
Eur. Phys. J. C (2020) 80:975
https://doi.org/10.1140/epjc/s10052-020-08552-0

Regular Article - Theoretical Physics

Decay widths of 3PJ charmonium to DD, DD∗, D∗D∗ and
corresponding mass shifts of 3PJ charmonium

Hui-Yun Cao, Hai-Qing Zhoua

School of Physics, Southeast University, Nanjing 211189, China

Received: 29 August 2020 / Accepted: 13 October 2020 / Published online: 21 October 2020
© The Author(s) 2020

Abstract In this work, we calculate the amplitudes of the
processes cc̄(3PJ ) → DD, DD∗, D∗D∗ → cc̄(3PJ ) in the
leading order of the nonrelativistic expansion. The imaginary
parts of the amplitudes are corresponding to the branch decay
widths of the charmonium cc̄(3PJ ) → DD, DD∗, D∗D∗
and the real parts are corresponding to the mass shifts of
the charmonium cc̄(3PJ ) due to these decay channels. After
absorbing the polynomial contributions which are pure real,
the ratios between the branch decay widths and the corre-
sponding mass shifts are only dependent on the center-of-
mass energy. We find the decay widths and the mass shifts
of the 3P2 states are exact zero in the leading order. The
ratios between the branch decay widths and the mass shifts
for the 3P0,

3P1 states are larger than 5 when the center-of-
mass energy is above the DD, DD∗, D∗D∗ threshold. The
dependence of the mass shifts on the center-of-mass energy
is nontrivial especially when the center-of-mass energy is
below the threshold. The analytic results can be extended to
the b quark sector directly.

1 Introduction

The energy spectrum of hadrons is a basic topic in the strong
interaction. Up to now, it is still an unsolved problem due
to the complex nonperturbative property of QCD. In litera-
tures, many phenomenological models have been developed
to study this problem in the quark level, such as the quark
model [1–3], QCD sum rules [4–8], Bethe–Salpeter equa-
tion [9–22], and etc. In these methods, usually the annihila-
tion effects are neglected since they are much smaller than
the non-perturbative potential. Physically, if the annihilation
effects can be taken as small comparing with the interaction
which binds the quarks, then the imaginary part of the annihi-
lation amplitude is corresponding to the branch decay width
and the real part is corresponding to the perturbative mass
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shift. Theoretically such annihilation effects should be con-
sidered and estimated carefully when aiming to understand
the energy spectrum precisely.

Experimentally, since 2003 many new charmonium-like
states are reported by the collaborations of Belle [23–29],
CDF [30,31], D0 [32], BABAR [33,34], Cleo-C [35], LHCb
[36], BES [37], and CMS [38,39]. These charmonium-like
states cannot be well understood in the traditional quark
model and their masses usually lie above the open charm
threshold where some new decay modes are opened. In
the previous study [40,41], we studied the mass shifts of
1S0 and 3PJ heavy quarkonia due to the transition qq̄ →
2g → qq̄ . Physically, when the masses of the states lie
above the threshold of D or D∗ pairs, the transitions cc̄
to these mesons’ pairs are opened. It is natural that these
opened channels not only result in the visible branch decay
widths but also give contributions to the mass shifts of
the corresponding charmonium. When the masses of the
charmonium lie about the threshold of the meson pairs,
one can expect that the nonrelativistic expansion is appli-
cable, which means that one can take the mesons D, D∗
like the heavy quark in the nonrelativistic QCD to con-
struct the effective nonrelativistic interactions order by order.
In this work, we follow this spirit to calculate the ampli-
tudes of cc̄(3PJ ) → DD, DD∗, D∗D∗ → cc̄(3PJ ) in the
leading order of non-relativistic expansion. The imaginary
parts of the results are corresponding to the branch decay
widths which can be used to determine the effective cou-
pling constants. Furthermore, if these annihilation interac-
tions are much smaller than the binding interaction, then the
real parts can be used to estimate the corresponding mass
shifts.

We organize the paper as follow. In Sect. 2 we describe
the basic frame to calculate the amplitudes of cc̄(3PJ ) →
DD, DD∗, D∗D∗ → c̄(3PJ ) in the leading order of nonrel-
ativistic expansion, in Sect. 3 we give the analytic results for
the amplitudes in the leading order of nonrelativistic expan-
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sion, in Sect. 4, we present some numerical results to show
some properties in detail.

