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Abstract We study the reaction e+e− → π0γ based on
a dispersive representation of the underlying π0 → γ γ ∗
transition form factor. As a first application, we evaluate the
contribution of the π0γ channel to the hadronic-vacuum-
polarization correction to the anomalous magnetic moment

of the muon. We find aπ0γ
μ

∣
∣≤1.35 GeV = 43.8(6) × 10−11, in

line with evaluations from the direct integration of the data.
Second, our fit determines the resonance parameters of ω and
φ. We observe good agreement with the e+e− → 3π chan-
nel, explaining a previous tension in the ω mass between
π0γ and 3π by an unphysical phase in the fit function. Com-
bining both channels we find M̄ω = 782.736(24) MeV and
M̄φ = 1019.457(20) MeV for the masses including vacuum-
polarization corrections. Theφ mass agrees perfectly with the
PDG average, which is dominated by determinations from the
K̄ K channel, demonstrating consistency with 3π and π0γ .
For the ω mass, our result is consistent but more precise,
exacerbating tensions with the ω mass extracted via isospin-
breaking effects from the 2π channel.

1 Introduction

The vector mesons ω and φ are narrow states compared to
other hadronic resonances in the low-energy QCD spectrum.
In the case of the ω, this is because two-body decays are
either forbidden by G parity (2π ) or require electromag-
netic interactions (π0γ , ηγ ), so that the dominant decay
proceeds into 3π . In contrast, for the φ a G-parity conserv-
ing two-body decay into K̄ K is possible, but suppressed by
very small phase space, while the decay into 3π is small
due to the Okubo–Zweig–Iizuka rule [1–3]. Accordingly, the
most precise information on the mass of the φ comes from
e+e− → K̄ K [4–8], which indeed dominates the PDG aver-
age [9]. For the determination of the ω mass, the reaction

a e-mail: longbai@hiskp.uni-bonn.de (corresponding author)

e+e− → 3π is the primary source of information [5,10],
but here the three-particle nature of the decay complicates a
reliable extraction of the resonance parameters. In particu-
lar, there is a significant tension with the mass determination
from e+e− → π0γ [11], which together with p̄ p → ωπ0π0

[12] leads to a scale factor S = 1.9 in the PDG average. In
this work, we consider the reaction e+e− → π0γ using a
dispersive representation of the π0 → γ γ ∗ transition form
factor (TFF), which together with our previous work on the
3π channel [13] allows us to present a combined determi-
nation of the ω and φ resonance parameters within the same
framework consistent with the constraints from analyticity,
unitarity, and crossing symmetry as well as low-energy the-
orems.

These constraints, as incorporated in the dispersive rep-
resentation of the TFF [14–16], are not only valuable for a
reliable extraction of resonance parameters, but also define
a global fit function for the cross section that allows one
to check the consistency of the data sets with these gen-
eral principles. Applications to the e+e− → 2π [17–
20] and e+e− → 3π [13] channels have provided such
analyses for the two dominant channels in the hadronic-
vacuum-polarization (HVP) contribution to the anomalous
magnetic moment of the muon aμ. Here, we will study the
e+e− → π0γ channel in the same spirit. Since the total
contribution is about an order of magnitude smaller than the
one of the 3π channel, very large relative changes would
be required to notably influence the Standard Model pre-
diction aSM

μ = 116591810(43) × 10−11 [13,15–17,19–39]
and thus the tension with the BNL measurement aexp

μ =
116 592 089(63) × 10−11 [40]. However, in view of recent
results from lattice QCD [41] that suggest large modifications
of the hadronic cross section at low energies [42,43], any
further corroboration of the phenomenological HVP evalua-
tion, especially for the channels relevant below 1 GeV such
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as π0γ , is certainly worthwhile – in anticipation of improved
measurements at Fermilab [44] and J-PARC [45].

The paper is organized as follows: in Sect. 2 we review
the dispersive formalism for the pion TFF and the e+e− →
π0γ cross section, which is then applied in Sect. 3 to fit the
available data sets. In Sect. 4 we discuss the consequences for
the HVP contribution to aμ, in Sect. 5 the combined analysis
of the ω and φ resonance parameters from e+e− → 3π and
e+e− → π0γ . We close with a summary in Sect. 6.

