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Abstract The present paper deals with a theoretical model
for interacting Tsallis holographic dark energy (THDE)
whose infrared cut-off scale is set by the Hubble length.
The interaction Q between the dark sectors (dark energy and
pressureless dark matter) of the universe has been assumed
to be non-gravitational in nature. The functional form of Q
is chosen in such a way that it reproduces well known and
most used interactions as special cases. We then study the
nature of the THDE density parameter, the equation of state
parameter, the deceleration parameter and the jerk parameter
for this interacting THDE model. Our study shows that the
universe exhibits the usual thermal history, namely the suc-
cessive sequence of radiation, dark matter and dark energy
epochs, before resulting in a complete dark energy domina-
tion in the far future. It is shown the evolution of the Hubble
parameter for our model and compared that with the lat-
est Hubble parameter data. Finally, we also investigate both
the stability and thermodynamic nature of this model in the
present context.

1 Introduction

Many cosmological observations indicate that our Universe
is now experiencing an accelerated expansion phase [1–5].
A possible candidate to explain this cosmic acceleration is
to consider some exotic matter, dubbed as dark energy (DE)
which consists of approximately 68% of the total energy bud-
get of our universe. However, the origin and nature of this
DE are absolutely unknown. On the other hand, the second
largest component of our universe is the dark matter (DM)
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which takes around 28% of the total energy density of the
universe. Like the DE sector, DM sector is also not very well
understood. Till now, a large number of theoretical models
are taken into account to accommodate the present phase of
acceleration and some excellent reviews on this topic can be
found in [6–8]. However, the problem of the onset and nature
of cosmic acceleration remains an open challenge of modern
cosmology at present.

In this context, holographic dark energy (HDE) is an inter-
esting attempt to solve this problem (for details, see [9–11])
and some of its various scenarios can be found in [12–32]. In
particular, a new HDE model has been proposed by using the
holographic hypothesis and the Tsallis entropy [33], named
Tsallis holographic dark energy (THDE) [34,35]. As a result,
recently, several THDE models have been investigated and
explored in different scenarios with an aim to search for the
dynamics of the universe and one can look into [36–51] for
a comprehensive review.

It is important to mention that observations admit an inter-
action between the dark sectors (DM and DE) of cosmos
which can solve the coincidence problem and the tension in
current observational values of the Hubble parameter [52–
73]. The scenario of interaction between DM and DE is one
of such alternative models, which is the main subject of inter-
est of the present work. Recently, Zadeh et al. [35] investi-
gated the evolution of the THDE models with different IR
cutoffs and studied their cosmological consequences under
the assumption of a mutual interaction between the dark sec-
tors of the universe. Following [35], in this work, we are also
interested in studying the dynamics of a flat FRW universe
filled with a pressureless matter and THDE in an interacting
scenario. In particular, we explore consequences of interact-
ing THDE model in a more general scenario. In our setups,
we study the evolution of our universe by considering an
interaction between DM and THDE whose IR cutoff is the
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Hubble horizon. The nature of the THDE density parame-
ter, the deceleration parameter, the jerk parameter and the
THDE equation of state parameter have also been studied
for the present model. Furthermore, we also investigate the
stability and thermodynamic nature of this particular model
in the present scenario. However, the present work is more
general and also different from the similar work by Zadeh et
al. [35] in different ways. Firstly, in this paper, the functional
form of the interaction term is chosen in such a way that
it can reproduce some well known and most used interac-
tions (including [35]) in the literature for some special cases
(for details, see Sect. 2). Secondly, we study the evolution
of jerk parameter for this general interaction term. We also
plot the Hubble parameter for our model and compare the
result with the latest Hubble parameter data. Additionally,
we go one step further by investigating this scenario taking
into account the thermodynamic considerations. In particu-
lar, we study the nature of the total entropy of the universe
surrounded by a cosmological horizon. For completeness, we
extend the interacting THDE model, in the case where the
radiation fluid is also present.

The paper is organized as follows. In the next section,
we present a THDE model with Hubble scale as IR cutoff.
Additionally, the results of considering a mutual interaction
between the dark sectors of the universe are also investigated.
In Sect. 3, we also explore the thermodynamical properties
of the present model. Finally, in Sect. 4, we summarize the
conclusions of this work.

Throughout the text, the symbol dot indicates derivative
with respect to the cosmic time and a subscript zero refers to
any quantity calculated at the present time.