2 Basic formula

When the mass of the charmonium is about 2mD or 2mD∗
with mD,D∗ being the masses of the D, D∗ mesons, the
three-momenta of the c quarks and the mesons in the decay
channels cc̄(3PJ ) → DD, DD∗, D∗D∗ are much smaller
than c quarks’ mass mc or mD,D∗ . In this case, one can take
mc ≈ mD ≈ mD∗ as the large scale comparing with �QCD

and expand the interaction on the small variables |⇀q |/mc

with
⇀
q the three-momenta of the c quarks and the mesons.

This nonrelativistic expansion is similar with the spirit of
NRQCD where the contact four point interactions are intro-
duced. Different from NRQCD, now there is no hard gluon in
the decay channels cc̄(3PJ ) → DD, DD∗, D∗D∗, but only
nonrelativistic heavy quarks and heavy mesons. This means
that there are only contact interactions between the c quarks
and the D, D∗ mesons.

To construct the interaction Lagrangian order by order on

|⇀q |/mc, one can use the same spirit with NRQCD [42] where

only the three-dimension partial
⇀∇ on the fields is used and

naively one
⇀∇ contributes one order. A little difference from

NRQCD is that now the 0-component of the D∗ field Aμ is

also a small variable since ∂μAμ = ∂0A0 −⇀∇ ·⇀A = 0 for the
on shell D∗. This means that the inclusion of one A0 field also

contributes one order like
⇀∇ . Then in the leading order there

is no
⇀∇ or A0 in the interaction Lagrangian. For convenience,

one can also rewrite the Lagrangian in a covariant form and
choose the leading order contribution finally. By this reason
the most general interactions with C, P, T invariance in the
leading order can be written as follows:

L1 = gaψψφφ,

L2 = gbψγ 5γμψφAμ + h.c.,

L3 = gcψψ AμA
μ, (1)

where ψ, φ, Aμ are the fields of the c quark, the D meson,
and the D∗ meson, respectively. Here we do not assume that
there is spin asymmetry between the D and D∗ mesons since
the dynamics of the light quarks inside the D and D∗ mesons
may break the spin symmetry strongly. This means that the
couplings ga,b,c are independent.

By these interactions, the Feynman diagrams for the
amplitudes of cc̄(3PJ ) → DD, DD∗, D∗D∗ → cc̄(3PJ )

in the leading order are shown in Fig. 1a–c.
Similar with any effective theory, usually the contact inter-

actions are needed to absorb the UV divergences in the loop
diagrams. In the practical calculation, we find the following

contact interactions are needed to absorb the UV divergences
in Fig. 1a–c:

Lc
1 = g10[ψψ][ψψ] − g11

(
∂μ∂μ[ψψ]

)
[ψψ]

+g12

(
∂μ∂μ∂ν∂

ν[ψψ]
)
[ψψ],

Lc
2 = g20[ψγ 5γμψ][ψγ 5γ μψ]

−g21

(
∂ν∂

ν[ψγ 5γμψ]
)
[ψγ 5γ μψ]. (2)

The physical reason of such contact interactions is related
with the quantum number of 3P0,1: Lc

1 is the contact interac-
tion in the scalar channel and Lc

2 is the contact interaction in
the axial-vector channel. We want to point out that we just
write down such contact interactions here to show the exact
cancellations of the UV divergences and the polynomial con-
tributions. In the practical calculation, one can get the same
final results even without knowing the form of the contact
interactions. The Feynman diagram for the contribution due
to these contact interactions is shown in Fig. 1d.

In the center of mass frame, we choose the four external
momenta as follows:

p1
de f= P

2
+ qi , p2

de f= P

2
− qi ,

p3
de f= P

2
+ q f , p4

de f= P

2
− q f . (3)

For simplicity we define P
def= (

√
s, 0, 0, 0) and use the

instantaneous approximation for qi, f which means that we
assume qi = (0,qi ) and q f = (0,q f ), where we use the
bold formatting to refer to the three momentum here and in
the following.