2 Time-like pion transition form factor and
e+e− → π0γ cross section

Based on the unitarity relation and its crucial building blocks,
a once-subtracted dispersive representation for the time-like
singly-virtual TFF Fπ0γ ∗γ ∗(q2, 0) was constructed in [14],

Fπ0γ ∗γ ∗(q2, 0) = Fπγ γ + 1

12π2

∫ ∞
4M2

π

ds′ q
3
π (s′)(FV

π (s′))∗
s′3/2

×
{

f1(s′, q2) − f1(s′, 0) + q2

s′ − q2 f1(s′, 0)

}

,

(1)

where qπ (s) = √

s/4 − M2
π , FV

π (s) is the pion vector form
factor, and f1(s, q2) is the partial-wave amplitude for γ ∗ →
3π [14,46–48], as a generalization of previous studies of the
ω/φ → π0γ ∗ TFFs [49,50]. In particular, Fπ0γ ∗γ ∗(q2, 0)

was studied in [14] as a first step towards the doubly-virtual
space-like TFF [15,16], which determines the strength of the
pion-pole contribution in a dispersive approach to hadronic
light-by-light scattering [51–54], to demonstrate the consis-
tency between 3π and π0γ data. Similarly, the ω and φ TFFs
become relevant for the description of the left-hand cuts in
the two-pion contributions [55–60].

Fπγ γ denotes the normalization at q2 = 0, as determined
at leading order by the Wess–Zumino–Witten anomaly [61,
62]

Fπγ γ = 1

4π2Fπ

= 0.2745(3) GeV−1. (2)

This value, obtained from the pion decay constant Fπ =
92.28(10) MeV [9], agrees with the recent PrimEx-II mea-
surement of the neutral-pion life time [63], which implies
Fπγ γ = 0.2754(21) GeV−1. The relation between the
e+e− → π0γ cross section and the pion TFF, calculated
from the dispersion relation (1), reads

σ 0
e+e−→π0γ

(q2) = 2π2α3

3

(

q2 − M2
π0

)3

q6

∣
∣Fπ0γ ∗γ ∗(q2, 0)

∣
∣2

,

(3)

where α = e2/(4π) and we neglected the mass of the elec-
tron. Strictly speaking, the dispersion relation (1) applies to
the pure QCD process without further radiative correction,
so that (3) describes the bare cross section σ 0

e+e−→π0γ
(q2)

excluding vacuum-polarization (VP) corrections. Accord-
ingly, the mass parameters for ω and φ extracted from the
fit do not include these VP corrections, in contrast to the
PDG convention, see Sect. 5. We use the VP routine from
[27] to remove VP from the experimental cross sections.

The isoscalar contribution, corresponding to f1(s′, q2) −
f1(s′, 0) in the integrand of (1), was calculated in [14] using
the previously determined partial wave f1(s, q2), where
the normalization function a(q2) was fixed from a fit to
e+e− → 3π data; the isovector part, the last term in (1),
was determined using a finite matching point of 1.2 GeV and
a normalization at q2 = 0 fixed to the chiral anomaly F3π

for the γ → 3π amplitude [64–66]. We will implement the
same constraint here, i.e., including quark-mass corrections
[47,67]

a(0) = F3π

3
× 1.066(10), F3π = 1

4π2F3
π

. (4)

We stress that in contrast to Fπγ γ , whose anomaly-constraint
(2) has been confirmed by PrimEx-II at the level of 0.8%, the
chiral prediction for F3π has only been tested experimentally
with 10% precision, from Primakoff measurements [68] and
π−e− → π−e−π0 [69]. In the remainder of this paper,
we assume that F3π follows the Fπγ γ precedent, so that
the remaining uncertainty in (4), from the quark-mass renor-
malization, becomes subleading compared to other sources
of systematic uncertainty in the dispersive representation of
the TFF. In view of open questions regarding the role of
subleading terms in the chiral expansion of the π0 → γ γ

amplitude [32,70–73], a more stringent test of F3π would
be highly desirable, which could be achieved with data on
γπ− → π−π0 taken in the COMPASS Primakoff program
[74], using the dispersive framework proposed in [47,48].