2 Interacting THDE with Hubble Cutoff

The THDE model is based on the modified entropy-area rela-
tion [33] and the holographic dark energy hypothesis, was
proposed in [34] by introducing the following energy den-
sity

ρD = BL2δ−4 (1)

where B is an unknown parameter and δ denotes the non-
additivity parameter [33,34]. It is worth mentioning that in
the special case δ = 1 the above relation gives the usual HDE
ρD = BL−2, with B = 3c2m2

p, and c2 and mp are the model
parameter and the reduced Planck mass, respectively. Addi-
tionally, for δ = 2 Eq. (1) gives the standard cosmological
constant (�) case ρD = � = constant. In this way THDE
is indeed a more general framework than the standard HDE
and hereafter, we focus on the general case, i.e., δ �= 1 and
δ �= 2. At this stage, since the positive body of DE itself
is not understood yet, as a possible approach to acquire the
clue to reveal the nature of DE, we propose an application

of holography and entropy relations to the whole universe,
which is a gravitational and non-extensive system. In this
work, especially, we consider the Tsallis entropy and we use
the generalized definition of the universe horizon entropy,
given in Eq. (1). If the physical mechanism of holography
and the fundamental relation between gravitation and ther-
modynamics are found in the future studies, it is expected
that the Lagrangian for HDE can be written explicitly and
we can derive the equations of motion for such a physical
system leading to the energy density of DE component in
Eq. (1). Although we do not have a form of the Lagrangian,
through a phenomenological approach, we can acquire the
resultant representation of the DE density. This is the posi-
tive motivation and a kind of justification to investigate HDE
models.

By considering the Hubble horizon as the IR cutoff, i.e.,
L = H−1, the energy density corresponding to THDE is
obtained as

ρD = BH−2δ+4, (2)

In the large scale, our universe is homogeneous and isotropic
and its geometry is best described by the spatially flat
Friedmann–Robertson–Walker (FRW) metric

ds2 = dt2 − a2 (t)
[
dr2 + r2d�2

]
, (3)

where a(t) is the scale factor of the universe. Now, in such a
spacetime, one can write down Friedmann equations as [6]

H2 = 1

3m2
p

(ρm + ρD) (4)

where, H = ȧ
a is the Hubble parameter and an overhead dot

represents derivative with respect to the cosmic time t . Also,
ρm and ρD represent the energy density of pressureless mat-
ter and the THDE density, respectively. The energy density
parameter of THDE and pressureless matter can be expressed
as

�D = ρD

ρc
= B

3m2
p
H−2δ+2 (5)

�m = ρm

ρc
(6)

where, ρc = 3m2
pH

2 denotes the critical energy density.
Now, Eq. (4) can be written as

�m + �D = 1 (7)

Also, the ratio of the energy densities is obtained as

r = ρm

ρD
= �m

�D
(8)
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Moreover, we assume that DM and THDE interact with
each other. Accordingly, the energy conservation equations
become

ρ̇m + 3Hρm = Q (9)

ρ̇D + 3H(1 + ωD)ρD = −Q (10)

where ωD ≡ pD
ρD

denotes the equation of state (EoS) parame-
ter of THDE, pD is the pressure of THDE and Q indicates the
rate of energy exchange between the dark sectors (DM and
THDE). Positive value of Q indicates that there is an energy
transfer from the THDE to the DM, while for Q < 0, the
reverse scenario happens. On the other hand, if Q = 0 (i.e.,
non-interacting case), then the DM evolves as, ρm ∝ a−3.
Hence, the interaction between the dark sectors is indeed a
more general scenario to unveil the dynamics of the universe.
In fact, there are many proposed interactions in the literature
to study the dynamics of the universe (for details, one can
look into [65–74] and references therein), however, the exact
functional form of Q is still unknown to us. From the continu-
ity Eqs. (9) and (10), one can see that the interaction Q could
be any arbitrary function of the parameters ρm , ρD and H .
So, naturally, one can construct various interacting models to
understand the dynamics of the universe in this framework.
For mathematical simplicity, in the present work, we assume
that the interaction is a linear combination of the dark sector
densities given as

Q = 3H
(
b2

1ρm + b2
2ρD

)
, (11)

where, the parameters b1 and b2 are dimensionless constants.
This type of functional forms of Q has been studied recently
by several authors [65–69] and the particular cases b1 = 0,
b2

