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Abstract We present a solution obeying classical equation
of motion in the low energy limit of heterotic string theory.
The solution represents a rotating mass with electric charge
and gravitomagnetic monopole moment. The correspond-
ing conserved charges are discussed, and the separability of
Hamilton–Jacobi equation for a test body in the spacetime is
also investigated. Some numerical results related to the cir-
cular motions on equatorial plane are presented, but there is
none that supports the existence of such geodesics.

1 Introduction

String theory offers a consistent quantum description of grav-
ity and unification of all forces in nature. However, the lack-
ing for experimental verifications yield the final answer for
quantum gravity explanation is still opened. While waiting
for proofs or insights from experimental aspects, theoreti-
cal works related to string theory constantly appear, includ-
ing ones which make predictions from the low energy limit
effective field theory.

In particular of our interest is the low energy limit effective
field description of heterotic string theory. In this framework,
Ashoke Sen has constructed a solution describing rotating
and charged black holes, known as Kerr–Sen black holes,
analogous to the Kerr–Newman black holes of Einstein–
Maxwell theory. Despite the similarities between Kerr–Sen
and Kerr–Newman solutions, there are several features which
distinguish between the two solutions. For example, entropy
of an extremal Kerr–Sen black hole can be expressed solely
on its angular momentum [1], the lacking of Q-picture hid-
den conformal symmetry for the generic Kerr–Sen spacetime
[2,3], and its unique behavior of light deflection [4].

Subsequently Johnson and Myers discovered a static
dyonic Taub–NUT solution of the low energy heterotic string
[5], starting with the Taub–NUT solution to the vacuum Ein-
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stein equation as the seed metric. In their works, the authors of
[1,5] employed the Hassan–Sen [6] transformation that can
map any stationary and axial symmetric spacetime which
solves the vacuum Einstein equation to a new solution in
the low energy limit of heterotic string theory. Recently, the
author of [7] employ the same method to obtain the acccel-
erating spacetime in the low energy limit of heterotic string
using theC-metric as the seed solution. Interestingly, aspects
of black holes in the low energy limit of heterotic string the-
ory have been studied quite comprehensively in literature
[8–16].

Taub–NUT solution in vacuum Einstein theory can be con-
sidered as an extension of Schwarzschild solution, where in
addition to the mass there exist a continuous NUT parameter
l which nowadays quite common to be referred as the mag-
netic mass or the gravitomagnetic monopole moment. The
Taub–NUT solution can also be generalized to have an elec-
tric charge and rotation, known as the Kerr–Newman–Taub–
NUT (KNTN) solution that solves the Einstein–Maxwell
equations [17]. The KNTN spacetime possesses the time-
like and axial Killing symmetries, just like the Kerr or Kerr–
Newman solutions. Recently, there appear a proposal where
the gravitomagnetic monopole could be non-zero [18], hence
the Kerr–Taub–NUT (KTN) or KTNT solutions may have
some physical relevances.

Since KTN spacetime solves the vacuum Einstein equa-
tions and has the timelike and axial symmetries, one may
wonder the outcome of using this solution as a seed in the
Hassan–Sen transformation. We could expect the result is
something similar to the KNTN in Einstein–Maxwell theory,
which is true and then can be called the Kerr–Sen–Taub–NUT
(KSTN) solution. Some features of KNTN spacetime have
been studied quite extensively in literature [18–21,21–32],
then investigating some features of KSTN spacetime can be
potentially appealing. Some of our particular interests are
the conserved charges associated to the solution and circular
geodesics in KSTN spacetime.
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The organization of this papers is as the followings. In
Sect. 2, we provide a quick review on the low energy het-
erotic string theory action and obtain the KSTN solution.
In Sect. 3, we obtain the electric charge, mass, and angular
momentum in KSTN spacetime. Then, in Sect. 4 we study
the timelike and null circular geodesics in KSTN spacetime,
where some numerical plots related to these type geodesics
are presented. Separability of Hamilton–Jacobi equation in
the spacetime is investigated in Sect. 5, and effective poten-
tials related to the radial motion from far away approaching
the horizon are given in Sect. 6. Finally, we present conclu-
sions and discussions.

2 Twisting the Kerr–Taub–NUT spacetime

2.1 Symmetry of fields in low energy effective action

In this paper we consider the stationary and axially symmetric
spacetimes, gμν = gμν (r, x), with the coordinates1 xμ =
[t, r, x, φ]. A set of fields

{
Gμν,�, Aμ, Bμν

}
which solves

the equations of motion derived from the four dimensional
low energy effective action for heterotic string

S =
∫

d4x
√−Ge−�

(
R (G) + ∇μ�∇μ�

−1

8
FμνF

μν − 1

12
HμναH

μνα

)
(2.1)

can been expressed in terms of the seed solution [7]

ds2 = g̃t t dt
2 + 2g̃tφdtdφ + g̃φφdφ2

+g̃rr dr
2 + g̃xxdx

2. (2.2)

The seed metric g̃μν is stationary and axially symmetric
solution to the vacuum Einstein equation. Indeed, the vac-
uum Einstein system is a special case of action (2.1), i.e.
when all fields but the spacetime metric vanish. Therefore,
the Hassan–Sen transformation which maps the vacuum Ein-
stein metric

{
g̃μν

}
to a set of fields

{
Gμν,�, Aμ, Bμν

}
can

be simply considered as a mapping between solutions in the
theory described by action (2.1).