To project the cc̄ pairs to the 3PJ states we use the project
matrices in the on-shell case [43–47] which are defined as
follows:

∑
ν̄(p2, s2)Tu(p1, s1) <

1

2
s1; 1

2
s2|1si >

de f= Tr[T	i (si )],
∑

ū(p3, s3)T ν(p4, s4) <
1

2
s3; 1

2
s4|1s f >

de f= Tr[T	 f (s f )],
(4)

where the Clebsch–Gordan coefficients are the standard ones
as in Refs. [44,45], and the Dirac spinors are normalized as
u+u = ν+ν = 1, whose definitions are expressed as

u(p1, s1)
de f= p/1 + m√

E1(E1 + m)

(
ξ s1

0

)
,

ν(p2, s2)
de f= −p/2 + m√

E2(E2 + m)

(
0

ηs2

)
, (5)
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(a) (b)

(c) (d)

Fig. 1 The diagrams for cc̄(3PJ ) → cc̄(3PJ ) processes where a–d are corresponding to cc̄ → DD → cc̄, cc̄ → DD∗ → cc̄, cc̄ → D∗D∗ → cc̄,
and cc̄ → cc̄ via contact interactions

with E1,2 =
√

|p1,2|2 + m2
c , p1,2 = (E1,2,p1,2), ξ1/2 =

(1, 0)T , ξ−1/2 = (0, 1)T , η1/2 = (0, 1)T , and η−1/2 =
(−1, 0)T . Finally the project matrices can be written as

	i (si ) = Ni (p/1 + mc)(2Ei + p/1 + p/2)ε/p(si )(−p/2 + mc),

	 f (s f ) = N f (−p/4 + mc)ε/
∗
p(s f )(2E f + p/3 + p/4)(p/3 + mc),

(6)

where Ei, f =
√

|qi, f |2 + m2
c , and

εμ
p (0)

de f= (0, 0, 0, 1),

εμ
p (±1)

de f= (0,∓1,−i, 0)/
√

2, (7)

and Ni, f are the normalized global factors which can be
expressed as follows in the nonrelativistic limit

Ni, f = − 1

8
√

2E2
i, f (Ei, f + mc)

. (8)

In principle the form of the project matrix for a bounded
cc pair should be deduced from the Bethe–Salpeter wave
function or similar Lorentz covariant matrix element, while
in the ultra nonrelativistic limit the above expressions are
expected to be correct.

In the leading order of nonrelativistic expansion, the struc-
ture of a meson H(3PJ ) can be expressed as follow:

|H(3PJ )〉 ∼ φ(|p|) δi j√
Nc

|qi q̄ j (3PJ )〉, (9)

where Nc = 3 and φ(|p|) is the wave function of H(3PJ ) in
the momentum space which is defined as

φ(|p|)Y1m(�p)
de f=

∫
d3r

(2π)3/2 e
−ip·rR1(|r|)Y1m(�r), (10)

with the normalization condition
∫

d|r||r|2R2
1(|r|) = 1. (11)

Combining the structure of H(3PJ ) and the project matri-
ces, the expression for the amplitudes in the leading order can
be expressed as

M(X)(3PJ )

=
∫

d|qi |d|q f |
(2π)3 |qi |2|q f |2φ(|q f |)φ∗(|qi |)G(X)

(3PJ ),

(12)

where the index (X) refers to (a, b, c, d) which are corre-
sponding to the contributions from the diagrams (a), (b),

(c) and (d) shown in Fig. 1, respectively. G
(X)

(3PJ ) are
expressed as

G
(X)

(3PJ ) =
∑
si ,s f

〈J Jz |1s f ; 1m f 〉〈J Jz |1si ; 1mi 〉

×
∫

d�qi d�q f
Y1mi (�qi )

× Y ∗
1m f

(�q f
)G(X)(si , s f ), (13)
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with

G(a)(si , s f )

= −ic f μ
2ε

∫
ddk

(2π)d
Tr[T1	i (si )]Tr[T1	 f (s f )]S(k)

×S(p1 + p2 − k),

G(b)(si , s f )

= −ic f μ
2ε

∫
ddk

(2π)d
Tr

[
Tμ

2 	i (si )
]
Tr

[
T ν

2 	 f (s f )
]

×Dμν(k)S(p1 + p2 − k),

G(c)(si , s f )

= −ic f μ
2ε

∫
ddk

(2π)d
Tr[Tμρ

3 	i (si )]Tr[T νω
3 	 f (s f )]

×Dμν(k)Dρω(p1 + p2 − k),

G(d)(si , s f ) = −ic f μ
2ε

(
Tr[T4	i (si )]Tr[	 f (s f )]

+Tr[Tμ
5 	i (si )]Tr[γ5γμ	 f (s f )]