As already remarked in [14], the normalization function
a(q2) could also be determined by a fit to e+e− → π0γ

instead of the 3π channel. We follow this approach in the
present work and consider an update of this once-subtracted
analysis based on the improved parameterization for a(q2)

developed in [15,16], including a conformal polynomial to
be able to describe the inelastic effects that were found to be
relevant in e+e− → 3π above the φ resonance [13]. For the
details of the calculation of f1(s, q2) we refer to [13,15,16],
but reiterate the free parameters that enter the dispersive rep-
resentation for the normalization function a(q2): apart from
the ω and φ resonance parameters, these are their residues cω

and cφ , as well as, potentially, further free parameters in the
conformal polynomial. For the evaluation of the final disper-
sion relation (1), we choose an integration cutoff siv above
which an asymptotic behavior ∼ 1/s is assumed for both
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Table 1 Summary of the
e+e− → π0γ data sets. For
[87] only data points for√
s < 1.4 GeV are included, as

the cross section in the region
(1.4–2.0) GeV was found to be
consistent with zero. In the last
column we indicate the size of
the systematic errors that we
interpret as a normalization-type
uncertainty and therefore
assume to be 100% correlated

Experiment Region of
√
s (GeV) # Data points Normalization uncertainty

SND 2000 [84] [0.99, 1.03] 12 3.3%

SND 2003 [85] [0.60, 0.97] 30 All systematics

SND 2016 [86] [0.63, 1.35] 60 All systematics

SND 2018 [87] [1.08, 1.35] 5 All systematics

CMD-2 2005 [11] [0.60, 1.31] 46 6.0%

FV
π (s) and f1(s, q2) [75–79]. The isovector part is updated

as well in line with the isoscalar contribution.
The systematic uncertainties of the dispersive representa-

tion are taken into account as follows: the pion vector form
factor FV

π (s) is calculated with different variations of the
Omnès function [80] using different phase shifts [81,82] as
in [16]; in the meantime, the integration cutoffs 	3π in the
solution of the γ ∗ → 3π Khuri–Treiman equations [83] and√
siv in the solution of the pion TFF (1) are varied in the

range (1.8–2.5) GeV; lastly, the asymptotic behavior of the
imaginary part of the conformal polynomial is varied as in
[13]. The central values of the cross sections are obtained by
the best fits to the data sets scanning over the variations of
these quantities. The systematic uncertainties are defined as
the maximum deviations of all the variations from the central
cross sections.

3 Fits to e+e− → π0γ data

3.1 Data sets and normalization uncertainties

In addition to the e+e− → π0γ cross section measurements
[11,84,85] already included in [14], there are two new data
sets, the most accurate new data determined from the whole
data sample of the SND experiment [86] and another one that
explored a new region between 1.4 and 2.0 GeV [87]. The full
data sets that we consider in our analysis are listed in Table 1.
These measurements were performed at the VEPP-2M col-
lider with the SND [84–87] and CMD-2 [11] detectors.

As first observed in [88], a naive treatment of normalization-
type systematic uncertainties would lead to a bias in the
fit. For the data sets in Table 1, the systematic uncertain-
ties of [11,84] are explicitly given in percentages and there-
fore interpreted as normalization uncertainties. Likewise, we
assume that the systematic uncertainties of [85–87] can be
attributed primarily to effects in the same category and thus
treat all the systematics uncertainties as 100% correlated.
Accordingly, we employ the iterative solution strategy intro-
duced in [89] to treat the normalization uncertainties in a
consistent manner and consider both fits with diagonal and

Table 2 Fits to the combined SND data sets [84–87], for diagonal
uncertainties and full covariance matrices. All errors refer to fit uncer-
tainties only

Diagonal Full

χ2/dof 116.9/100 151.3/100

= 1.17 = 1.51

p value 0.12 7 × 10−4

Mω (MeV) 782.55 (3) 782.58 (3)

�ω (MeV) 8.73 (7) 8.68 (6)

Mφ (MeV) 1019.18 (5) 1019.18 (6)

�φ (MeV) 4.24 (16) 4.27 (17)

cω (GeV−1) 2.95 (2) 2.95 (3)

cφ (GeV−1) −0.378 (11) −0.382 (13)

104 × ξ 3.5 (1.3) 4.0 (1.0)

1011 × aπ0γ
μ |≤1.35 GeV 44.05 (24) 44.14 (57)

full covariance matrices to better monitor the role of the cor-
relations, in analogy to the strategy in [13].