Explicitly, the fields solutions
{
Gμν,�, Aμ, Bμν

}
can be

expressed as the followings. In the string frame, the spacetime
metric reads

ds2 = Gμνdxμdxν = g̃t t
�2

(
dt + g̃tφ

g̃t t
cosh2

(α

2

)
dφ

)2

+g̃rrdr2 + g̃xxdx2 +
(

g̃φφ − g̃2
tφ

g̃t t

)

dφ2. (2.3)

1 The coordinate x = cos θ in Boyer–Lindquist type.

where � = 1 + (1 + g̃t t ) sinh2 (α/2). The components of
U (1) gauge field are

At = sinh (α)

�
(1 + g̃t t ) and Aϕ = sinh (α)

�
g̃tϕ, (2.4)

which give the field strength tensor Fμν = ∂μAν − ∂ν Aμ in
action (2.1) above. The dilaton field is

� = − ln �, (2.5)

and the non vanishing components of the second-rank anti-
symmetric tensor field are

Btϕ = −Bϕt = �−1sinh2 (α/2)g̃tϕ. (2.6)

The third-rank tensor appearing in action (2.1) consists of
the gauge field Aμ and tensor field Bμν , i.e.

Hαβμ = ∂αBβμ + ∂μBαβ + ∂βBμα

−1

4
(AαFβμ + AμFαβ + AβFμα), (2.7)

where Hαβμ is just a Chern–Simons term in the absence of
Bμν .

All non-gravitational fields
{
�, Aμ, Bμν

}
disappear as

sinh (α/2) → 0, and the metric (2.3) reduces to the orig-
inal seed solution (2.2). The resulting metric (2.3) has the
timelike and axial Killing vectors, ∂t and ∂ϕ respectively, as
in the case of seed metric. The conserved quantities related to
these two Killing symmetries are given in Sect. 3. In the fol-
lowing sections, the geodesic calculations will be performed
in Einstein frame where the corresponding action reads [5]

S =
∫

d4x
√−g

(
R (g) − 1

2
∇μ�∇μ�

−e−�

8
FμνF

μν − e−2�

12
HμνλH

μνλ

)
. (2.8)

The relation between string and Einstein frames metrics is
given by Gμν = e�gμν .

2.2 Kerr–Sen–Taub–NUT solution

In constructing a set of fields representing a massive rotat-
ing charged object equipped with NUT parameter in the low
energy limit of heterotic string theory, namely the Kerr–Sen–
Taub–NUT (KSTN) solution, we take the Kerr–NUT metric
as the seed metric g̃μν ,

ds2
KT N = −�r

ρ2 (dt − (a�x + 2l (1 − x))dφ)2

+ρ2
(

dr2

�r
+ dx2

�x

)

+�x

ρ2 (adt − (r2 + (a + l)2)dφ)2, (2.9)

where �r = r2 − 2mr + a2 − l2, �x = 1 − x2, and
ρ2 = r2+(l + ax)2. Taking l → 0 in the last equation yields
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the Kerr metric. Spacetime (2.9) is stationary and axial sym-
metric, and it solves the vacuum Einstein equation. Using the
prescription (2.3), we have

ds2
string = a2�x − �r

ρ2�2

(
dt + 2 cosh2

(α

2

)

�r l (1 − x) − a�x (mr + l2 + al)

a2�x − �r
dφ

)2

+ρ2
(

dr2

�r
+ dx2

�x
+ �x�r

�r − a2�x
dφ2

)
, (2.10)

where

� = 1 + 2 sinh2 (α/2)(mr + l2 + lax)

ρ2 . (2.11)

According to (2.5) and (2.4), the corresponding dilaton and
vector fields are

� = − ln

(
ρ2 + 2 sinh2 (α/2)(mr + l2 + lax)

ρ2

)
, (2.12)

and

Aμdxμ = 2 sinh (α) [(mr + l2 + lax)dt + (l�r (1 − x) − a�x (mr + l2 + al))dφ]
ρ2 + 2 sinh2 (α/2)(mr + l2 + lax)

,

(2.13)

respectively. Finally, the non-zero components of Bμν are
given by (2.6), i.e.

Btφ = −Bφt = 2 sinh2 (α/2)

l�r (1 − x) − a�x (mr + l2 + al)

ρ2 + 2 sinh2 (α/2)(mr + l2 + lax)
. (2.14)

The static limit a → 0 limit of the solutions (2.10) and (2.14)
above were discovered in [5]. In the next section, we obtain
the conserved charges with respect to ∂t and ∂φ symmetries,
i.e. mass and angular momentum measured at infinity, respec-
tively. For KSTN spacetime, the mass is found to be

M = m
(

1 + sinh2
(α

2

))
, (2.15)

just like in the case of Kerr–Sen black holes [1]. The electric
charge is also the same as that of Kerr–Sen, and we will
represent the charge in b instead of Q, where b = Q2/ (2M).

The Einstein frame version of the metric (2.10) is the one
that we use in the following section, which can be written as

ds2 = gμνdxμdxν

= − �

�2

(

dt − 2M(�̃r l(1 − x) − a�x ((M − b)r + l2 + al))

(M − b)�
dφ

)2

+�2

(
dr2

�̃r
+ dx2

�x
+ �̃r�xdφ2

�

)

(2.16)

where

�2 = r(r + 2b) + (l + ax)2 + 2bl(l + ax)

M − b
, (2.17)

�̃r = r2 − 2(M − b)r + a2 − l2, (2.18)

and

� = r2 − 2(M − b)r + a2x2 − l2. (2.19)

Note that we have expressed the equations above in terms of
the mass M and charge Q of Kerr–Sen black holes.2 Alter-
natively, the non-gravitational fields can be expressed as

Aμdx
μ =

√
2Q[(alx + l2 + (M − b)r)dt + (l�̃r (1 − x) − a�x ((M − b)r + l2 + al))dφ]

�(M − b)
,

(2.20)
� = −2 ln(

�

ρ
), (2.21)

and

Btφ = −Bφt = Q2(l�̃r (1 − x) − a�x [(M − b)r + l2 + al])
M(M − b)�

.