2 = λ in Ref. [69], b2 = 0, b2
1 = α in Refs. [70,71],

b2
1 = λm

3 , b2
2 = λD

3 in Ref. [65], b1 = b2 = b in Ref. [35]
and b2 = 0, b1 = b in Refs. [40,41]. Therefore, the general
form of Q, given by Eq. (11), covers a wide range of other
popular theoretical models for different choices of b1 and b2.
Here we consider b2

1 and b2
2 instead of b1 and b2 to indicate

that we only focus on the positive values of the coupling
constants. As a result, Q becomes positive and the energy
transfers from THDE to DM which is well consistent with
the Le Chatelier–Braun principle [69]. The simplicity of the
functional form of Q (as given in Eq. (11)), however, makes
it very attractive and simple to study. Indeed, as DE and DM
have not the same energy density (and hence contribution)
within the universe dynamics and as we do not yet know their
nature, it is reasonable to consider different contributions
(b1 �= b2) for these dark components within the interaction
term.

An possible justification of the interaction form (11) may
appear using the teleparallel gravity (TG), based in the
Weitzenböck spacetime [75], which is equivalent to General

Relativity [76,77]. Following Ref. [78] and in TG framework,
we consider the conservation equations in the presence of an
interaction as ∇αT α

β,X = Qβ,X with X = (m, D), and

Qβ,m = −Qβ,D = √
T /6

(
μ̄T α

α,muβ,m + ν̄T α
α,Duβ,D

)
(12)

where T α
β,X = pXδα

β + (ρX + pX )uα
Xuβ,X for a perfect fluid

and uα
X = dxα√−ds2 is the four-velocity of the fluid. Also, T is

the scalar torsion which for the flat FRW space-time is given
by T = −6H2 [79]. Now, one can obtain at the background
level

Q = Q0,c = −Q0,x = H√
6

(μ̄ρc + ν̄(3wx − 1)ρx ) , (13)

and ∇αT α
β,X = −ρ̇X − 3H(ρX + pX ), to recover the energy

conservation Eqs. (9) and (10), one only has to take b2
1 = μ̄

3
√

6

and b2
2 = ν̄(3wD−1)

3
√

6
.

Now, taking the time derivative of Eq. (4), and by using
Eqs. (8), (9) and (10), we get

Ḣ

H2 = −3

2
�D(1 + ωD + r), (14)

Similarly, taking the time derivative of Eq. (2) along with
combining the result with Eqs. (10) and (14), we obtain

ωD = 1 − δ − b2
1

�D
+ b2

1 − b2
2

1 − (2 − δ)�D
. (15)

For δ < 1, we get 2 − δ > 1 which means that there exists
a divergence in the evolution of ωD at the redshift for which
�D = 1

2−δ
. As a result, the δ < 1 case is not suitable in the

present work.
Taking the time derivative of Eq. (5) and by using Eqs. (8),
(14) and (15), we arrive at the following equation for THDE
density parameter, as

�′
D = 3(δ − 1)�D

[
1 − �D + b2

1�D − b2
1 − b2

2�D

1 − (2 − δ)�D

]
,

(16)

where �′
D = d�D

d(ln a)
.

Now, for simplicity, we re-expressed Eq. (5) as

H2 =
(

3m2
p

B
�D

) 1
1−δ

,

= H2
0

(
�D

�0
D

) 1
1−δ

, (17)

which implies,

h = H

H0
=

(
�D

�0
D

) 1
2(1−δ)

, (18)
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where, h is the normalized Hubble parameter, �0
D is the

present THDE density parameter and H0 =
(

3m2
p

B �0
D

) 1
2(1−δ)

,

denotes the present value of H . Later, using Eq. (16) along
with the above equation, we try to show the evolution of H
for this model and will compare it with that of observational
Hubble parameter data.
The deceleration parameter is defined as

q = − ä

aH2 = −1 − Ḣ

H2 , (19)

which is an important cosmological parameter to investigate
the expansion history of the universe. In particular, q < 0
indicates accelerated (ä > 0) expansion phase of our uni-
verse, whereas q > 0 indicates a decelerated phase (ä < 0).
In our model, q evolves as

q = (1 − 2δ)�D + 1 − 3b2
1 + 3b2

1�D − 3b2
2�D

2[1 − (2 − δ)�D] . (20)

It is well known that the jerk parameter, a dimensionless
third derivative of the scale factor with respect to cosmic
time, provides a comparison between different DE models
and the �CDM ( j = 1) model. It is given by [80–82]

j =
d3a
dt3

aH3 = q(2q + 1) + (1 + z)
dq

dz
. (21)