)
, (14)

where d = 4 − 2ε is the dimension, μ is the introduced

energy scale, c f = δi j√
Nc

δi j
δi ′ j ′√
Nc

δi ′ j ′ = 3 is the color factor,
and

T1 = iga,

Tμ
2 = igbγ

5γ μ,

Tμρ
3 = igcg

μρ,

T4 = i(g10 + g11s + g12s
2),

Tμ
5 = i(g20 + g21s)γ5γ

μ, (15)

and the propagators of the pseudoscalar S and the vector Dμν

are defined as

S(k) = i

k2 − m2
D + iε

,

Dμν(k) =
−i(gμν − kμkν

m2
D∗

)

k2 − m2
D∗ + iε

. (16)

In the practical calculation, the package FeynCalc [48,49]
is used to do the trace in the d dimension. The packages
FIESTA [50,51] and PackageX [52,53] are independently
used to do the loop integration for double check. After the
loop integrations, G(X)(si , s f ) can be expressed in the fol-
lowing form:

G(X)(si , s f ) = C(X)
1 εp(si ) · ε∗

p(s f ) + C(X)
2 εp(si ) · q̂i ε∗

p(s f )

· q̂ f + C(X)
3 εp(si ) · q̂ f ε∗

p(s f ) · q̂i , (17)

where C (X)
i can be expressed as

C (X)
i =

1∑
n=0

C (X)
in (|qi |, |q f |)(q̂i · q̂ f )

n, (18)

with q̂i, f
de f= qi, f /|qi, f |, respectively.

To get the coefficients G
(X)

(3PJ ), usually the sums of the
spins and the integrations of the angles are calculated inde-
pendently to simplify the expressions [54]. In our calculation,
we directly calculate the sums of the spins and the integra-
tions of the angles together after getting the expressions of
C (X)
in . This method is more efficient and has been used in our

previous work [40,41]. The relevant expressions are listed in
the Appendix.

3 The energy shift of 3PJ in the leading order

We expand G
(X)

(3PJ ) on |qi |, |q f | to order 1 as following
forms:

G
(a,b,c)

(3PJ ) = 3g2
a,b,cNi N f m

4
c

[
|qi ||q f |c(a,b,c)

J + higher order
]
,

G
(d)

(3PJ ) = 3Ni N f m
4
c

[
|qi ||q f |c(d)

J + higher order
]
. (19)

Here we want to emphasis that the contributionsG
(d)

(3PJ )

are used to absorb the UV divergences in G
(a+b+c)

(3PJ )

and give no contributions to the decay widths of 3PJ states.

The finite parts of the contributions G
(d)

(3PJ ) are arbi-
trary. Actually, they not only absorb the UV divergences but

also absorb the polynomial contributions in G
(a+b+c)

(3PJ ).
This situation is a little different from the results in the
cc̄(3PJ ) → 2g → cc̄(3PJ ) cases where there are no any
contact interactions in the original QCD interaction. The
important point is that these absorptions are universal and
independent on the processes, and we discuss the details in
the following subsection.

3.1 The energy shift of 3P0 state

After the loop integration, the sum of the spins, the integration
of the angles, and the Taylor expansion, we get the following
results in the 3P0 channel.

c(a)
0 = c(a)

0,poly +
256

√
s(s − 4m2

D)

πs
ln

×
⎡
⎣2m2

D − s +
√
s(s − 4m2

D)

2m2
D

+ iε

⎤
⎦ ,

c(b)0 = 0,

c(c)0 = c(c)0,poly +
64[(s − 2m2

D∗)2 + 8m4
D∗ ]

√
s(s − 4m2

D∗)

πsm4
D∗

ln

×
⎡
⎣2m2

D∗ − s +
√
s(s − 4m2

D∗)

2m2
D∗

+ iε

⎤
⎦ ,

c(d)
0 = c(d)

0,poly , (20)
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where c(a,c,d)
0,poly are some polynomial functions on s which

include the UV divergences and are expressed as follows:

c(a)
0,poly = 256

π

(
2 + 1

εUV
+ ln

μ2
UV

m2
D

)
,

c(c)
0,poly = 64

πm4
D∗

[
4

(
4 + 3

εUV
+ 3 ln

μ2
UV

m2
D∗

)
m4

D∗

−2

(
5 + 3

εUV
+ 3 ln

μ2
UV

m2
D∗

)
m2

D∗s

+
(

2 + 1

εUV
+ ln

μ2
UV

m2
D∗

)
s2

]
,

c(d)
0,poly = 256

π3 (g10 + g11s + g12s
2), (21)

with 1
εUV

= 1
εUV

− γE + log(4π).