(2.22)

The set of fields solutions (2.16)–(2.22) reduce to that of
Kerr–Sen [1] after setting l = 0, and becomes the standard
Kerr–NUT (2.9) in the absence of electric charge Q.

It has been well known that Taub–NUT or Kerr–Taub–
NUT solutions suffer conical singularities, which according
Misner can be removed by introducing a periodic timelike
coordinate in the stationary spacetime3 [17]. The seed metric
(2.9) has the semi-infinite line singularity, where it is regular
on the half axis x = 1, i.e.

lim
x→1

2π

1 − x2

√
gφφ

gxx
= 2π,

but conical defect occurs at x = −1. Therefore, it is not
surprising to find that the metric (2.16) also suffers the same
problem. Consequently, the conical defect yields a black hole
is not a quite well defined object in the KSTN spacetime.
Nevertheless, there exist quite a number of works in litera-
ture which keep using the black hole terminology in a space-
time with conical defect coming from the presence of NUT
parameter [26,33].

Regardless that we have a well defined description of black
holes in KSTN spacetime or not, the celestial kinematics of
objects in this geometry are still fascinating to be investi-
gated since they might have some relevances to astronomical
observations. In order to do this, we need to explore more
the properties of this spacetime. Despite we cannot have an
event horizon in normal sense living in this spacetime, one
can still locate the radius which yields the metric (2.16) to
be singular, that is given by �̃r = 0. They are located at

r± = M − b ±
√

(M − b)2 + l2 − a2. (2.23)

2 In Sect. 3 we obtain the conserved charges, including mass and electric
charge, in Kerr–Sen–Taub–NUT geometry.
3 Clearly the conical singularities or periodic timelike coordinate are
not the ones that we may expect to experience in reality.
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If we allow a black hole can exist in this Kerr–Sen–Taub–
NUT spacetime,4 then the radius of that black hole horizon
would be r+. From Eq. (2.23), we can see the maximal rota-
tion or extremality is achieved at a2 = (M − b)2 + l2, i.e. to
maintain r± to be real valued. Violation of this bound leads to
a production of the naked ring-singularity. Furthermore, for
the KSTN spacetime, there also exist the static limit surface

rergo = M − b ±
√

(M − b f )2 + l2 − a2x2, (2.24)

which is the outer radial solution to gtt = 0 and widely
known as the outer region of ergosphere.

The KSTN spacetime (2.16) is stationary and axial sym-
metric, symmetries inherited from the seed solution. There-
fore, the corresponding Killing vectors are ζ(t) ≡ ∂t and
ζ(φ) ≡ ∂φ , which hint the existence of two associated con-
served quantities, namely the energy E and angular momen-
tum L . As it is expected in a rotating spacetime, one can also
show the dragging effect in KSTN spacetime. The angular
velocity of a stationary observer with constant r and x is
given by

� = − gtφ
gφφ

= cosh4 (α/2) g̃t t g̃tφ
(g̃φφ g̃t t�2 − g̃2

tφ(�2 − cosh4(α/2)))
,

(2.25)

which at the horizon reduces to

�+ = a(M − b)

2M(r+(M − b) + l2)
. (2.26)

In the vanishing of the NUT parameter l in the last equation,
we have the angular velocity of the Kerr–Sen black hole hori-
zon [1]

�KS,+ = a

2M
(
M − b + √

(M − b)2 − a2
) . (2.27)

The area covered by the sphere with radius r+ can be com-
puted as

A =
2π∫

0

1∫

−1

√
gxx gφφdxdφ = 8πM(r+(M − b) + l2)

M − b
,

(2.28)

which at l → 0 is just the area of Kerr–Sen black hole.
Just like the analogous solution in Einstein–Maxwell the-

ory, i.e. KNTN spacetime, the squared of Riemann tensor
or Kretschmann scalar for KSTN spacetime is not singu-
lar at r → 0. This property is due to the presence of NUT
parameter l. In a spacetime where black holes can live, the

4 This situation is similar to that in Kerr–Newman–Taub–NUT space-
time, where there is a radius which yields the metric to be singular,
and one could have a horizon which give exactly Kerr–Newman black
hole’s horizon in the absence of NUT parameter.

singular Kretschmann scalar at r → 0 is interpreted as the
physical singularity that exist in the center of a black hole.
Although a mathematical symbolic manipulation programs
like MAPLE or Mathematica can do the computation to get
the Kretschmann scalar for a spacetime, its full expression
can be lengthy. This is exactly the case for KSTN spacetime,
which is the geometry under investigation in this paper. Nev-
ertheless, to support our future claim related to the curve of
effective potential, let us just show the Kretschmann scalar
for KSTN spacetime evaluated at r = 0 and on equatorial
plane. The reading is

RκλμνRκλμν

∣∣
r=0,x=0 = 4m2

(m + 2b)6l12

4∑

k=0

ckl
2k, (2.29)

where

c0 = 4a4m4b4,

c1 = 8a4m2b4 + 12m4b4a2 + 16a2m5b3,

c2 = 20m6b2 + 36m5b3 + b2(16a2 + 19b2)m4

+ 48m3b3a2 + 24m2b4a2 + 4a4b4,

c3 = 68m4b2 + 88m3b3 + (16b2a2 + 38b4)m2

+ 32a2b3m + 12a2b4 − 12m6,

c4 = 12m4 + 19b4 + 48m3b + 72m2b2 + 52b3m.

In expressions above, m = M − b, and we prefer to use
m instead of M − b for economical reason. Note that the
squared of Riemann tensor RκλμνRκλμν evaluated at r = 0
computed in (2.29) is finite for a non-vanishing l.