3.2 Fits to SND

First, we perform fits to the SND data sets [84–87], with the
results shown in Table 2. We display the best χ2 results for
both the diagonal fit and also the fully correlated one. Only
the fit uncertainties are displayed in Table 2 at this step, as we
will add the systematic uncertainties of our approach later.
Fit errors are already inflated by the scale factor

S =
√

χ2/dof, (5)

to account for potential inconsistencies between the data sets
following the PDG prescription [9].

In contrast to [13], we do not include the ω′(1420) or
other excited vector mesons in the fits since their residues
come out consistent with zero, in such a way that their inclu-
sion does not improve the quality of the fit. This strategy is
consistent with the observation of a negligible cross section
above 1.4 GeV in [87]. Similarly, the data points above the
φ region are scarce, so that additional free parameters in the
conformal polynomial in the parameterization of a(q2) also
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Table 3 Fits to the CMD-2 data set [11]

Diagonal Full

χ2/dof 42.50/40 57.39/40

= 1.06 = 1.43

p value 0.36 0.04

Mω (MeV) 782.53 (14) 782.68 (9)

�ω (MeV) 8.25 (28) 8.41 (19)

Mφ (MeV) 1019.18 (7) 1019.18 (6)

�φ (MeV) 3.90 (21) 3.90 (17)

cω (GeV−1) 2.91 (7) 2.92 (13)

cφ (GeV−1) −0.342 (13) −0.341 (17)

1011 × aπ0γ
μ |≤1.35 GeV 44.88 (99) 44.48 (3.05)

do not improve the fits. Therefore, we will use the conformal
polynomial to implement the chiral low-energy theorem F3π

(with S-wave singularities removed), but do not add addi-
tional free parameters.

The accuracy of the center-of-mass energy determination
of the data set [85] is worse than the accuracy of the ω mass
value. Therefore, an energy-scale bias 
E was introduced in
[85]. A separate fit to [85] indeed produces a smaller ω mass
that is not compatible with the most precise measurement
[86]. Therefore, we allow for an energy rescaling for [85],
√
s → √

s + ξ(
√
s − Mπ0). (6)

The introduced scaling indeed leads to a considerable
improvement of the fits, and its value around ξ ∼ 10−4 comes
out in agreement with the energy-bias uncertainties. Similar
rescalings within the quoted energy uncertainties were also
found to improve the fit quality for the 2π [17] and 3π [13]
channels. In the case of π0γ , the data set from [85] is the
only one for which we see a need for such a rescaling.

We observe that the correlated fit produces larger uncer-
tainties for the parameters and the HVP contribution com-
pared to the diagonal one. Otherwise, the central values of the
parameters of both fits are in good agreement within uncer-
tainties. Besides, we find that the correlated fit has a worse
description than the diagonal fit, which is a general observa-
tion of the iterative fit strategy [89] concerning normalization
uncertainties. In fact, this effect may be overestimated here
because all systematic uncertainties of [85–87] were assumed
to contribute in that category, so that the description could
likely be improved if more details on the systematic uncer-
tainties were available. At present, the relatively large χ2 of
the correlated fit is mainly driven by [87]: a fit to this data
set alone gives a χ2/dof = 88.7/54 = 1.64 and a p value of
0.2%. The fact that the p value drops by another factor of 3
in the combined SND fit thus points to some minor tensions
among [84–87].