An important property of the two contributions c(a,c)
0,poly

is that they can be absorbed by the contact interactions Lc
1

independently. These contact interactions are independent
and give no contributions to the decay widths of the char-
monium. This means that their effects can be absorbed by
the models which are used to calculate the energy spectrum
and do not include the annihilation effects. Here we are only
interested in the mass shifts due to the decay modes, then
we only focus on the contributions including the imaginary
parts due to the loop calculation and neglect the terms c(a,c)

0,poly .
The choices of g10,11,12 which can cancel all the polynomial
contributions in c(a,c)

0 can be got directly.
From Eq. (20), one can easily get the imaginary parts as

follows:

Im[c(a)
0 ] =

256
√
s(s − 4m2

D)

s
θ(s − 4m2

D),

Im[c(b)
0 ] = 0,

Im[c(c)
0 ] =

64[(s − 2m2
D∗)2 + 8m4

D∗ ]
√
s(s − 4m2

D∗)

sm4
D∗

×θ(s − 4m2
D∗),

Im[c(d)
0 ] = 0. (22)

Matching the amplitude with the corresponding amplitude
in quantum mechanism with a perturbatively potential, one
has

M(3PJ ) = −〈H(3PJ )|Vef f |H(3PJ )〉. (23)

Finally the decay widths of 3P0 to DD, DD∗ and D∗D∗
in the leading order are expressed as follows:

�(3P0 → DD) = 2Im[M(a)(3P0)]
= 27g2

a

8π2 Ni N f m
4
cIm[c(a)

0 ]|R(1)
1 (0)|2,

�(3P0 → DD∗) = 2Im[M(b)(3P0)] = 0,

�(3P0 → D∗D∗) = 2Im[M(c)(3P0)]
= 27g2

c

8π2 Ni N f m
4
cIm[c(c)

0 ]|R(1)
1 (0)|2,

(24)

where we have used the relation
∫

dp

(2π)3/2 φ(p)p2n+3 = (−1)n
2n + 3

4π
R(2n+1)

1 (|r|)
∣∣∣|r|=0

.

(25)

The corresponding full mass shift labeled as �m(3P0) is
expressed as

�m(3P0) = −Re[M(a+b+c)(3P0)]

= − Re[c(a)
0 ]

2Im[c(a)
0 ]

�(3P0 → DD)

− Re[c(c)
0 ]

2Im[c(c)
0 ]

�(3P0 → D∗D∗), (26)

where c(a,c)
0 = c(a,c)

0 − c(a,c)
0,poly .

3.2 The energy shift of 3P1 state

In the 3P1 channel, we have the following results

c(a)
1 = 0,

c(b)
1 = c(b)

1,poly + 128

9πs2m2
D∗

A(A2 + 12sm2
D∗) ln

×
[
A − s + m2

D + m2
D∗

2mDmD∗
+ iε

]
,

c(c)
1 = 0,

c(d)
1 = c(d)

1,poly, (27)

with

A =
√[

s − (mD − mD∗)2
][
s − (mD + mD∗)2

]
. (28)

The polynomial terms are expressed as

c(b)
1,poly =

1∑
n=−2

snc(b)
1;n,

c(d)
1,poly = − 512

3π3 (g20 + g21s), (29)

123
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with

c(b)
1;−2 = 64

9πm2
D∗

(m2
D∗ − m2

D)3 ln
m2

D

m2
D∗

,

c(b)
1;−1 = 64

9πm2
D∗

(m2
D∗ − m2

D)

[
2(m2

D∗ − m2
D)

+3(3m2
D∗ − m2

D) ln
m2

D

m2
D∗

]
,

c(b)
1;0 = − 64

9πm2
D∗

[(
2 + 6

εUV
+ 6 ln

μ2

m2
D

)
m2

D

−2

(
23 + 9

εUV
+ 9 ln

μ2

m2
D∗

)
m2

D∗

+3(m2
D − 3m2

D∗) ln
m2

D

m2
D∗

]
,

c(b)
1;1 = 64

27πm2
D∗

(
4 + 6

εUV
+ 6 ln

μ2

m2
D

+ 3 ln
m2

D

m2
D∗

)
.

(30)

At first glance, this property is very different from that in
the 3P0 channel due to the nonzero values of c1,−2 and c1,−1.
While actually when taking the nonrelativistic approximation
mD ≈ mD∗ , one has c1;−2, c1;−2 ≈ 0, this means that these
contributions are very small in the nonrelativistic approxi-
mation and can be neglected. The numerical calculation also
shows such property and we neglect these two terms in the
following.