Finally, in order to estimate the stability of the model we
consider the square of sound speed given as

v2
s = dpD

dρD
= ωD + ω̇D

ρD

ρ̇D
. (22)

Using then Eq. (10) along with Eqs. (15) and (16), the above
equation can be re-expressed as

v2
s = b2

1

(δ − 2)�D(1 + �D(δ − 2))2

+
[
1 − b2

2 − δ + b2
1(1 + δ) + �D(δ − 1 − b2

1 + b2
2)

]

(1 + �D(δ − 2))2 . (23)

The sign of v2
s is important to specify the stability of back-

ground evolution. v2
s > 0 (v2

s < 0) indicates a stable (unsta-
ble) model. It is important to note here that the expressions of
q, ωD , �D and v2

s are similar to the results of [35] for the spe-
cial choice, b1 = b2 = b. On the otherhand, if b1 = b2 = 0,
then the Eqs. (15), (20), (16) and (23) match to the relations
derived in [34]. As discussed earlier, thus the present work
is more general in the literature.

We plot the evolutionary trajectories for different cases of
Tsallis parameter δ and interaction terms b1 and b2. For the
initial condition �0

D = 0.73, the evolutions of �D , ωD , q, j
and H , as a function of z, have been plotted in Figs. 1, 2, 3, 4
and 5, respectively. From the upper panel of Fig. 2, one can
see that ωD remains always in between −1 < ωD < − 1

3 at

Fig. 1 The evolution of the THDE density parameter �D , as a func-
tion of z, is shown for the present model considering �0

D = 0.73 and
different values of b2

1, b2
2 and δ, as indicated in each panel

present, as expected. However, it crosses the phantom line
(ωD < −1) in the near future as the value of the parameter
pair (b2

1, b
2
2) increases. We also observe from the lower panel

of Fig. 2 that the interacting THDE model can lie in the
quintessence or in the phantom regime according to the value
of δ. However, for the case δ > 2, ωD approaches −1 as
z → −1, which means that the THDE model mimics the
cosmological constant behavior in the far future.

The evolution of q(z), as a function of z, has been plotted
in Fig. 3. From this figure, it is clear that our model can
describe the current accelerated universe, and the transition
redshift zt (i.e., q(zt ) = 0) from the deceleration phase to an
accelerated phase occurs within the intervals [0.637, 0.962]
(for upper panel) and [0.776, 0.889] (for lower panel), which
are in good agreement with the results, 0.5 < zt < 1, as
reported in [81–90]. The evolution of j (z) has also been
plotted in Fig. 4. It is observed that j stays positive and lies
within (0.52–0.58) at late time, and further it tends to unity
(or �CDM model) as z → −1. This is an interesting result of
the present analysis. In Fig. 5, we have shown the evolution
of H (Eq. (18)) for the present model and compared it with
the data points for H(z) (within 1σ error bars) which have
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Fig. 2 Evolution of ωD as a function of z is shown using �0
D = 0.73

and different values of b2
1, b2

2 and δ, as indicated in each panel

been obtained from the latest compilation of 41 data points
of Hubble parameter measurements (for details, see [91,92]).
We observed from Fig. 5 that for δ > 2, the model reproduces
the observed values of H(z) quite well for each data point.
Furthermore, we also checked that the nature of the evolution
of H(z) is hardly affected by a small change in the values of
the parameters (b2

1, b2
2, δ).

For understanding the classical stability of our model, we
also plot the square of sound speed in Figs. 6 and 7. It has
been found from Fig. 6 that the model is unstable (v2

s <

0). However, the model is stable, i.e., v2
s > 0, for δ > 2

(see Fig. 7) and this case is not analyzed in [35]. Thus, the
stability of the interacting THDE model crucially depends
on the choice of the parameter δ.