3 Mass and angular momentum

Defining mass and angular momentum in a spacetime with
NUT parameter is not quite simple. In an asymptotically flat
spacetime, for example Kerr–Newman family without NUT
parameter in Einstein–Maxwell theory, one can employ the
Komar integral to get the mass and angular momentum. How-
ever, when the NUT parameter is present, one needs to care-
fully treat the surface integral at infinity to get the desired
conserved charges associate to the ∂t and ∂φ Killing vectors
[23].

Under some general diffeomorphisms, we can employ
the Barnich–Brandt method [34] to compute the conserved
charges in any field theory, including those containing grav-
ity. In Kerr/CFT correspondence, this method is used to
obtain charges in the theory under consideration [35–37].
Virasoro algebra between these charges contains the cen-
tral charge which is crucial in reproducing the Bekenstein–
Hawking entropy for black holes in the spacetime whose
asymptotic symmetries are associated to the obtained cen-
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tral charge. Clearly, the Barnich–Brandt method can also be
applied for the exact diffeomorphisms ∂t and ∂φ .

The low energy limit of heterotic string discussed in
this paper contains four fields, where there exist diffeo-
morphisms associated to each of these fields. Consequently,
each of these diffeomorphisms may contribute to the cen-
tral charge according to Barnich–Brandt method. In this sec-
tion, we compute the conserved charges associated to ∂t and
∂φ Killing vectors of KSTN spacetime using the Barnich–
Brandt method. As the starting point, let us reparameter-
ize the mass m as one parameter family m = sm̄, where
s ∈ [0, 1]. In such consideration, one can define the varia-
tion of each fields as follows5

hμν = dgμν

ds
ds, aμ = d Aμ

ds
ds,

bμν = dBμν

ds
ds, φ = d�

ds
ds. (3.1)

Accordingly, we have

fμν = ∇μaν − ∇νaμ, (3.2)

and

h̃μνρ = ∂μbνρ + ∂ρbμν + ∂νbρμ

−1

4
(aμ fνρ + aρ fμν + aν fρμ). (3.3)

The charge formula as a result of diffeomorphisms of each
fields read

Qζ = 1

8π

1∫

0

ds
∮

S

(
k(ζ ;g) + k(ζ ;A) + k(ζ ;�) + k(ζ ;B)

)
, (3.4)

where

kαβ

(ζ ;g) =
{
ζ β∇μh

αμ − ζ β∇αh − ζμ∇βhαμ

−h

2
∇βζ α + hβμ∇μζα

−hμβ

2

(∇αζμ + ∇μζα
) }

, (3.5)

kμν

(ζ ;A)
=

{(
Fμρhν

ρ − f μν

2
− hFμν

4

)
ζ αAα

− Fμν

2
ζ αaα

−Fαμζ νaα − aμ

2

(
ζαF

να + ∂ν
(
ζ αAα

)) }
, (3.6)

kμν

(ζ ;�)
= −2

3
φζμ∂ν�dSμν, (3.7)

5 At the end of calculation, we can perform the integration
1∫

0
ds for the

obtained conserved charges.

and

k(ζ ;B) = 1

12
ζ λ

(
εμνρβbλα + εμνραbβλ + εμνρλbαβ

)

×Hμνρdxα ∧ dxβ

+
{

1

3

(
ζ λbαλH

μαρ + ζ λBαλ

(
h̃μαρ + h

2
Hμαρ

))

+1

2
bμα

(
Bνβ∂αζβ + Bρα∂νζ ρ + ζ ρ∂ρB

ν
α

)}
dSμν. (3.8)

In equation above, k(ζ ;�) = kμν

(ζ ;�)
dSμν where � is the fields

{g, A,�}, and we have used

dSμν = 1

4
εμναβdx

α ∧ dxβ, (3.9)

as the two-surface orthonormal to the timelike and radial
directions with |ε0123| = √−g. In writing Eqs. (3.5)–(3.8),
we have omitted the contributions from the gauge freedoms
of Aμ and Bμν fields. The mass can be computed by taking
ζ = ζ(t) in (3.4), which gives

Qζ(t) = m
(

1 + sinh2
(α

2

))
. (3.10)

This is exactly the mass of Kerr–Sen black holes [1,37],
which can be computed using the standard Komar integral.
In fact, the same mass can also be obtained using Abbott–
Deser–Tekin method [38]. Furthermore, in calculation above,
the conserved mass is given solely from the gravity contri-
bution, i.e. k(ζ ;g) integration.

On the other hand, employing the charge formula for the
axial Killing vector ζ(φ) yields

Qζ(φ)
= m

(
1 + sinh2

(α

2

))

(
a + 3l

(
1 + sinh2

(α

2

)))
. (3.11)

As one would expect, the last formula matches the angular
momentum of Kerr–Sen black hole if one sets l → 0. In
other words, the angular momentum measured at infinity in
KSTN spacetime gets contribution from the NUT parameter,
which resembles the similar situation in KNTN case [39],
and in the boosted Kerr–Taub–NUT study [23]. To compute
the electric charge, one can use the formula

Q = 1

4π
lim
r→∞

∮

S
FμνdSμν

= √
2m sinh

(α

2

)
cosh

(α

2

)
, (3.12)

which gives the same electric charge to that of Kerr–Sen
solution [1]. Note that the electric charge above is obtained
in the Einstein frame described by the action (2.8).
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4 Equatorial circular geodesics

4.1 Generalities

In this section, we will show that innermost stable circular
orbit (ISCO) does not exist on equatorial plane of Kerr–Sen–
Taub–NUT spacetime, due to the more stringent constraint
on that type of geodesics in the presence of NUT parameter.
As pointed out in [40], equatorial geodesics studies are not
too straightforward for the spacetime with NUT parameter.
In addition to the requirement ṙ = 0 and r̈ = 0 for the
circular motion, we also need to verify that there is no velocity
and acceleration in x direction.6 In [27], the authors employ
the separable Hamilton–Jacobi equation in Kerr–Newman-
NUT spacetime to study θ̇ = 0 and θ̈ = 0. However, the
separability of Hamilton–Jacobi equation does not occur in
Kerr–Sen–Taub–NUT background, as we show in the next
section.