Similarly, the terms c(b,d)
1,poly can be neglected when aiming

to discuss the contributions from the annihilation effects. The
corresponding imaginary parts can be expressed as

Im[c(a)
1 ] = 0,

Im[c(b)1 ] = 128

9s2m2
D∗

A(A2 + 12sm2
D∗)θ

(
s − (mD + mD∗)2)

,

Im[c(c)1 ] = 0,

Im[c(d)
1 ] = 0. (31)

In the leading order, the decay width of 3P1 to DD, DD∗
and D∗D∗ are expressed as

�(3P1 → DD) = 2Im[M(a)(3P1)] = 0,

�(3P1 → DD∗) = 2Im[M(b)(3P1)]
= 27g2

b

8π2 Ni N f m
4
cIm[c(b)

1 ]|R(1)
1 (0)|2,

�(3P1 → D∗D∗) = 2Im[M(c)(3P1)] = 0, (32)

and the corresponding full mass shift labeled as �m(3P1) is
expressed as

�m(3P1) = −Re[M(a+b+c)(3P1)]

= − Re[c(b)
1 ]

2Im[c(b)
1 ]

�(3P1 → DD∗), (33)

where c(b)
1 = c(b)

1 − c(b)
1,poly .

3.3 The energy shift of 3P2 state

For 3P2 state, we get

c(a,b,c,d)
2 = 0. (34)

These results mean that the decay widths �(3P2 →
DD, DD∗, D∗D∗) are exact zero and there are no mass shifts
for the 3P2 states in the leading order. This is a strong prop-
erty which can be tested by the experiments and be used to
judge whether a state is a pure 3P2 heavy quarkonium or not.

3.4 Property of the analytic results

Comparing our results with those given by the 3P0 model in
Ref. [55] and the Friedrichs model in Ref. [56], one can find
that both the two methods give the zero results for cc(3P0) →
DD∗ and cc(3P1) → DD. The contributions of cc(3P1) →
D∗D∗ and cc(3P2) → DD, DD∗, D∗D∗ in Ref. [55] are
nonzero, and even in the same order with the contribution in
cc(3P1) → DD∗. While in our results, cc(3P1) → D∗D∗
and cc(3P2) → DD, DD∗, D∗D∗ are exact zero.

To understand these exact zero results in our method, one
can consider the decay widths in the hadronic level at first.
The most general form for the amplitudes of cc(3PJ ) →
DD, DD∗, D∗D∗ with Lorentz invariance can be expressed
as follows:

M(3P0 → DD) = {1},
M(3P0 → DD∗) = {Pμ

i }ε∗
μ,

M(3P0 → D∗D∗) = {gμν, Pμ
i Pν

j , ε
μνρωPiρ Pjω}ε∗

1με∗
2ν,

(35)

and

M(3P1 → DD) = {Pμ
i }Xμ,

M(3P1 → DD∗) = {gμν, Pμ
i Pν

j , ε
μνρωPiρ Pjω}Xμε∗

ν ,

M(3P1 → D∗D∗)
= {Pμ

i gνρ, Pν
i g

μρ, Pρ
i g

μν, Pμ
i Pν

j P
ρ
k ,

Pω
i Pσ

j P
ρ
k εμνωσ , Pω

i Pσ
j P

ν
k εμρωσ }Xμε∗

1νε
∗
2ρ, (36)

and

M(3P2 → DD) = {Pμ
i Pν

j }Xμν,

M(3P2 → DD∗)
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= {Pμ
i gνρ, Pν

i g
μρ, Pμ

i Pν
j P

ρ
k , Pω

i Pσ
j P

ν
k εμρωσ ,

Pω
i pσ

j P
μ
k ενρωσ }Xμνε

∗
ρ,

M(3P2 → D∗D∗)
= {gμρgνω, gμρPν

i P
ω
j , gμωPν

i P
ρ
j , terms with more Pi }

×Xμνε
∗
1ρε∗

2ω, (37)

where Pi are the momenta of 3PJ meson, D meson and D∗
meson, εμ, Xμ and Xμν are the polarization vectors of D∗
meson,3P1 and 3P2 meson, respectively, {. . .} denotes to the
linear combination of the terms in the braces. The properties
that Xμ

μ = 0, Xμν = Xνμ, and ε∗
1μ and ε∗

2ν are symmetrical
have been used.

Due to the P invariance, one can directly get that
M(3P0 → DD∗) = 0 and M(3P1 → DD) = 0 since
the terms in the braces break the P invariance. In principle,
other amplitudes are nonzero due to the symmetry.

