tant directions in the discussion of four dimensional Gauss–
Bonnet theory but also help to find further flaws or strengths
of this theory at a more fundamental level. In this work,
we investigate one such aspect of this theory. In particular,
here we explore and scrutinise the four-dimensional Gauss–
Bonnet theory from the action point of view.

Our main aim here is to analyse how the total action, con-
sisting of various surface terms and counterterms in addition
to the Einstein–Gauss–Bonnet action, with singular coupling
α behaves in D → 4 limit. The action analysis is essential
to understand whether the theory is fundamentally in good
shape or not. As is well known, the action (1.2) has to be
supplemented by the surface terms to have a well defined
variational problem. These surface terms although do not
modify the field equation, however, they are an integral part
of the gravity action. In other words, the Einstein–Gauss–
Bonnet action alone is not sufficient to be considered as a
well-defined theory and it need to be endowed by the various
surface terms – otherwise, there is no well defined variation
problem to the action itself, which ultimately makes the the-
ory ill-defined – and these terms have to be investigated thor-
oughly. Similarly, counterterms are needed in the total action
to make it IR finite. In particular, both on-shell action and sur-
face terms suffer from infinities as the boundary is taken to
infinity and these infinities can be removed by adding local
counterterms in the action.

Since the surface and counterterms live in one lower
dimension, i.e. at the boundary in (D−1) dimensions, there-
fore one might expect that unlike various tensors (constructed
from the D-dimensional metric) appearing in Einstein’s field
equation (1.3), not all the surface and counterterms would
come with a multiplicative (D − 4) factor. If that is the case
then the singular coupling constant α will make the whole
action divergent in the limit as D → 4. Our analysis suggests
that this is indeed the case. In particular, both on-shell and sur-
face terms diverge in the limit D → 4. We further highlight
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various issues related to the computation of counterterms for
the four-dimensional Einstein–Gauss–Bonnet theory.

Another important point that we like to emphasize is that
in this work we are not explicitly presenting the evidence for
the flawed and unphysical nature of the four dimensional field
equations (Eq. (1.7)). In fact, we will not even use the limiting
four dimensional field equations and their solutions. Instead,
we will take the Gauss–Bonnet action and the corresponding
solution in D-dimensions to show that there are fundamental
flaws in the D → 4 limiting procedure. The prescription and
methodology of our work, therefore, should be contrasted
from the prescription of [6].

2 Total action of four-dimensional
Einstein–Gauss–Bonnet gravity

Before separately analysing each term of the total Einstein–
Gauss–Bonnet gravity action, it is useful to first note down
the expression of LGB and Ricci scalar R in D-dimensions.
For the metric (1.4), we have 1

LGB = 2(D − 2)(D − 3)

r2

[
f f ′ − f ′]′

+4(D − 2)(D − 3)(D − 4)

r3

×
[
f ′( f − 1) + (D − 5)

4r
( f − 1)2

]
. (2.1)

R = (D − 2)(D − 3)

r2 (1 − f ) − 2(D − 2) f ′

r
− f ′′.

(2.2)

here, and in the subsequent subsections, we write results
explicitly in terms of D and f . This will help to analyse
the limit D → 4 in a clear and straightforward way, as the
function f is well defined in this limit. For simplicity, we
derive results by assuming the black hole background. The
analysis can be straightforwardly generalised to pure AdS
spaces.

2.1 The on-shell action

The first indication that the Einstein–Gauss–Bonnet gravity
action (1.2) is not well defined in the limit D → 4 can be

1 Here the Riemann and Ricci tensor sign conventions
[∇μ,∇ν

]
Vλ =

Vσ Rσ
λμν and Rμν = Rρ

μρν are used.

seen by evaluating the on-shell action,

Son-shell
EGB = − 1

16πGD

∫
dDx

√−g

[−2(D − 1)

L2

+ 2α

D − 2
LGB

]
,

Son-shell
EGB = − 1

16πGD

∫
dDx r D−2

[−2(D − 1)

L2

+8α(D − 3)(D − 4)

r3

×
(
f ′( f − 1) + (D − 5)

4r
( f − 1)2

)

+4α(D − 3)

(
f f ′ − f ′)′

r2

]
. (2.3)