Table 4 Fits to the combined data sets as shown in Table 1

Diagonal Full

χ2/dof 173.3/146 238.6/146

= 1.19 = 1.63

p value 0.06 2 × 10−6

Mω (MeV) 782.55 (3) 782.58 (3)

�ω (MeV) 8.71 (7) 8.65 (6)

Mφ (MeV) 1019.20 (4) 1019.21 (4)

�φ (MeV) 4.08 (13) 4.07 (13)

cω (GeV−1) 2.95 (2) 2.93 (3)

cφ (GeV−1) −0.363 (9) −0.358 (10)

104 × ξ 3.5 (1.3) 4.1 (1.0)

1011 × aπ0γ
μ |≤1.35 GeV 44.04 (23) 43.82 (58)

3.3 Fits to CMD-2

Next, we turn to the fits to the CMD-2 data [11]. Although
there is only a single data set, it covers almost the entire
relevant energy region. The results are given in Table 3, in
the same form as the SND fits, the only exception being the
exclusion of the rescaling parameter. For comparison, the fit
uncertainties are also inflated by the scale factor (5).

As for the SND fits, we again find internal consistency
for the parameters of the diagonal and the correlated fits. A
minor difference concerns the mass and width of the ω, which
display relativity large upward shifts once the correlations are
included.

Even once accounting for VP corrections, see Sect. 5, our
result for the ω mass is substantially smaller than in [11],
which quotes M̄ω = 783.20(13)(16) MeV. A key difference
to our formalism is that the vector-meson-dominance ansatz
from [11] (see also [90]) permits a complex phase between
the ω and ρ contributions, which cannot be physical because
it violates analyticity and unitarity, e.g., by introducing an
imaginary part below the respective thresholds. In our fits,
we do not see a conflict with the ω mass extracted from 3π

cross sections, and thus conclude that the result from [11] is
likely affected by the unphysical phase.

Compared to the SND fits, we observe that the width of
the φ comes out appreciably smaller, albeit with rather large
fit uncertainties. This observation will also be reflected in
the determination of the width of the φ in the combined fit
presented in the next section.

3.4 Combined fits

Finally, our combined SND and CMD-2 fit results are pre-
sented in Table 4, including all the data sets listed in Table 1.
We take the correlated full fit as our central value, and define
our systematic uncertainties as the maximum deviations from
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Fig. 1 The final fit to the e+e− → π0γ data sets as listed in Table 1
(with VP removed everywhere), where the gray band indicates the full
uncertainty and the black band indicates the fit uncertainty

the different fit variations discussed in Sect. 2. In all cases, the
uncertainties are statistics dominated, in part because a main
source of systematic uncertainty from the 3π channel [13],
the degree of the conformal polynomial, does not become
relevant here given that the observed cross section becomes
negligibly small around 1.4 GeV, with few data points above
the φ resonance.

The combined fit, although dominated by the SND data,
reflects some inconsistencies between SND and CMD-2.
Most prominently, the downward shift of the width of the
φ in comparison to Table 2 is due to the CMD-2 data [11].
The coupling cφ is also affected and shifted to a smaller value
compared to the SND fits. Comparing the residues cω and cφ

to the 3π fit [13], cω = 2.86(2)(4) and cφ = −0.386(4)(2),
we observe reasonable agreement, which indeed is better for
cω than for cφ . Taken together with the fact that also the φ

width from the CMD-2 π0γ data drives the combined fit
away from the 3π value, we conclude that indeed the inter-
channel consistency is better for the SND data sets. Figure 1
illustrates our final preferred fit, with close-up views of the
ω and φ regions in Fig. 2.

The final result for the ω and φ parameters reads

Mω = 782.58(3)(1) MeV = 782.58(3) MeV,

�ω = 8.65(6)(1) MeV = 8.65(6) MeV,

Mφ = 1019.21(4)(3) MeV = 1019.21(5) MeV,

�φ = 4.07(13)(1) MeV = 4.07(13) MeV, (7)

with systematic errors in the second brackets derived as
described above. We stress that these resonance parameters
do not include VP corrections, see Sect. 5 for a more detailed
discussion.