When taking the nonrelativistic expansion on the three-
momenta of the D, D∗ mesons, in the leading order all
Pi are parallel. This property means that M(3P1 →
D∗D∗, 3P2 → DD, DD∗) = 0 in the leading order since
Pμ
i ε∗

μ, Pμ
i Xμ, Pμ

i Xμν are zero when all Pi are parallel.
Mathematically, all Pμ

i ε∗
μ, Pμ

i Xμ, Pμ
i Xμν are zero or small

comparing with the mass mD .
For M(3P2 → D∗D∗), when only taking the non-

relativistic expansion on the three-momenta of the D, D∗
mesons, there is a nonzero contribution like Xμνε

∗μ
1 ε∗ν

2 in the
leading order. But when one considers the quark structure of
the 3P2 meson and also takes the nonrelativistic expansion on
the three-momenta of the quarks, then the interactions at the
quark level in the leading order is L3 in Eq. (1). This interac-
tion means that the final amplitude is like {Pμ

i Pν
j }Xμνε

∗
1ρε

∗ρ
2

after considering both the nonrelativistic expansion on the
D∗ mesons and the c quarks. This is just zero in the leading
order.

In summary, we get the following properties:

(1) Due to the P invariance, M(3P0 → DD∗, 3P1 →
DD) = 0.

(2) Due to the nonrelativistic expansion on the three-
momenta of the D, D∗ mesons, M(3P1 → D∗D∗,
3P2 → DD, DD∗) = 0 in the leading order.

(3) Due to the nonrelativistic expansion on the three-
momenta of the D, D∗ mesons and the quarks in 3P2

meson, M(3P2 → D∗D∗) = 0 in the leading order.

In the practical calculation, we also take the following next
leading order interaction as example

LNLO = g(∂μψ)(∂νψ)AμAν, (38)

and we find nonzero result for M(3P2 → D∗D∗) in the next
leading order.

From the above analysis, one can see that when go to
beyond the leading order of nonrelativistic expansion, the
amplitudes M(3P1 → D∗D∗, 3P2 → DD, DD∗, D∗D∗)
will not be zero. The calculation in Ref. [55] is based on the
3P0 model where a light quark pair is dynamically produced
in the vacuum and the nonrelativistic wave functions of the
mesons are used to estimate the contributions. This means
that in Ref. [55] the three-momenta of the quarks and the
D, D∗ mesons are not expanded order by order and their
momenta’ distributions are considered via some wave func-
tions and the quark pair creation mechanism. This is very dif-
ferent from our method which is based on the general model
independent interactions under the nonrelativistic expansion.
In our calculation, all the dynamics of the light quark and
D, D∗ meason is absorbed by the coupling constants in the
leading order of the nonrelativistic expansion. On another
hand, we only consider the contributions due to the annihi-
lation effects and neglect the polynomial contribution since
the latter is uncertain.

4 Numerical results and discussion

To show the properties of the above analytic results more
clearly, we present some numerical results in this section.
Firstly we want to emphasize that the absolute values of
Re[c(a,b,c)

J ] and Im[c(a,b,c)
J ] can not determine the physical

decay widths and the mass shifts directly, since there are
some global unknown constant factors. But the ratios of the
mass shifts and the decay widths −Re[c(a,b,c)

J ]/2Im[c(a,b,c)
J ]

are model independent. This means that if the decay widths
are measured experimentally, the corresponding corrections
to the masses of the heavy quarkonia can be got directly.

In Fig. 2 the dependence of Im[c(a,b,c)
J ], Re[c(a,b,c)

J ] and
their ratios on

√
s is presented, respectively, where we take

mD = 1.87 GeV and mD∗ = 2.01 GeV as inputs.
The numerical results presented in Fig. 2 show four inter-

esting properties:

(1) The real parts Re[c(a,c)
0 ] and Re[c(b)

1 ] which are rep-
resented by the solid black curves are always nega-
tive. This means that after considering the annihilation
effects, the masses of the 3P0,1 states move up and the
masses of 3P2 states do not move.

(2) When
√
s is on the threshold of DD, DD∗ or D∗D∗

the corresponding mass shifts are exact zero.
(3) When

√
s is above the threshold, the mass shifts are

much smaller than the corresponding decay widths,
the largest mass shift is about 1/5 of the correspond-
ing decay width when

√
s ≈ 4.5 GeV which is much

larger than the threshold. This property gives a strong
constrain on the mass shifts to all the 3P0,1 states.
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(a) (b)

(c) (d)

Fig. 2 Numerical results for Im[c(a,b,c)
J ] vs.