In this paper, we prefer to compute ẋ and ẍ by using the
effective potential approach from the test body geodesics,
just as in the same fashion we deal with the quantities ṙ and
r̈ . As a start, we consider a general Lagrangian of a neutral
test particle living in a curved background

2L = gtt ṫ
2 + 2gtφ ṫ φ̇ + gφφφ̇2 + grr ṙ

2 + gxx ẋ
2, (4.1)

where the spacetime metric is a function of r and x . Constants
of motion related to this Lagrangian are

− E = gtt ṫ + gtφφ̇ and L = gφφφ̇ + gtφ ṫ . (4.2)

In the last equations, E and L are interpreted as energy and
angular momentum of a test particle, respectively. Further-
more, a little algebra on the last equations yields

ṫ�x�r = gtφL + gφφE and − φ̇�x�r = gtt L + gtφE . (4.3)

Note that, in the last equation we have used a general relation
that applies to Kerr–Sen–Taub–NUT spacetime, i.e. gtt gφφ−
g2
tφ = �x�r . If one considers an equatorial motion, then this

relation reduces to the useful identity that normally employed
in equatorial circular geodesics, namely gtt gφφ − g2

tφ = �r .
In the followings, we look for some setups which allow

circular geodesics on equatorial plane. From the metric that
associate to the Lagrangian (4.1), we can have

� + gxx ẋ
2 + grr ṙ

2 = δ, (4.4)

where � ≡ grr ṫ2 + 2gtφ ṫ φ̇ + gφφφ̇2. Alternatively, one can
show

� = gφφE2 + 2gtφLE + gtt L2

�x�r
(4.5)

after making use of (4.3). The metric signature that we are
using yields δ = 0 for null case and δ = −1 for the timelike.

6 Or in θ direction for the standard Boyer–Lindquist type coordinate.

Now let us first consider test body motions on equatorial
plane, i.e. x = 0, hence Eq. (4.4) now reads7

�|x=0 + grr |x=0 ṙ
2 = δ. (4.6)

Accordingly, we can introduce an effective potential Vr,eff =
−ṙ2 associated to (4.6), namely

Vr,eff
∣∣
x=0 = �r

� − δ

�2

∣∣∣∣
x=0

. (4.7)

A circular motion denoted by ṙ = 0 requires this potential
to be vanished. One small subtlety that needs attention here
is to make sure the non-vanishing of

�2 (x = 0) = r(r + 2b) + l2 + 2bl2

M − b
≡ �2

0, (4.8)

hence the effective potential (4.7) cannot be singular. How-
ever, guided by the physical insight that it is very unlikely for
a massive body to maintain a huge amount of electric charge,
namely b < M , we can safely claim the non-vanishing of
(4.8).

Similarly, we can also define an effective potential
Vx,eff = −ẋ2 that coming from a fixed radius consideration
in (4.4). Instead of having (4.6) as a start, here we have

� + gxx ẋ
2 = δ, (4.9)

that leads us to

Vx,eff
∣∣
r=r0

= �x
� − δ

�2

∣∣∣∣
r=r0

. (4.10)

Provided that �r |r=r0 	= 0, which is guaranteed by our
interest in studying circular geodesics with radii r0 outside
horizon, the vanishing Vx,eff

∣∣
r=r0

on equatorial plane can be
achieved for the particular r = r0(E, L , M, b, l) that solves
Vr,eff

∣∣
x=0 = 0 in Eq. (4.7). Furthermore, to ensure that there

is no acceleration in r or x direction, the following constraints

dVr,eff

dr
= 0, (4.11)

and

dVx,eff

dx
= 0, (4.12)

must be fulfilled as well. The last equation is normally satis-
fied in most spacetimes without NUT parameter, for exam-
ple those in Einstein–Maxwell-dilaton [41] and low energy
limit of heterotic string [42] theories. However, when NUT
parameter exists, Eq. (4.12) could add another constrain to
the familiar ones obtained from Vr .

7 Here X |y means a function X evaluated at some fixed y.
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4.2 Timelike case

In timelike consideration, from Eq. (4.12) we can have

{(4Ml + 2(M − b)a)E2

−2L(M − b)E + a(M − b)}l = 0. (4.13)

This equation is satisfied for zero NUT parameter, or the term
inside the curly bracket vanish. The first case is the reason
why equatorial geodesics in Kerr–Sen spacetime is guaran-
teed [14]. If we are interested in the non-vanishing of NUT
parameter L , then the energy and angular momentum of test
particles get an additional constraint from the term in curly
bracket above. Using this condition to constrain the angular
momentum L yields the reading of Vr,eff = 0, V ′

r,eff = 0,
and V ′′

r,eff = 0 equations can be expressed as

f1l
4 + f2l

2 + f3 = 0, (4.14)

f4l
4 + f5l

2 + f6 = 0, (4.15)

f7l
4 + f8l

2 + f9 = 0, (4.16)

where

f1 = 4E2(M + b){M(E2 − 1) + b(E2 + 1)},
f2 = −8E2r(M − b)3

+(8E2r{E2(r + 2b) − 3b} + a2)(M − b)2

+8E2br(E2{2r + b} + r)(M − b),

f3 = 2r(a2 − 4E2{r2 + 2b})(M − b)3

−r2(a2 − 4E2{r + 2b}{E2(r + 2b) + r})(M − b)2,

f4 = 2E2(E2 − 2)(M − b)3

+2E2(E2{r + 6b} + r − 5b)(M − b)2

+8E2b(2E2b + r)(M − b) − 8E4b2r,

f5 = −8E2r(M − b)4 + (a2 + 4E2r{E2(4b + 3r) − 8b})(M − b)3

+r(4E2r{E2(10b2 + 6rb − r2) + r2 + 9rb} − a2)(M − b)2

−8E2br2(r + E2{2r + 3b})(M − b),

f6 = (2ra2 − 8E2r2{3b + 2r})(M − b)4

+r2(2E2{E2(16rb + 12b2 + 5r2)