If we let α = α̃/(D − 4) and take the limit D → 4, then
the second term in Eq. (2.3) gives finite contribution and is
well defined. On the other hand, the last term is although a
total derivative term (hence does not contribute to the field
equations), however, gives infinite contribution. Another way
to see that the on-shell Einstein–Gauss–Bonnet gravity action
is not well defined in the limit D → 4 is by noticing that it
can also be rewritten as 2

Son-shell
EGB = − 1

16πGD

∫
dDx

√−g

[ −2R

(D − 4)L2

−4(D − 1)(D − 2)

(D − 4)L2

]
. (2.4)

here we have substituted the expression ofLGB from the Ein-
stein equation into the action. Notice that the above equation
is independent of the singular coefficient α = α̃/(D − 4).
Taking the limit D → 4 will definitely make the action
divergent, which suggests that the on-shell action is not well
defined in this limit. Expectedly, the action remains well
behaved for D ≥ 5.

Here one might argue that the on-shell action does usu-
ally contain divergences and the above result may not be
problematic. However, the usual divergences in the action
generally appear because of the infinite extent of the space
time, i.e. r → ∞, and hence those divergences are physical.
The Einstein–Gauss–Bonnet theory, on the other hand, gives
additional divergences in the limit D → 4, which do not
seem to have any physical origin.

2.2 Surface terms

For a well-defined variational principle, one has to supple-
ment the action (1.2) with the surface terms. These terms are

2 This form of the on-shell action is obtained by first taking the trace
of the Einstein equation and then solving for LGB . Substituting the
obtained LGB into the action, we get the desired on-shell action (2.4).
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required so that upon variation with metric fixed at the bound-
ary, the action yields the Einstein equation (1.3). Though
these surface terms do not modify the field equations, how-
ever, they are essential for a well defined variational problem
for a gravitational system having boundaries, like the AdS
space. For the Einstein–Hilbert part, the surface term is a
well known Gibbons–Hawking boundary term

SS.T
GH = − 1

8πG

∫
∂M

dD−1x
√−γ K . (2.5)

here γ is the determinate of the induced metric of the bound-
ary ∂M embedded in M and K is the trace of the extrinsic
curvature of the boundary. For the metric in Eq. (1.4), the
Gibbons-Hawking boundary term reduces to

SS.T
GH = −ωD−2β

16πG

[
2(D − 2)r D−3 f + r D−2 f ′] ∣∣∣∣

r→∞
.

(2.6)

whereωD−2 is the area of the unit (D−2)-dimensional sphere
and β is the inverse temperature. Similarly, the surface term
counterpart of the Gauss–Bonnet Lagrangian is [51,52]

SS.T
GB = − 4α

16πG

∫
∂M

dD−1x
√−γ

[
J − 2GabKab

]
.

(2.7)

where Gab is the Einstein tensor of boundary metric and J
is the trace of the tensor

Jab = 1

3

[
2KKacKc

b + KcdKcdKab − 2KacKcdKdb

−K2Kab

]
. (2.8)

Let us now explicitly evaluate SS.T
GB to see whether it is well

defined in the limit D → 4 or not. After a little bit of alge-
bra, one can show that the Gauss–Bonnet surface term in
D-dimensions simply reduces to

SS.T
GB = −ωD−2β

16πG
4α(D − 2)(D − 3)

[
−r D−4 f ′( f − 1)

2

+(D − 4)r D−5 f

(
1 − f

3

)] ∣∣∣∣
r→∞

. (2.9)

We see that the surface terms associated with the Gauss–
Bonnet term can be divided into two parts. Those which con-
tain a multiplicative (D − 4) factor and those which do not.
The redefinition of the coupling constant α = α̃/(D − 4)

and the subsequent limit D → 4 are well defined for those
terms which contain a multiplicative (D − 4) factor. How-
ever, the same can not be said for those terms which do not
contain a multiplicative factor of (D−4). Overall, like for the
on-shell action, the limit D → 4 makes the Gauss–Bonnet
surface term divergent.