2.1 Cosmological evolution including radiation

For completeness, in this section we extend the aforemen-
tioned scenario of the interacting THDE model, in the case
where the radiation fluid is also present. If ρr is energy den-
sity of the radiation fluid, then the Friedmann equation (4)
becomes

H2 = 1

3m2
p

(ρm + ρD + ρr ) , (24)

Fig. 3 The evolution of the deceleration parameter q vs. z, is shown
for �0

D = 0.73 and different values of b2
1, b2

2 and δ, as indicated in each
panel. Also, the horizontal line denotes q(z) = 0

Fig. 4 The evolution of the cosmic jerk parameter j (z) is shown for
δ = 1.4, �0

D = 0.73 and different values of b2
1 and b2

2, given in the
upper panel of Fig. 1

If we consider radiation to be decoupled from other two com-
ponents (THDE and DM), then the conservation equation for
radiation can be written as

ρ̇r + 4Hρr = 0, (25)

123



974 Page 6 of 12 Eur. Phys. J. C (2020) 80 :974

Fig. 5 The evolution of H(z), as given in Eq. (18), is shown by con-
sidering �0

D = 0.73 and different values of the parameters (δ, b2
1, b2

2) ,
as indicated in each panel. In this plot, the black dots correspond to the
H(z) data consisting 41 data points with 1σ error bars [91,92]. Also,
the latest measurement of H0 is taken from [93]

Fig. 6 Evolution of v2
s as a function of z is shown for δ = 1.4, �0

D =
0.73 and different values of b2

1 and b2
2, as indicated in panel

Defining the following dimensionless density parameter

�r = ρr

ρc
= �r0(1 + z)4, (26)

Fig. 7 Evolution of v2
s as a function of z is shown for same values of

b2
1, b2

2 and �0
D as given in Fig. 6. This plot is for δ = 2.01

together with the dimensionless density parameters �m and
�D , we find that Friedmann equation (24) can be rewritten
as

�m + �D + �r = 1, (27)

Now, differentiating the Friedmann equation (24) and using
Eqs. (9), (10), (25) and (27), we obtain

Ḣ

H2 = −(1 + q) = 1

2
[�m + �D(1 − 3ωD)] − 2, (28)

In the case where radiation is present, Eq. (15) now extends
to

ωD = �D(1 − δ + 3(2 − δ)�r ) + (b2
1 − b2

2)�D + b2
1(�r − 1)

�D(1 + (δ − 2)�D)
.

(29)

In this case, the following differential equation for �D can
be obtained as

�′
D = 3(δ − 1)�D

[
4 − 3�m − 4�D − b2

1�m − b2
2�D

1 − (2 − δ)�D

]
.

(30)

In order to find the behavior of THDE density parameter,
we solve the above equation using numerical methods. To
this aim we use Eqs. (26) and (27) and perform numerical
integration. Figure 8 shows the evolution of density param-
eters for THDE, matter and radiation. It is evident from this
figure that the evolution of universe started from the radia-
tion dominated epoch followed by the matter dominated era.
The universe enters the DE dominated epoch at transition
redshift zt where the deceleration parameter vanishes. This
is well consistent with the usual thermal history of the uni-
verse. The upper panel in Fig. 9 presents numerical solution
to Eq. (30) where we observe that THDE density parame-
ter increases monotonically to unity as the universe evolves
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Fig. 8 Upper panel: The evolution of the density parameters �D (red
line), �m (black line) and �r (dashed line) as a function of z is shown
for the present model considering �0

D = 0.73, �r0 = 2.47 × 10−5,
b2

1 = 0.15, b2
2 = 0.06 and δ = 2.1, as indicated in each panel

Fig. 9 Upper panel: The evolution of �D versus redshift parameter
z for �0

D = 0.73, �r0 = 2.47 × 10−5, b2
1 = 0.03 and b2

2 = 0.01.
The dashed (solid) black and gray curves represent evolution of �D
for δ = 1.4 and δ = 1.55, respectively, when radiation fluid is present
(absent) and the dashed red (solid light blue) curve represents evolution
of �D for δ = 2.2 when radiation fluid is present (absent). Lower panel:
Evolution of the difference between THDE density parameters with and
without considering radiation as a function of redshift and δ parameter

Fig. 10 The evolution of ωD versus redshift parameter z for �0
D =

0.73, �r0 = 2.47 × 10−5, b2
1 = 0.03, b2

2 = 0.01, δ = 1.4 (black
curves), δ = 1.55 (gray curves), δ = 2.0 (red curves) and δ = 2.2 (blue
curves). A dashed (solid) curve represents the corresponding evolution
of �D when radiation fluid is present (absent)

to late times (z → −1). From black curves we see that the
higher the redshift, the greater the difference between two
curves. This is due to the fact that the effects of radiation
term will be more obvious at high redshifts. However, as we
increase the value of δ parameter, the magnitude of difference
between these two curves (��D = �withot rad