+16rb + 10r2} − 3a2)(M − b)3

+(a2r3 − 2r3E2{E2(8b2 + 10rb + 3r2) + 3r2 + 5rb})(M − b)2

f7 = 2E2(E2 + 1)(M − b)2 + 8E2b(M − b − E2b),

f8 = −8E2(M − b)4 + (8E4{3r + 2b} − 32E2b)(M − b)3

+(4E2{E2(12rb − 3r2 + 10b2) + 18rb + 3r2} − a2)

(M − b)2 − 24E2rb(2E2{r + b} + r)(M − b),

f9 = (2a2 − 48E2r{r + b})(M − b)4

+2r(E4{24b(2r + b) + 20r2}
+8r E2{5r + 6b} − 3a2)(M − b)3

+r2(3a2 − E4{48b2 + 80rb + 30r2}
−10r E2{3r + 4b})(M − b)2.

It is not easy to extract some qualitative results from
these there equations, (4.14)–(4.16), to claim that the time-
like equatorial circular motion can occur or the opposite.
However, some numerical plots can be evaluated based on

Fig. 1 Plots of circular motion radius (solid) in co-rotating motion,
outer horizons (dash), and the corresponding squared NUT parameter
l2 (dash-dot) that solve Eqs. (4.14), (4.15), and (4.16). Plots in black
color represent case of b = 0, blue for b = 0.05 M , and red for
b = 0.1 M . We have used a∗ to denote the ratio a/M . The peculiar
behavior of larger radius as a∗ increases is understood since the events
depicted in the plots is not physical

these three equations, which we present in Fig. 1. From these
numerical results, we learn that not only the expected circular
radii are smaller than the corresponding horizons, the asso-
ciated NUT parameters l are also purely imaginary. The case
of timelike circular geodesics in Kerr–Taub–NUT spacetime
is represented by the plots for b = 0, which cannot take place
on equatorial plane x = 0. This is in agreement to a finding in
[40], which states that the circular motion in spacetime with
NUT parameter is not in equatorial plane. Furthermore, from
the numerical evaluations of b = 0.05 M , and b = 0.1 M ,
the same conclusions can also be drawn, namely the time-
like circular geodesics cannot take place on the plane x = 0
if the NUT parameter is non-zero. More numerical evalu-
ations of for particular b would likely to possess the same
features, leading us to the same conclusion where circular
timelike geodesics cannot exist on equatorial plane in Kerr–
Sen–Taub–NUT spacetime.

4.3 Null case

Now let us turn our discussion to the null case. Similarly, Eq.
(4.12) in null consideration

{(κ − a)(M − b) − 2Ml}l = 0, (4.17)

demands a constraint for κ ≡ E−1L if we let the NUT
parameter to be non-zero. Solving an equation obtained from
the term in curly bracket for κ and substituting the result to
Veff = 0 and V ′

eff = 0 give us

�0�
4
0 = 0, (4.18)

and

�0{(M{M + r + 2b} − 3b{r + b})l2 + r(M − b)
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(M{5r + 6b} − 3{r + b}{r + 2b})} = 0, (4.19)

respectively. In equations above, �0 ≡ � (x = 0) and �0 ≡
� (x = 0) appearing in the metric (2.16). Here we consider
non-zero �0 to maintain the effective potentials Vx,eff and
Vr,eff to be non-singular. Nevertheless, one cannot get a real
valued non-zero solution for the NUT parameter l from the
last two equations. Therefore we can conclude that the null
circular orbit which leads to the so called light ring does not
exist on equatorial plane in Kerr–Sen–Taub–NUT spacetime.

5 Hamilton–Jacobi equation and separability

As an alternative to obtain the geodesic equations discussed
in Sect. 4, one can employ the Hamilton–Jacobi equation
(HJE) [43]

gμν∂μS∂νS = −m2. (5.1)

For a spacetime with stationary and axial Killing vectors, the
usual action ansatz is

S = −Et + Lφ + Sr (r) + Sx (x) . (5.2)

If Eq. (5.1) is separable after employing the ansatz (5.2), this
equation splits into two independent equations, namely the
radial and angular parts. These two parts which come from
(5.1) can later give the effective potentials Vr,eff and Vx,eff

studied in Sect. 4.
However, not all stationary and axial symmetric spacetime

enjoy the separability for HJE, in massive or massless cases.
The work presented in [44] studied the separability of black
holes in string theory, and one of the subject is separability
of HJE. Spacetimes which possess the Conformal Killing
Stackel Tensor (CKST) is guaranteed to have separability
in the corresponding massless HJE, and those which exhibit
Exact Killing Stackel Tensor (EKST) can be shown to have
separability in massive HJE.