Further, note that the surface terms for the Gauss–Bonnet
action exist in all dimensions, including D = 4. They are

also finite and well-behaved for the original Gauss–Bonnet
coupling [see Eq. (2.9)] and, as such, there is no problem with
them in D = 4 dimensions as well. However, the problem
arises when rescaling in the coupling constant α = α̃/(D−4)

is performed. In this case, some of the surface terms give un-
physical divergence in the limit D → 4.

One might wonder whether the sum of the on-shell and
the surface terms can make the Gauss–Bonnet contribution
to the total action finite in the limit D → 4. To analyse this,
let us evaluate

STotal = Son-shell
EGB + SS.T

GH + SS.T
G.B

= ωD−2β

16πG

[∫ ∞

rh

2(D − 1)

L2 r D−2dr

−
(

2(D − 2)r D−3 f + r D−2 f ′) ∣∣∣∣
r→∞

]

−ωD−2β

16πG

[∫ ∞

rh

2αr D−2LGB

D − 2
dr

+4α(D − 2)(D − 3)(D − 4)

×
(
r D−4 f ′(1 − f )

2(D − 4)
+ r D−5 f

(
1 − f

3

)) ∣∣∣∣
r→∞

]

On substituting LGB from Eq. (2.1) and simplifying, we get

STotal = ωD−2β

16πG

[
−2r D−1

h

L2

+
(

2r D−1

L2 − 2(D − 2)r D−3 f − r D−2 f ′
) ∣∣∣∣

r→∞

]

−ωD−2β

16πG

[∫ ∞

rh
2α(D − 3)

[
2

[
f ′( f − 1)r2(D−4)

]′
r D−4

+(D − 4)(D − 5)( f − 1)2r D−6
]
dr

+4α(D − 2)(D − 3)(D − 4)

(
r D−4 f ′(1 − f )

2(D − 4)

+r D−5 f

(
1 − f

3

)) ∣∣∣∣
r→∞

]
(2.10)

The above equation can be further simplified by evaluating
the integrals. Using the integration by parts method, we get

∫ ∞

rh

[
2

[
f ′( f − 1)r2(D−4)

]′
r D−4 + (D − 4)(D − 5)( f − 1)2r D−6

]
dr

=
∣∣∣∣2 f ′( f − 1)r D−4

∣∣∣∣
r=∞

r=rh

+ (D − 4)

∫ ∞

rh
2 f ′( f − 1)r D−5 dr

+(D − 4)(D − 5)

[∣∣∣∣ ( f − 1)2r D−5

D − 5

∣∣∣∣
r=∞

r=rh

−
∫ ∞

rh

2 f ′( f − 1)r D−5

D − 5
dr

]

Notice that the second and fourth integral terms cancel out.
Therefore,
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∫ ∞

rh

[
2

[
f ′( f − 1)r2(D−4)

]′
r D−4 + (D − 4)(D − 5)( f − 1)2r D−6

]
dr

=
∣∣∣∣2 f ′( f − 1)r D−4 + (D − 4)( f − 1)2r D−5

∣∣∣∣
r=∞

r=rh

(2.11)

Substituting Eq. (2.11) into Eq. (2.10) and simplifying, we
finally get

STotal = ωD−2β

16πG

[
−2r D−1

h

L2

+
(

2r D−1

L2 − 2(D − 2)r D−3 f − r D−2 f ′
) ∣∣∣∣

r→∞

]

−ωD−2β

16πG

[
4α(D − 3)r D−4

h f ′(rh)

−2α(D − 3)(D − 4)r D−5
h + 2α(D − 3)(D − 4)

×
[
( f − 1)2r D−5 − f ′( f − 1)r D−4

+2(D − 2)r D−5 f

(
1 − f

3

)] ∣∣∣∣
r→∞

]
(2.12)

Here we have used the fact that f (rh) = 0. In Eq. (2.12), we
have rearranged Gauss–Bonnet terms in such a way that one
can see the limiting behaviour clearly. In particular, there are
no hidden (D − 4) factors in (2.12). We again see that there
are terms which do not contain a multiplicative (D−4) factor.
In particular, the first term of second line in Eq. (2.12). Since
f (r) and f ′(r) are well behaved functions, the redefinition
α = α̃/(D − 4) and the subsequent limit D → 4, therefore
will again give unphysical divergences in the total action.