D − �with rad
D ) is

reduced and thus the larger the value of δ the lesser the effects
of radiation term in the evolution of THDE density param-
eter, see the family of gray, blue and red curves and also
the behavior of ��D as shown in the lower panel. In Fig.
10 we plotted for the equation of state parameter of THDE
as given in Eq. (29). We observe that the THDE can act as
a phantom or non-phantom material during the evolution of
the universe and the corresponding redshift intervals for such
behavior depends crucially on δ parameter. For example, in
the interval where transition occurs, i.e., 0.5 < zt < 1, the
THDE can act as a fluid with phantom characteristics (see
blue and red curves) and as a non-phantom fluid (see black
and grays curves). We also note that as we increase the value
of δ the solid and dashed curves coincide. The upper panel in
Fig. 11 shows the behavior of deceleration parameter against
redshift where we observe that the universe evolves from an
early decelerated phase, i.e., before the transition redshift,
towards a late accelerated regime. We can observe that the
transition redshift, zt , depends on the values of δ parameter
(see the middle panel) in such a way that, as this param-
eter increases, zt increases too, until reaching a maximum
value after which for larger values of δ, the transition redshift
decreases monotonically to a certain nonzero value. In the
lower panel we have plotted for differences between deceler-
ation parameter with and without considering radiation term
(�q(z, δ) = q(z)without rad −q(z)with rad) in terms of the red-
shift and δ parameter. We observe that the greater the values
of δ parameter, the smaller the values that �q assumes. It
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Fig. 11 Upper panel: The evolution of q versus redshift parameter z for
�0

D = 0.73, �r0 = 2.47 × 10−5, b2
1 = 0.03, b2

2 = 0.01, δ = 1.4 (black
curves) and δ = 2.2 (blue curves). A dashed (solid curve) represents the
corresponding evolution of deceleration parameter when radiation fluid
is present (absent). Middle panel: Transition redshift against δ param-
eter for the same values of model parameters as above figure. Lower
panel: The behavior of the difference between deceleration parameters
with and without considering radiation as a function of redshift and δ

parameter

also decreases (increases) at later (earlier) times. Figure 12
shows the behavior of jerk parameter against redshift where
we observe that this parameter stays positive for both cases,
i.e., with and without considering radiation term and we have

Fig. 12 The evolution of jerk parameter versus redshift for�0
D = 0.73,

�r0 = 2.47 × 10−5, b2
1 = 0.03, b2

2 = 0.01, δ = 1.4 (upper panel) and
δ = 2.2 (lower panel). In each panel, the dashed (solid) curve represents
the corresponding evolution of j when radiation fluid is present (absent)

j → 1 at late times. However, at higher redshifts, the contri-
bution due to radiation terms dominate and it is then expected
that the two curves deviate as the redshift increases. Finally,
Fig. 13 presents the behavior of square of sound speed against
redshift where we observe that for δ > 2 we have v2

s > 0 and
thus the model is classically stable, see the lower panel. Also
the radiation term becomes important at high redshift and the
two curves depart from each other as the redshift increases.
However, as the upper panel shows, when the effects of radi-
ation are taken into account, the model can be classically
stable at early times (higher redshifts) and becomes unstable
as the universe evolves to later times.

3 Thermodynamics of interacting THDE

In this section, we derive the rate of change of the total
entropy and then examine the validity of generalized sec-
ond law of thermodynamics. It is well known that thermody-
namical analysis of the gravity theory is an exciting research
topic in the cosmological context and the thermodynami-
cal properties which hold for a black hole are equally valid
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Fig. 13 The evolution ofv2
s versus redshift parameter z for�0

D = 0.73,
�r0 = 2.47 × 10−5 and same values of b2

1 and b2
2 as given in Fig. 6.

The upper panel is plotted for δ = 1.4, while the lower one is plotted
for δ = 2.01. In each panel, the dashed (solid) curve represents the
corresponding evolution of v2

s when radiation fluid is present (absent)

for a cosmological horizon [94–107]. In addition, the first
law of thermodynamics which holds in a black hole horizon
can also be derived from the first Friedmann equation in the
FRW universe when the universe is bounded by an apparent
horizon. This provides well motivation to select the apparent
horizon as the cosmological horizon in order to examine the
thermodynamic properties of any cosmological model. Moti-
vated by the above arguments, here, we have considered the
universe as a thermodynamic system that is bounded by the
cosmological apparent horizon with the radius [99]

rh =
(
H2 + k

a2

)−1/2

. (31)