To see whether the spacetime (2.16) has CKST, let us
rewrite the metric in the general form considered in [44],
namely

ds2 = − �

�2

(
dt + a�xA

�
dφ

)2

+�2

(
dr2

�̃r
+ dr2

�r
+ �̃r�x

�
dφ2

)

(5.3)

where

A = 2M(((M − b)r + l2 + al) − l�̃r (1 − x)(a�x )
−1)

(M − b)
. (5.4)

As shown in [44], if the metric can be expressed in terms of
CKSTs Xμν (x) and Rμν (r), namely

�2gμν = Xμν (x) + Rμν (r) , (5.5)

then obviously the massless HJE is separable. In terms of
metric (5.3) which is the spacetime under consideration in
this work, we have

�2gμν∂μ∂ν = �̃r∂
2
r + �x∂

2
x +

(
1

�x
− a2

�̃r

)
∂2
φ

+
(
Fx
�x

− Fr

�̃r

)
∂t∂φ

+

⎧
⎪⎨

⎪⎩

(
�̃r Fx − �x Fr

)2

�̃r�x�
− �4

�

⎫
⎪⎬

⎪⎭
∂

2

t , (5.6)

where

Fx = 2Ml (1 − x)

M − b
, (5.7)

and

Fr = 2Ma{(M − b)r + l2 + al}
M − b

. (5.8)

It is obvious some terms in r.h.s. of Eq. (5.6) are already
in the separable form between the functions that depend on
r and x , except the last one that couples to ∂

2

t . The exis-
tence of � as a denominator in that term causes the problem,
exactly similar to the issue for HJE separability of black hole
spacetime in Kaluza–Klein theory [45]. Consequently, (5.6)
cannot take the separable form as aimed in (5.5), which then
allow us to conclude that massless HJE in Kerr–Sen–Taub–
NUT background (2.16) is not separable. Furthermore, the
failure of constructing CKSTs Xμν (x) and Rμν (r) for the
background (2.16) forbids the possibility to build the EKSTs

Kμν = Xμν − f (x) gμν = h (r) gμν − Rμν. (5.9)

This implies that the massive HJE in for the spacetime (2.16)
cannot be separable as well.

Nevertheless, the subjects of discussions in [44] are
asymptotically flat black holes in string theory, which is defi-
nitely not the case of spacetime solution studied in this paper.
However, the analysis should apply to non-asymptotic space-
time as well, provided that the spacetime possesses the sta-
tionary and axial Killing symmetries. Note that the existence
of CKSTs and EKSTs is more obvious if the function A in
metric (5.3) is r dependent only. This condition is satisfied in
the metric (5.3) if NUT parameter l is null, and the term that
couples to ∂

2

t in (5.6) becomes separable as shown in [46].
In fact, it is the existence of NUT parameter which costs the
spacetime (2.16) to lose the asymptotic flatness.

Obviously, the existence of NUT parameter in a spacetime
does not imply the lost of separability of HJE that belongs to
that spacetime. A familiar example is the separable massive
HJE in Kerr–Newman–Taub–NUT spacetime [26]. An alter-
native check whether HJE is separable or not in a particular
stationary and axial symmetric background is whether the
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corresponding metric can be expressed in canonical form or
not [43]. The canonical form of the metric is

ds2 = (Cx Zr − Cr Zx )

{
dr2

Dr
+ dx2

Dx

}

+Dx (Crdt − Zrdφ)2 − Dr (Cxdt − Zxdφ)2

Cx Zr − Cr Zx
, (5.10)

whereCx , Dx , and Zx are x dependent functions, andCr , Dr ,
and Zr are r dependent. Incompatibility of solution (2.16)
to be expressed in the canonical form (5.10) could also be
considered as the origin in separability problem of HJE in the
background (2.16). Hence, studies presented in this section
lead us to the conclusion that separable HJE in both massless
and massive case is not the feature of Kerr–Sen–Taub–NUT
spacetime.

It is interesting to find that the separability of massive HJE
in the rotating and charged black hole with NUT parameter
in Einstein–Maxwell theory, i.e. Kerr–Newman–Taub–NUT
spacetime [26], does not repeat here for the analogous case
in the low energy limit of heterotic string theory. Despite
the nonexistence of separability in HJE does not hinder the
study of test body geodesics in the spacetime, the absence
of this separability would mean that the Carter constant does
not exist. Note that the seed solution (2.9) and also the null
NUT case of (2.16) known as the Kerr–Sen spacetime both
possess the separability of massive HJE in the corresponding
background. In other words, the limit Q → 0 or l → 0 case
of (2.16) enjoys the separability of HJE. This separability
disappears when both parameters, namely the charge Q and
NUT parameter l, present at the same time. We may argue that
this lost of separability occurs due to the twisting procedure
that we employ in transforming the seed solution (2.9) to get
(2.16), which acts on the (t, t), (t, φ), and (φ, φ) sectors of
the metric while grr and gxx remain invariant. This is obvious
in the string frame (2.10) where the conformal factor e−�

has not been applied to get the Einstein frame version of the
metric. The NUT parameter gives rise to some extra terms in
gt,t , gt,φ , and gφ,φ in the seed solution which after Hassan–
Sen twisting procedure in Sect. 2 yields some non-separable
terms in (5.1).

6 Effective potentials

Also, quite frequently the complexity of full expression for
effective potential Vr,eff does not allow us to easily extract
the desired informations from the system. Hence, we could
rely on the numerical plots for Vr,eff to help in giving insights
for some particular questions, despite the answer cannot be
general. For example, by looking at the Vr,eff one can tell
whether a test particle can travel from infinity to the vicinity
of black holes. In this section, we do not aim to extract all

Fig. 2 Effective potentials for timelike particle with E = 1 and L∗ = 1
around a collapsing mass with rotational parameter a∗ = 0.5. The
incorporated electric charge parameter b∗ = 0.2, and NUT parameter
l∗ = 1

the information we can get from the Vr,eff plots, but rather
to verify the non-singular value of Kretschmann scalar in
KSTN spacetime at r = 0. We also like to learn the effect of
non-vanishing NUT parameter to the profile of Vr,eff . There-
fore, limiting ourself to the case of timelike test particle only
would be adequate, and the corresponding effective potential
is (4.7) with δ = −1. In Fig. 2, we can observe that the behav-
ior of effective potential in the presence of NUT parameter l
is distinguishable from the vanishing l counterparts, i.e. Kerr
and Kerr–Sen. The effective potentials for Kerr and Kerr–
Sen are singular at physical singularity r = 0, but it is not for
KSTN case. This resembles the analogous property of Kerr–
Newman–Taub–NUT spacetime, which also differs from the
case where Taub–NUT parameter is absent, i.e. the family of
Kerr–Newman black holes. The finiteness of effective poten-
tial for the case represented by Fig. 2 of KSTN spacetime
can be understood from the non-singular Kretschmann scalar
(2.29) evaluated at r = 0. Nevertheless, the plots Vr,eff for
each cases in Fig. 2 start to coincide at the larger radius.