4 Consequences for the anomalous magnetic moment of
the muon

The HVP contribution to the anomalous magnetic moment
of the muon reads [91,92]

aHVP
μ =

(αmμ

3π

)2
∫ ∞

sthr

ds
K̂ (s)

s2 Rhad(s), (8)

where the R-ratio

Rhad(s) = 3s

4πα2 σ (0)(e+e− → hadrons(+γ )) (9)

is a substitute for the (bare) hadronic cross section and the
kernel function K̂ (s) is known analytically in terms of the
center-of-mass energy s and the muon mass mμ. By conven-
tion, the hadrons in the final state of the cross section include
photons, so that the π0γ channel is actually the first to con-
tribute and sets the integration threshold in (8) to sthr = M2

π0 .
Based on the fits presented in the previous section our cen-
tral result for the HVP contribution from the π0γ channel
becomes

aπ0γ
μ |≤1.35 GeV = 43.8(6)(1) × 10−11 = 43.8(6) × 10−11,

(10)

where the second uncertainty is systematic.1 In comparison
to the most recent direct-data-integration analyses, our result

is in good agreement withaπ0γ
μ |≤1.8 GeV = 44.1(1.0)×10−11

[19], with a slight improvement in the uncertainty thanks
to the incorporation of the general QCD constraints. The

small difference to aπ0γ
μ |≤1.937 GeV = 45.8(1.0) × 10−11

[28] partly originates from the application of the trapezoidal
rule to scarce data in the tails of the ω resonance, simi-
larly to the case of 3π . Higher-order interpolations to the
data combination of [28] indeed move the HVP contribution
towards (10). Our analysis does not support values as low

as aπ0γ
μ |≤2.0 GeV = 40.0(1.6) × 10−11 [93], which is based

on a Breit–Wigner description of ω and φ. The analysis [19]
has updated [26] to account for the threshold contribution

aπ0γ
μ |≤0.6 GeV = 1.2×10−11, which was already included in

[27,28]. It was determined in [94] based upon a combination
of the chiral-anomaly term and ω-meson dominance [95].
This result is in line with our finding for the threshold region,

aπ0γ
μ |≤0.6 GeV = 1.3×10−11. Indeed, the agreement between

the prediction and the cross section of the first few data points

1 We quote the HVP integral up to the last data point in [87] that shows a
nonvanishing cross section, and in the comparison to other work indicate
the energy up to which the sum of exclusive channels is considered.
However, in practice the energy region above 1.35 GeV can simply be
ignored in the π0γ channel, see [87]. An extrapolation of our results
beyond 1.35 GeV suggests that this region contributes less than 0.1 ×
10−11 to the HVP integral.
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Fig. 2 Fit around the ω and φ resonance regions. The black band represents the fit uncertainties, and the gray band indicates the total uncertainty

Table 5 ω and φ resonance parameters from e+e− → 3π [13],
e+e− → π0γ (this work), and their combination. The final uncer-
tainties for Mω and �φ include a scale factor S = 1.2. All parameters
do not include VP corrections, see Table 6 for the comparison to the
PDG parameters

e+e− → 3π e+e− → π0γ Combination

Mω (MeV) 782.631 (28) 782.584 (28) 782.607 (23)

�ω (MeV) 8.71 (6) 8.65(6) 8.69 (4)

Mφ (MeV) 1019.196 (21) 1019.205 (55) 1019.197 (20)

�φ (MeV) 4.23 (4) 4.07 (13) 4.22 (5)

was already observed in [94]. Although these small differ-
ences are negligible at the current level of accuracy required
for HVP, it is reassuring that the dispersive analysis also cor-
roborates current estimates for the π0γ channel, making sig-
nificant changes in HVP in the energy region up to 1 GeV
increasingly unlikely. Other radiative effects beyond π0γ ,
ηγ , and the infrared-enhanced contributions in π+π−γ are
negligibly small compared to the current uncertainty of the
full aHVP

μ , see, e.g., [57].