A word about the Lovelock theory in four (or lower)
dimensions is in order. Just like in the regularisation pre-
scription of the Gauss–Bonnet term [6], one can again try to
form the field equations for the higher order Lovelock terms
in four dimensions. The price one has to pay for this is that
the singular coupling constant has to be introduced at every
order of the Lovelock theory [15,16]. For instance, for the
Einstein–Lovelock theory of the form

L = −2

+
m̄∑

m=1

1

2m
αm

m
δ
μ1ν1μ2ν2...μmνm
λ1σ1λ2σ2...λmσm

R λ1σ1
μ1ν1

R λ2σ2
μ2ν2

. . . R λmσm
μmνm

(2.13)

the contribution of the higher order Lovelock terms to the
Euler–Lagrange equations

Rμ
ν − R

2
δμ
ν − δμ

ν

+
m̄∑

m=1

1

2m+1

αm

m
δ
μμ1ν1μ2ν2...μmνm
νλ1σ1λ2σ2...λmσm

R λ1σ1
μ1ν1

R λ2σ2
μ2ν2

. . . R λmσm
μmνm

(2.14)

is trivially zero in four dimensions due to the antisymmetric
nature of the rank 5 Kronecker delta function. To perform the

similar regularization scheme as suggested in [6], one must
modify and introduce the singular coupling constants

αm → αm

m

(D − 3)!
(D − 2m − 1)! (2.15)

to get non-zero contributions of higher order Lovelock terms
in the field equations in four dimensions. However, as shown
in [39] for the Gauss–Bonnet case (corresponding tom = 2),
these equations will again be ill-defined and will not have a
covariant Lovelock tensor in four-dimensions. As far as the
action analysis is concerned, as we have explicitly shown
above for the Guess-Bonnet term, the generalised prescrip-
tion of [6] in higher order Lovelock theory will again give
unphysical divergences in the on-shell action and surface
terms in the limit D → 4.

Let us note that surface terms of the gravity action also
induce the canonical momenta at the boundary. This canoni-
cal momenta for the AdS-Lovelock gravity is given by [53],

�
j
i = −κ

[(D−1)/2]∑
m=1

(D − 2m)!m!
2m+1 αm

m−1∑
s=0

Cs(m)

(
�s(m)

) j
i

(2.16)

where κ is related to the gravitational constant and
(
�s(m)

) j
i = √−γ δ

[ j j1 j2... j2m−1]
[i i1i2...i2m−1] R

i1i2
j1 j2

. . .

Ri2s−1i2s
j2s−1 j2s

Ki2s+1
j2s+1

. . .Ki2m−1
j2m−1

(2.17)

The coefficient Cs(m) are

Cs(m) = 4m−s

s!(2m − 2s − 1)!! (2.18)

where the Kronecker delta δ
[ j j1 j2... j2m−1]
[i i1i2...i2m−1] is completely anti-

symmetric in its indices. From the above equations, the con-
tribution of Gauss–Bonnet term (m = 2) to the induced
canonical momenta can be obtained. In terms of our orig-
inal Gauss–Bonnet coupling constant α, this is given as 3

�
j
i = −κ

√−γ

[
δ
j
i K − K j

i

+αδ
[ j j1 j2 j3]
[i i1i2i3]

(
1

3
Ki1

j1
Ki2

j2
+ Ri1i2

j1 j2

)
Ki3

j3

]
(2.19)

Notice that δ
[ j j1 j2 j3]
[i i1i2i3] is zero at the boundary of four dimen-

sional spacetime. Therefore, in four dimensions, the Gauss–
Bonnet contribution to �

j
i identically vanishes. Notice fur-

ther that the coefficient of αδ
[ j j1 j2 j3]
[i i1i2i3] , as it also contains vari-

ous combinations of Riemann and extrinsic curvature tensors

3 Note that in [53] an additional (D−2m)! multiplicative factor is intro-
duced in the definition of action (see Eqs. (1.3) and (2.13) of [53]). In
particular, the Gauss–Bonnet coupling constant (α) in our work differs
from the Gauss-Bonnet coupling constant (α2) of [53] by a factor of
(D − 4)!, i.e., α = α2(D − 4)!
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of the boundary metric, will again contain terms that do not
have a multiplicative (D − 4) factor (just like the surface
terms of the Gauss–Bonnet part of action). Therefore, it will
not make any sense to rescale the coupling α = α/(D − 4)

and take the limit D → 4 in �
j
i , as it will produce unde-

fined 0/0 expression in it. Moreover, as shown in [43], in
the ADM Hamiltonian formulism of the four dimensional
Gauss-Bonnet gravity, the Weyl part of the total Hamilto-
nian will be undefined if the naive prescription of [6] is used,
i.e. the total Hamiltonian can not be properly regularised in
four-dimensional Gauss–Bonnet gravity.