√
s, Re[c(a,b,c)

J ] vs.
√
s and −2Im[c(a,b,c)

J ]/Re[c(a,b,c)
J ] vs.

√
s. The sub figures (a, b, c) are corre-

sponding to Im[c(a,b,c)
J ] and Re[c(a,b,c)

J ] vs.
√
s, respectively. The sub figure (d) shows the results for −2Im[c(X)

J ]/Re[c(X)
J ] vs.

√
s

(4) When
√
s is below the mass-shell, although the decay

widths are exact zero, but the mass-shifts are still
nonzero and the dependence of Re[c(a,b,c)

J ] vs.
√
s

shows non-trivial property.

To show the non-trivial dependence of Re[c(a,b,c)
J ] vs.

√
s

more clearly, we present the dependence of
Re[c(a,b,c)

J (s)]/Re[c(a,b,c)
J (s0)]| vs.

√
s with s0 = 3 GeV

in Fig. 3. The curves in Fig. 3 clearly show that when
√
s

increases from 3 to 4.5 GeV the ratios of the mass shifts
decrease from 1 to 0 at first and then increase from 0 to 0.5.
For the states with the same quantum number, it means that
the corresponding mass shifts are non-linear and can not be
absorbed by some constants.

Experimentally, up to now there are still no definite results
for the branch decay widths �(3P0,1 → DD, DD∗, D∗D∗)
[57–62], this makes it difficult to determine the mass shifts
certainly. The experiments reported that the decay widths
�(X (3915), χc2(3930) → DD, DD∗, D∗D∗) are seen. By
our calculation, we expect that the decay widths �(3P2 →
DD, DD∗, D∗D∗) are zero in the leading order which sug-
gests that the decay widths �(3P2 → DD, DD∗, D∗D∗)

Fig. 3 Numerical results for the dependence of Re[c(a,b,c)
J (s)]/

Re[c(a,b,c)
J (s0)] vs.

√
s

should be much smaller than �(3P0 → DD, D∗D∗) and
�(3P1 → DD∗). A relative larger decay width of a reso-
nance to DD, DD∗, D∗D∗ suggests that it maybe is not a
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pure cc̄(3PJ ) state. These properties are more reliable in the
b quark part and can be tested by the further precise experi-
ments. Furthermore, the similar discussion can be extended
to the S wave states and compared with the similar studies in
Ref. [63,64].

In summary, the nonrelativistic asymptotic behaviors of
the transitions cc̄(3PJ ) → DD, DD∗, D∗D∗ → cc̄(3PJ )

with J = 0, 1, 2 are discussed. We find that the decay widths
�(3P0 → DD∗), �(3P1 → DD, D∗D∗) and �(3P2 →
DD, DD∗, D∗D∗) are exact zero in the leading order of non-
relativistic expansion. For other channels, the ratios between
the branch decay widths and the mass shifts are larger than 5
when the center-of-mass energy is above the threshold. When
below the threshold, the mass shifts are dependent on the
center-of-mass energy nontrivially and can not be absorbed
by a constant.
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5 Appendix: The FIESTA integrations

We define the following functions to refer to the results after
summing the spins and integrating the angles:

P(J, X, n)
de f=

∑
si ,s f

〈J JZ |1s f ; 1m f 〉〈J JZ |1si ; 1mi 〉

×
∫

d�qi d�q f
Y1mi (�qi )Y

∗
1m f

(�q f
)

×(q̂i · q̂ f )
n X, (39)

where X are some functions dependent on q̂i , q̂ f , εp(si ), and

ε∗
p(s f ) with q̂i, f

de f= qi, f /|qi, f |, P(J, X, n) are not depen-
dent on Jz . When J = 0, 1, 2 and n = 0, 1, we have

P(J, εp(si ) · ε∗
p(s f ), 1) = 4π

3
,

P(0, εp(si ) · q̂i ε∗
p(s f ) · q̂ f , 0) = 4π,

P(0, εp(si ) · q̂ f ε∗
p(s f ) · q̂i , 0) = 4π

3
,

P(1, εp(si ) · q̂ f ε∗
p(s f ) · q̂i , 0) = −4π

3
,

P(2, ε(si ) · q̂ f ε∗(s f ) · q̂i , 0) = 4π

3
, (40)

and others are zero.
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