5 ω and φ resonance parameters

Our final results for the ω and φ resonance parameters as
determined from e+e− → π0γ are contrasted to the results
from e+e− → 3π [13] in Table 5. There is good agreement
throughout, leading to the combination in the last column.
Since the π0γ channel is statistics-dominated for all quan-
tities, see (7), the combination is straightforward despite the
fact that the systematic errors related to the dispersive repre-
sentation are correlated. Likewise, the statistical correlations
among the resonance parameters (and with the residues) from
the respective fits have a negligible impact on the combina-
tion. Mω and �φ require a small scale factor S = 1.2 (defined

in accordance with the PDG conventions [9]). The slight ten-
sion for �φ can be traced back to the CMD-2 data set [11],
see Sect. 3.3. However, we conclude that within uncertainties
the 3π and π0γ channels yield a consistent picture for the ω

and φ resonance parameters.
To be able to compare our results to the PDG conventions,

we need to restore the VP corrections that have been removed
in the definition of the bare cross sections, which we will
denote by a bar over the corresponding quantities. As argued
in [13], this leads to the shifts

M̄ω =
(

1 + e2

2g2
ωγ

)

Mω = Mω + 0.128(3) MeV,

M̄φ =
(

1 + e2

2g2
φγ

)

Mφ = Mφ + 0.260(3) MeV, (11)

where the couplings are related to the respective e+e−
widths, e.g., �ω→e+e− = e4Mω/(12πg2

ωγ ), and the uncer-
tainties have been propagated from the PDG values [9] (with
potential differences to our determinations being higher-
order effects). While otherwise shifts in the widths are neg-
ligible, there is an effect enhanced by ρ–ω mixing

�̄ω = �ω + e2

2g2
ωγ

�ω + M2
ω

�ρ − �ω

e2

g2
ργ

(
e2

g2
ωγ

− 2εω

)

= �ω − 0.06(2) MeV, (12)

where we have assigned a generous uncertainty because the
estimate relies on a narrow-resonance assumption for the ρ.

The resulting parameters, in comparison to the PDG val-
ues, are shown in Table 6. First, one sees that the φ mass
agrees perfectly, with competitive uncertainties. This is an
important observation because it demonstrates consistency
between e+e− → 3π, π0γ and e+e− → K̄ K . The latter
includes the BaBar measurements [6,7], which, in contrast
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Table 6 Comparison of ω and φ resonance parameters from e+e− →
3π, π0γ to the PDG values, including VP corrections

e+e− → 3π, π0γ PDG

M̄ω (MeV) 782.736 (24) 782.65 (12)

�̄ω (MeV) 8.63 (5) 8.49 (8)

M̄φ (MeV) 1019.457 (20) 1019.461 (16)

�̄φ (MeV) 4.22 (5) 4.249 (13)

to all data sets for e+e− → π0γ considered in this work as
well as all the e+e− → 3π data sets relevant for the ω and
φ parameters, have not been taken in energy-scan mode (at
the VEPP-2M collider), but using initial-state radiation. The
φ width also agrees within uncertainties, but not at the level
of accuracy that can be achieved in the K̄ K channel.

For the ω mass, its PDG value is dominated by the
weighted average of determinations from e+e− → 3π

(M̄ω = 782.68(9)(4) MeV [5], M̄ω = 782.79(8)(9) MeV
[10]), e+e− → π0γ (M̄ω = 783.20(13)(16) MeV [11]), and
p̄ p → ωπ0π0 (M̄ω = 781.96(13)(17) MeV [12]), where
the spread among these determinations drives the scale fac-
tor S = 1.9 and thus an uncertainty much larger than we
obtain from e+e− → 3π, π0γ .

As described in Sect. 3.3, we believe that the large value
for the ω mass determined from e+e− → π0γ in [11]
originates from an unphysical phase in the vector-meson-
dominance model used for the extraction. For the p̄ p reac-
tion, the uncertainties are more difficult to assess than in the
e+e− processes because the shape of the background pro-
cesses is unknown and because the width of the ω signal,
� = 38.1(3) MeV, is dominated by the experimental resolu-
tion and much larger than the intrinsic ω width. Energy scans
in e+e− → 3π, π0γ , for which the entire amplitude can be
reconstructed from general principles and whose energy res-
olution lies well below the ω width, should thus yield a much
more reliable probe of the ω resonance parameters.