For a spatially flat universe (k = 0), the above equation
immediately give

rh = 1

H
, (32)

which is the Hubble horizon.
If we consider S f and Sh are the entropy of the fluid and
the entropy of the horizon containing the fluid, then the total
entropy (S) of the system can be expressed as

S = S f + Sh . (33)

According to the laws of thermodynamics, like any isolated
macroscopic system, then S should satisfy the following rela-
tions

Ṡ = dS

dt
≥ 0 and S̈ = d2S

dt2 < 0. (34)

In this context, it is important to mention that the generalized
second law (GSL) of thermodynamics and thermodynamic
equilibrium (TE) refer to the inequalities Ṡ ≥ 0 and S̈ < 0
respectively. Furthermore, the GSL should be true throughout
the evolution of the universe, while the TE should hold at least
during the final phases of its evolution. We shall now examine
the validity of GSL of thermodynamics in the present context.

Now, the entropy of the horizon Sh can be derived as [33,
34],

Sh = γ Aδ = γ (4π)δr2δ
h , (35)

where, γ is an unknown constant and δ denotes the non-
additivity parameter, as mentioned in Eq. (1). Here, A =
4πr2

h and rh are the surface area and radius of the apparent
horizon respectively. It is important to note here that for δ = 1
and γ = 1

4G (in units where � = kB = c = 1), the expression
(35) gives the usual Bekenstein entropy [97,103]. Also, the
temperture of the apparent horizon is given by the relation
[103]

Th = 1

2πrh
. (36)

As previously mentioned, we considered the THDE, DM
and radiation as the components in the energy budget, so we
can write

S f = SD + Sm + Sr , (37)

where, SD , Sm and Sr represent the entropies of the THDE,
DM and radiation respectively, and T is the temperture of the
composite matter inside the horizon. Therefore, the first law
of thermodynamics (TdS = dE + pdV ) can be written for
the individual matter contents in the following form

TdSD = dED + pDdV, (38)

TdSm = dEm + pmdV = dEm, (39)

TdSr = dEr + prdV, (40)

where V = 4
3πr3

h , is the horizon volume. Also, ED =
4
3πr3

hρD , Em = 4
3πr3

hρm and Er = 4
3πr3

hρr represent the
internal energies of the THDE, DM (pm = 0) and radiation
(pr = 1

3ρr ) respectively. Now, differentiating equations (35),
(38)–(40) with respect to time, we obtain
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Ṡh = 2γ δ(4π)δr2δ−1
h ṙh,

ṠD = 4 π pD r2
h ṙh + ĖD

T
,

Ṡm = Ėm

T
,

Ṡr = 4 π pr r2
h ṙh + Ėr

T
, (41)

Lastly, a crucial asumption in this context is that the fluid tem-
perture T should be equal to that of the horizon temperture
Th , otherwise the energy flow would deform this geometry
(for details, see [69,103–107]). Along with this assumption
and using Eq. (41), we arrive at the expression

Ṡ = ṠD + Ṡm + Ṡr + Ṡh

= 2π

G

Ḣ

H5

[
Ḣ + H2 − γGδ

π
(4π)δH4−2δ

]
. (42)

It deserves to mention here that the above result holds inde-
pendently of the interaction form Q. For δ = 1 and γ = 1

4G ,
the expression (42) reduces to the case of usual Bekenstein
entropy given by

Ṡ = 2π

G

Ḣ2

H5
, (43)

which is always positive definite irrespective of the functional
forms of H . This fact proves the validity of the GSL of ther-
modynamics at all cosmological times. In fact, the relation
(43), in units of 8πG = 1, has already been established in
the context of interacting DE, where DE, DM and radiation
are inteacting with each other [105,106].

However, it is evident from Eq. (42) that for the present
model, the GSL will be valid if either (i) Ḣ > 0 and[
Ḣ + H2 − γGδ

π
(4π)δH4−2δ

]
> 0 or (ii) Ḣ < 0 and[

Ḣ + H2 − γGδ
π

(4π)δH4−2δ
]

< 0. Hence, the total entropy

S is not necessarily an increasing function of time, and the
GSL of thermodynamics may be violated, depending on evo-
lution of the universe.

4 Conclusions

In this paper, we have studied an accelerating cosmological
model for the present universe which is filled with DM and
THDE. The DM is assumed to interact with the THDE whose
IR cut-off scale is set by the Hubble length. As already dis-
cussed in Sect. 2, the functional form of Q is chosen in such
a way that it reproduces well known and most used interac-
tions in the literature for some specific values of the model
parameters b1 and b2 [35,40,41,65,69–71].