This might not be very surprising. As we have shown
above, the surface and counter terms are expected to diverge
in the limit D → 4 if one uses the prescription of [6]. Con-
sidering the relation between induced momenta �

j
i and sur-

face/counter terms as advocated in [53], it may not be surpris-
ing if some of these divergences also show up in �

j
i and in

the Hamiltonian. Again, the these quantities are well-behaved
for the original Gauss–Bonnet coupling and, as such, there
are no problem with them in D = 4 dimensions as well. The
problem arises when the rescaling of the coupling constant
α = α/(D − 4) and the limit D → 4 are performed.

2.3 A word about the counter terms

We saw above that both on-shell action and surface terms are
divergent in four-dimensional Einstein–Gauss–Bonnet the-
ory. There are mainly two different types of divergence (i)
the IR divergence because the volumes of both M and ∂M
are infinite, and (ii) divergences due to the limit D → 4.
To make sense of the total action one therefore has to regu-
larise the action by eliminating these divergences. Remark-
ably, for the AdS spacetime, the IR divergences that arise
in the total action are all proportional to the boundary met-
ric. By subtracting suitable combinations of curvature scalars
constructed from the boundary metric, called counterterms,
one can accordingly make the total action finite. This coun-
terterm regularization procedure has a physical interpretation
in the AdS/CFT context and leads to a well-defined mean-
ing to the notions of energy and momentum in AdS [54,55].
For instance, the Weyl anomaly of the boundary conformal
field theories can only be precisely matched with supergrav-
ity calculations by including proper counterterms in the grav-
ity action [54]. The counterterms are not only fundamental
for a systematic development of the renormalized correlation
functions of the boundary CFT but also of paramount impor-
tance for the reconstruction of holographic bulk spacetime
from the boundary CFT data [56]. For more discussion on
the importance of the counterterms in holographic renormal-
isation, including the Hamiltonian formalism and connection
between counterterms and induced canonical momenta, see
[57,58] (for a review, see [59]).

One therefore might try to regularise the four-dimensional
Einstein–Gauss–Bonnet action by a similar counterterm pro-
cedure. However, this is not as straightforward as it seems
and there are many subtleties in implementing the countert-
erm method. In particular, even for the Einstein action, the
expression of the counterterms explicitly depend on D and
it changes from dimension to dimension [54–56]. The situa-
tion is even more complicated with the Gauss–bonnet action.
As far as we know, the general expression of counterterms
for the Gauss–Bonnet action in arbitrary dimension D is not
known. 4 There are numerous counterterms proposals to han-
dle higher-derivative terms, but all of them seem to work
in specific dimensions. Moreover, the number of terms and
their complexity severally enhance with D [52]. Since the
whole idea of [6] is based on the fact that one must first
do the computation in D dimensions and then take the limit
D → 4, therefore, to obtain consistent counterterms for the
four-dimensional Einstein–Gauss–Bonnet theory one must
first evaluate them in D dimensions. This is an extremely
non-trivial task, as infinitely many terms can contribute to
the counterterms in general D. We can certainly evaluate the
counterterms for a fixed D (say D = 8), however, then it
would not make sense to let it go to four.

One might also try to find the counterterms using an ad-
hoc way, for example by guessing them, such that all the
divergences in the four-dimensional Einstein–Gauss–Bonnet
action cancel out. This is the usual working procedure for
gravity theories in AdS space. However, this ad-hoc proce-
dure can not be called physical and considered seriously in the
context of four-dimensional Einstein–Gauss–Bonnet theory,
as the counterterms are then not obtained from a consistent
D → 4 limit, i.e. this ad-hoc procedure will be against the
very philosophy of [6].