The ω mass can also be extracted via ρ–ω mixing in
e+e− → 2π , and it has been known for a while [96]
that without further constraints such fits prefer significantly
smaller values for Mω than both the PDG average and our
determination from e+e− → 3π, π0γ . This conclusion was
recently confirmed in [17] within a dispersive approach,
leading to Mω = 781.68(10) MeV, in significant tension
with Table 5. However, given the high accuracy required
in the e+e− → 2π channel, additional imaginary parts
from the radiative channels π0γ , ππγ , etc. may actually
become relevant [97]. Before their impact is better under-
stood, we would thus consider the mass determination from
e+e− → 3π, π0γ to be more reliable.

As for the ω width, our value is consistent with earlier
determinations from the 3π channel (�̄ω = 8.68(23)(10) MeV

[5], �̄ω = 8.68(4)(15) MeV [10]), but lies above the PDG
average by 1.5σ . This tension is partly driven by an extraction
from the reaction pd → 3He ω (�̄ω = 8.2(3) MeV [98]),
but mostly due to an earlier measurement of e+e− → 3π by
the ND collaboration (�̄ω = 8.4(1) MeV [99]). However, it
should be noted that the error quoted in [99] is only statistical,
while the modern data sets [5,10] provide a complete error
estimate. Moreover, without access to the original data for
e+e− → 3π from [99] it is impossible to assess its weight
in global fits to the data base [13]. In such a situation we do
not believe it is adequate to keep the ND measurement in the
average for �ω and would therefore consider our determina-
tion from modern e+e− → 3π, π0γ data sets to be more
reliable than the current PDG average.

6 Summary

We have studied the cross section for e+e− → π0γ in a
dispersive framework, which implements constraints from
analyticity, unitarity, and crossing symmetry as well as low-
energy theorems for the γ → 3π amplitude and the transition
form factor for π0 → γ γ ∗. The relation between this form
factor and the e+e− → π0γ cross section forms the basis
for the subsequent data analysis.

As the next step, we considered the full data sets for
e+e− → π0γ from SND and CMD-2. An iterative fit algo-
rithm was applied to eliminate the D’Agostini bias. Some ten-
sions among different data sets exist and the resulting scale
factor of the global fit turns out to be larger compared to those
of similar analyses of the e+e− → 2π and e+e− → 3π

reactions, which in part can be traced back to assumptions
necessary for the details of the systematic uncertainties. How-
ever, we did not find any data set that needed to be excluded
because of severe tensions nor did we identify problematic
outliers in the data sets.

As a first application, we evaluated the π0γ contribution to
HVP, with our central result given in (10). In general, the out-
come is in good agreement with analyses using a direct inte-
gration of the data, with a slightly reduced uncertainty thanks
to the global fit function defined by the dispersive represen-
tation. In combination with previous work on e+e− → 2π

and e+e− → 3π , the three largest channels below 1 GeV
have now been subject to scrutiny using constraints from
analyticity, unitarity, and low-energy theorems.

Finally, we studied the resulting ω and φ resonance param-
eters first from e+e− → π0γ and then in combination with
e+e− → 3π . Contrary to previous analyses, we find good
agreement between the two channels, suggesting that a pre-
vious tension could be due to unphysical complex phases in a
vector-meson-dominance model employed for the e+e− →
π0γ channel. Comparing the combined determinations to the
current PDG averages, see Table 6, we observe that for the
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φ mass, the value obtained from e+e− → 3π, π0γ agrees
perfectly at a similar level of precision, demonstrating con-
sistency between extractions from e+e− → 3π, π0γ and
e+e− → K̄ K , the latter dominating the PDG average. The
width also comes out consistent, but with larger uncertainty
than from the K̄ K channel. For the ω, we find that the combi-
nation of e+e− → 3π and e+e− → π0γ determines its mass
at a level not far from the φ mass, and argue that the resulting
values both for the ω mass and the width are more reliable
than the current PDG averages. However, the tension with
the ω mass determination from the 2π channel persists, sug-
gesting that an improved understanding of isospin-breaking
effects therein will become necessary.
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