Now let us see what happens when the electric charge
parameter b increases, as shown in Fig. 3. Here we observe
that near r = 0 the plots is steeper as b∗ decreases.8 Alterna-
tively, one can state that the gravitational attraction is stronger
when b vanishes. Note that our test timelike particle is elec-
trically neutral, hence Coulomb interaction does not exist

8 For economical reason we use the starred notation for all quantities
in consideration to denote their ratio to black hole mass, namely b∗ ≡
b/M , L∗ ≡ L/M , r∗ ≡ r/M , l∗ ≡ l/M , and a∗ ≡ a/M as in Fig. 1.
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Fig. 3 Effective potentials for timelike particle with E = 1, L∗ = 2,
l∗ = 2, and the rotational parameter a∗ = 0.5. The electric field b∗
varies from 0 to 0.6

between the object that curves the spacetime and the test par-
ticle. This finding is similar to that of Kerr–Sen case, where
the effective potential plots for a neutral test particle raise as
one increases the electric charge of the black hole.

On the other hand, as shown in Fig. 4, we find the plots
is deeper for larger values of Taub–NUT parameter l near
the center of radius. In this region, the gravitational attrac-
tion is stronger as l increases. Similar situations exist in the
case of Einstein–Maxwell theory, for example in the plots
presented in [20], but the lines start to coincide at larger
radius. Another similarity between KSTN and KNTN cases
for timelike particle geodesics is the plots of Vr,eff for dif-
ferent angular momentum L . Near the center of coordinate
r = 0, Vr,eff is steeper for lower angular momentum, but
the curves start to intersect at some distance. Moreover, from
Fig. 5 we can learn that the Vr,eff curves for different angular
momentum intersect at a point which is the positive root of
quadratic r∗ equation9

(4El∗ + (b∗ − 1)(p + q))(r∗)2

+2(b∗ − 1)((b∗ − 1)(p + q) + 2E(2l∗ + a∗))r∗

−(l∗)2((b∗ − 1)(p + q) + 4E(l∗ + a∗)) = 0. (6.1)

In equation above, p and q are the values of L∗ under con-
sideration.

9 One can also find an equation dictating the intersection points between
curves in Fig. 4, which turn out to be some quintic polynomials in r∗.
Hence, we do not think it is necessary to express the equation here.

Fig. 4 Effective potentials for timelike particle with E = 1, L∗ = 2,
b∗ = 0.2, and the rotational parameter a∗ = 0.5. The NUT parameter
l∗ varies from 1 to 4

Fig. 5 Effective potentials for timelike particle with E = 1, l∗ = 2,
b∗ = 0.2, and the rotational parameter a∗ = 0.5. The angular momen-
tum L∗ varies from 1 to 4

7 Conclusion

In this paper, we obtain a solution describing rotating charged
mass with NUT parameter in the low energy limit of het-
erotic string theory, namely the Kerr–Sen–Taub–NUT space-
time. This solution resembles the Kerr–Newman–Taub–NUT

123



Eur. Phys. J. C (2020) 80 :1000 Page 11 of 12 1000

spacetime in Einstein–Maxwell theory. As we expect, there
exist several similarities between the two solutions, for exam-
ple the non-singular squared Kretschmann scalar at r = 0 and
the profile of Veff plots as NUT parameter l increases.

In Sect. 3, we also study the conserved charges associ-
ated to the new solution. The mass and angular momen-
tum are calculated using Barnich–Brandt method, where the
obtained mass is in agreement to that computed using stan-
dard Komar integral. However, we find a contribution from
the NUT parameter l in the angular momentum, which resem-
bles the cases of Kerr–Taub–NUT or Kerr–Newman–Taub–
NUT spacetimes. The electric charge is the same to that of
Kerr–Sen black holes.

Related to the equatorial circular geodesics in both time-
like and null considerations given in Sect. 4, we learn that
such motions cannot exist in Kerr–Sen–Taub–NUT. This
conclusion is obvious in the null geodesic case, but is taken
based on several numerical evaluations in the timelike con-
sideration. However, we are convinced that any numerical
results similar to the plots in Fig. 1 lead to the same conclu-
sion for any possible numerical values of b. Our results pre-
sented in Sect. 4 agree to the prediction made in [40], namely
circular geodesics in spacetime with NUT parameter are not
in equatorial plane. Geodesics of test body either massive or
massless are discussed without using some Carter constants,
since the absence of Hamilton–Jacobi equation separability
in Kerr–Sen–Taub–NUT spacetime as showed in Sect. 5.

There are future potential projects that can be done related
to Kerr–Sen–Taub–NUT solution presented in this paper.
First is the non-equatorial circular motions in Kerr–Sen–
Taub–NUT spacetime, which can be some particular interests
due to to the observation of black hole image [47]. Another
interesting problem that can be worked out is the Banados-
Silk-West effect [26,48] in Kerr–Sen–Taub–NUT spacetime.
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