Before concluding this section, we like to stress that the
counterterms are also necessary to make the variational prob-
lem well defined in AdS gravity with Dirichlet boundary
conditions [60], and their importance are not just limited to
provide IR finiteness. In particular, since the induced metric
contains a second order pole and diverges at the boundary,

4 A different counterterm regularization method, called Kounterterm
regularization, for the Gauss–Bonnet gravity in D-dimensions has been
suggested in [61,62]. In this method, the total action is rewritten as
S = SEGB + cD−1

∫
∂M dD−1x BD−1, without explicitly adding the

surface terms. Here, cD−1 is a dimension dependent constant and func-
tion BD−1 is made up of boundary intrinsic and extrinsic curvatures.
The explicit form of BD−1, however, depends on whether D is odd or
even. While applying this method, our preliminary analysis suggests that
depending upon whether we start from odd or even D, the D → 4 limit
might not give a unique answer for the total action of four-dimensional
Einstein–Gauss–Bonnet theory. This again sounds problematic for the
theory, though more work is needed for confirmation. It will certainly
be interesting to perform a detailed analysis of the total action using the
Kounterterm regularization method. We leave this exercise for future
work.
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Dirichlet boundary condition in AdS spaces implies that a
conformal class of metrics must be kept fixed at the boundary,
i.e it is only the conformal class of metrics that is well-defined
at the boundary. As is well known from the holographic renor-
malisation procedure [60], keeping this conformal structure
fixed at the boundary under a variational problem uniquely
determine the nature of counterterms in Einstein gravity in
general D-dimensions.

One may try to find the counterterms in Einstein–Gauss–
Bonnet theory in a similar way. However, since the expres-
sions of the counterterms, in general, are dimension depen-
dent (and, moreover, they depend on whether D is even or
odd) from the holographic renormalisation procedure as well,
one may again face ambiguity in defining them in the limit
D → 4. It would certainly be interesting to compute the
counterterms in Gauss–Bonnet theory using the holographic
renormalisation procedure and write them explicitly in terms
of D to see whether the limit D → 4 is uniquely defined or
not. This will be a challenging task, considering that non-
trivial anomaly terms appear only in even dimensions (and
those too vary from dimensions to dimensions) and not in
odd dimensions, i.e rearrangement of the boundary countert-
erms in terms of general D may not be straightforward. We
hope to report on these and other topics soon.

3 Concluding remarks

Recently, a novel Einstein–Gauss–Bonnet theory in four
dimensions was suggested which not only bypasses the Love-
lock’s theorem but also contains the same number of mass-
less spin-2 degrees of freedom as the Einstein–Hilbert term.
This theory was defined as a limiting case of the original
D-dimensional Einstein–Gauss–Bonnet theory with rescaled
coupling constant α = α̃/(D − 4). The main idea was that
the (D − 4) factor in the singular coefficient α can cancel
the (D − 4) factor that generally appears in the Einstein
equations. In this note, we further scrutinised this idea at the
action level. We investigated the on-shell action and the cor-
responding surface terms and showed that these terms are
not finite in the limit D → 4. In particular, the singular coef-
ficient α makes the total Einstein–Gauss–Bonnet divergent
in the D → 4 limit. The four-dimensional Einstein–Gauss–
Bonnet theory therefore seems to be imprecise at least at the
action level. We further highlighted various issues related
to the counterterms regularisation in the four-dimensional
Einstein–Gauss–Bonnet theory.

The premise of our work is based on the fact that the
Einstein–Gauss–Bonnet action itself is not sufficient to be
considered as a well-defined gravity theory and it has to be
supplemented by the various surfaces and counterterms –
otherwise, there is no well-defined variation problem to the
action itself, which essentially makes the theory ill-defined.

These terms, therefore, have to be discussed thoroughly. We
analyse these terms carefully in the D-dimensional Einstein–
Gauss–Bonnet gravity and find evidence of un-physical
divergences in the limit D going to four, without assuming
any validity of [6].