In our setups, the behavior of various quantities, e.g., �D ,
ωD , q, j , H and v2

s have been studied during the cosmic evo-

lution. We have also found that the case δ > 2 can produce
suitable behavior for the parameters �D , ωD , q and v2

s , but
this case is not analyzed in [35]. It is observed that the Tsallis
parameter δ significantly affects the THDE equation of state
parameter, and according to its value it can lead it to lie in
the phantom regime or in the quintessence regime during the
evolution, before it asymptotically stabilizes in the cosmo-
logical constant value at future. The evolution of q shows that
the universe is decelerating at early epoch and accelerating
at present epoch. This explains both the observed growth of
structures at the early times and the late time cosmic accel-
eration measurements. Also, the transition between the DM
era and the THDE era takes place within the redshift interval
[0.637,0.962], which are in good compatibility with several
recent studies [81–90]. It is also observed that j stays positive
and approaches to the �CDM ( j = 1) model as z → −1.
Further, we studied the thermodynamic nature of the universe
for this model. The basic motivation was to verify whether
our model fulfills the thermodynamical requirements of the
expanding universe. Our study shows that for Bekenstein
entropy (δ = 1), the GSL of thermodynamics is always sat-
isfied. However, the GSL of thermodynamics may be violated
for δ �= 1, depending on evolution of the universe.

Furthermore, we noticed that the stability of our model
against small perturbations during the cosmic evolution, cru-
cially depends on the choice of the parameter δ (see Figs. 6
and 7). Therefore, we conclude that for the deep understand-
ing of behavior of interacting THDE, more investigations
should be done. In this context, it deserves to mention here
that Sharma et al. [108] recently explored an interacting
THDE model (with b2

1 = b2
2 = b2) in the framework of

a non-flat universe and also by considering apparent horizon
as IR cutoff from the statefinder and ωD − ω′

D pair view-
point. They showed the evolution of q, for different Tsallis
parameter δ and b2 and also distinct spatial curvature contri-
butions corresponding to the flat, closed and open universes,
respectively. Moreover, they found the values of the transi-
tion redshift for any spatial curvature, however the difference
between them is minor and the transition from decelerated
phase to accelerated phase is fully consistent with the obser-
vational data. In another recent work, Papagiannopoulos et
al. [109] studied the dynamical properties of a large body of
varying vacuum cosmologies for which DM interacts with
vacuum. In particular, they investigated the existence and the
stability of cosmological solutions by performing the crit-
ical point analysis. Later, Panotopoulos et al. [110] studied
three interacting dark energy models utilizing dynamical sys-
tem tools and statefinder analysis, which have the potential
to discriminate between various dark energy models. More-
over, the study of THDE model in a non-flat universe within
the framework of dynamical Chern–Simon modified gravity
has been done in [111] where the authors have found com-
patibility of Hubble parameter and cosmological evolution of
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Fig. 14 The evolution of the THDE density parameter �D , as a func-
tion of z, for �0

D = 0.73, b2
1 = 0.011, b2

2 = 0.01 and δ = 1.4. The
values of curvature density parameter has been extracted from the data
provided in [113]

deceleration parameter with present day observational data.
Work along this line has been also extended to modified grav-
ity theories such as Brans–Dicke theory [112]. In this regard
if we consider a non-flat FRW spacetime, Eq. (16) will be
modified as follows

�′
D = (δ − 1)�D

[
3 + 3b2

1(�D − 1) − 3�D(1 + b2
2) + 2�k

1 + �D(δ − 2)

]
,

(44)

where �k = k/a2H2 is the density parameter of spatial cur-
vature. In Fig. 14 we have plotted for the behavior of THDE
density parameter against redshift where we observe that the
overall behavior of this parameter in flat case is close to the
non-flat cases. However, for z > 0 and �k > 0, the THDE
density parameter assumes lesser values in comparison to the
flat case while �D for negative spatial curvature is greater
than the flat one. As the universe evolves to the present time,
the position of the curves with negative and positive spatial
curvature changes and at the late times, the THDE density
parameter for �k > 0 dominates the case with �k < 0 and
the flat one.

It is therefore reasonable to examine the results of present
study by following the methods as presented in [108–110].
This also helps us to find out possible differences between
flat and non-flat cases in a more concrete way. In a follow-up
study, we would like to study the model by considering other
IR cutoffs and some non-linear interaction between the dark
sectors, which may modify the properties of THDE.
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