At this point, one might say that though the surface terms
are essential for a well-defined variation problem, however,
once the variation is done and the desired equation of motion
is found, the surface terms do not play a significant part fur-
ther and, therefore, may not be of much importance to gravi-
tational theories for which the field equations are taken to be
the defining object (such as the novel 4D Einstein–Gauss–
Bonnet theory). Here, we like to strongly emphasize that the
surface terms are of paramount importance to any gravitation
theory and their objectives are not just restricted to provide
a good boundary value variation problem. In particular, the
surface terms are fundamental to the path integral formula-
tion of quantum gravity [64]. The Hamiltonian formulation
of gravity theory further necessitates the need for the sur-
face terms [63]. Indeed, there are many reasons to consider
the action (with appropriate surface terms included), as the
more fundamental object in gravitational theory. What our
analysis suggests here is that it raises many difficulties in
interpreting the resultant D → 4 limiting action (of the orig-
inal D-dimensional Einstein–Gauss–Bonnet action) as the
defining action for the 4D Einstein–Gauss–Bonnet field solu-
tions, since the action itself is ill-defined in this limit. This
result also complements the recent findings [41–49], which
do suggest a different action, in particular the scalar-tensor
type action, for the 4D Gauss–Bonnet solution.

Another issue that deserves further attention is the require-
ment of the finiteness of the on-shell action, especially for
those gravitation theories which are formulated at the equa-
tion of motion level. In particular, if all the necessary results
are derivable from the field equations alone then the ill-
defined nature of the on-shell action might not seem problem-
atic. To some extent, this argument may sound legit at-least
at the classical level, where important objects like the con-
served quantities can be constructed from the field equations.
However, there are many reasons to believe that the scope of
complete understanding of the gravity theory using the field
equations alone is severely limited and they need be sup-
plemented by a proper action for a concrete description. In
particular, eventually, we would like to quantise the gravity
theory and study its spectrum. There, it would not be possi-
ble to make much progress from the field equations alone.
Indeed, the four-dimensional Einstein–Gauss–Bonnet theory
was suggested as a classical theory of gravity. If this novel
four-dimensional gravity theory turns out to be a genuine
alternative to the Einstein gravity (though its field equations
are itself questionable [39], and therefore is highly unlikely),
then it would certainly be desirable to have its quantum spec-
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trum, which may not be possible to compute just from its field
equation.

Further, the on-shell action also appears naturally in the
path integral and hamiltonian formulation of quantum grav-
ity. In particular, in the path integral formulation, one would
expect that the dominant contribution in the partition func-
tion (and other transition amplitudes) would come from the
extremum action i.e. the action obtained from the solutions
of the field equations. From the partition function (via the
on-shell action), one can then directly compute the spec-
trum, conserved quantities and other important objects of
theory from first principle. In fact, the same methodology
is used in computing important observables in some of the
most trustworthy quantum gravity models, for instance in the
AdS/CFT correspondence [65]. Indeed, the dual boundary
CFT information in the large N limit (N being the number
of colours) is generally encoded in the gravity on-shell action
in the AdS/CFT framework [66,67].

An interesting question one might ask is, does the novel
four-dimensional Einstein–Gauss–Bonnet theory in AdS
space exhibit a dual boundary theory. In the AdSD/CFTD−1

context, the gravity and the dual boundary theory are con-
nected in the semiclassical approximation via

ZCFT = ZAdS = e−SAdS . (3.1)

where e−SAdS is the classical gravitational action. In this
approximation, the AdS action becomes the generating func-
tion of the connected correlation functions of dual CFT. Since
the gravity action is directly related to the physical observ-
ables of the dual CFT theory, it is desirable that SAdS remains
free from any divergences. Note that the usual IR divergences
in the gravity side correspond to UV divergences in the dual
CFT side and therefore have a precise meaning [56]. How-
ever, the same can not be said for the divergences that appear
due to D → 4 limit. In particular, the introduction of Gauss–
Bonnet term in the gravity action corresponds to next to the
leading order corrections to the 1/N expansion of the dual
CFT [68]. Therefore, the four-dimensional Einstein–Gauss–
Bonnet action should not contain any divergence whose dual
counterpart in CFT3 does not exist. As we have shown in
this work, unless the counterterms miraculously cancel out
D → 4 divergences, it seems difficult to make a dual CFT
connection of the novel four-dimensional Einstein–Gauss–
Bonnet theory.
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