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Abstract In the study of perturbations around black hole
configurations, whether an external source can influence the
perturbation behavior is an interesting topic to investigate.
When the source acts as an initial pulse, it is intuitively
acceptable that the existing quasinormal frequencies will
remain unchanged. However, the confirmation of such an
intuition is not trivial for the rotating black hole, since the
eigenvalues in the radial and angular parts of the master equa-
tions are coupled. We show that for the rotating black holes,
a moderate source term in the master equation in the Laplace
s-domain does not modify the quasinormal modes. Further-
more, we generalize our discussions to the case where the
external source serves as a driving force. Different from an
initial pulse, an external source may further drive the system
to experience new perturbation modes. To be specific, novel
dissipative singularities might be brought into existence and
enrich the pole structure. This is a physically relevant sce-
nario, due to its possible implication in modified gravity. Our
arguments are based on exploring the pole structure of the
solution in the Laplace s-domain with the presence of the
external source. The analytical analyses are verified numeri-
cally by solving the inhomogeneous differential equation and
extracting the dominant complex frequencies by employing
the Prony method.

1 Introduction

The physical content regarding perturbations in a black hole
spacetime can be viewed as reminiscent of a damped har-
monic oscillator. Due to the dissipative nature of the system,
the frequencies of the oscillation are usually complex. It is
well-known that for a harmonic oscillator, its natural frequen-
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cies are independent of the specific initial pulse. However,
when a sinusoidal driving force is applied, quite the contrary,
the frequency of the steady-state solution is governed by that
of the external force. This indicates the distinct characteris-
tics between the initial pulse and the external driving force.
Not surprisingly, these concepts can be explored analogously
in the context of black hole perturbations. In fact, the problem
of black hole quasinormal mode [1–5] is more sophisticated.
As an open system, the dissipation demonstrates itself by
ingoing waves at the horizon or the outgoing waves at infinity
in asymptotically flat spacetimes, which subsequently leads
to energy loss. Subsequently, for a non-Hermitian system,
the relevant excited states are those of quasinormal modes
with complex frequencies. Besides, the boundary condition
demands more strenuous efforts, as the solution diverges at
both spatial boundaries.

For black hole quasinormal modes, most studies concern
the master equation without any explicit external source in the
time-domain. In other words, the master equation in the time-
domain is a homogeneous equation, where the initial pertur-
bation pulse furnishes the system with an initial condition. In
the Laplace s-domain, however, the initial condition is trans-
formed to the r.h.s. of the equation, so that the resultant ordi-
nary second-order differential equation becomes inhomoge-
neous. Nonetheless, one intuitively argues that the resultant
source term in the s-domain is of little physical relevance,
as it does not affect the existing quasinormal modes. Also,
we note that the above scenario is largely related to the mat-
ter being minimally coupled to the curvature in Einstein’s
general relativity in spherical symmetry. In the Kerr black
hole background, the radial part of the master equation is not
a single second-order differential equation. Its eigenvalue is
coupled to that of the angular part of the master equation,
and therefore, it is not obvious why the initial pulse will
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not influence the quasinormal frequencies of the Kerr black
holes. Further investigation is called for.

Moreover, motivated mainly by the observed accelerated
cosmic expansion, theories of modified gravity have become
a topic of increasing interest in the last decades. Among
many promising possibilities, the latter includes scalar–
tensor [6,7], vector–tensor [8,9], and scalar–vector–tensor
[10] theories. There, the matter field can be non-minimally
coupled to the curvature sector, and therefore, one might
expect the resultant master equations in the time-domain
to become inhomogeneous. As an example, the degenerate
higher-order scalar–tensor (DHOST) theory [7,11,12] may
admit “stealth” solutions [13–16]. The latter does not influ-
ence the background metric due to its vanishing energy–
momentum tensor [17]. The resultant metric differs from the
Kerr one by dressing up with a linearly-time dependent field.
Indeed, as it has been demonstrated [18,19], under moder-
ate hypotheses, the only non-trivial modification that can be
obtained is at the perturbation level. In this regard, the metric
perturbations in the DHOST theories have been investigated
[20–22] recently. It was shown that the equation of motion for
the tensorial perturbations are characterized by some intrigu-
ing features. To be specific, the scalar perturbation is shown
to be decoupled from those of the Einstein tensor. This result
leads to immediate simplifications, namely, the time-domain
master equations for the tensor perturbations possess the form
of linearized Einstein equations supplemented with a source
term. The latter, in turn, is governed by the scalar perturba-
tion. Therefore, it is natural to expect that the study of the
related quasinormal modes may provide essential informa-
tion on the stealth scalar hair, as well as the properties of
the spacetime of the gravity theory in question. Furthermore,
as an external driving force affects the harmonic oscillator,
the external source is expected to trigger novelty. One phys-
ically relevant example related to the external field source is
a quench, introduced to act as a driving force to influence
the system [23,24]. For instance, a holographic analysis of
quench is carried out in Ref. [25], where a zero mode, remi-
niscent of the Kibble–Zurek scaling in the dual system, was
disclosed. In particular, the specific mode does not belong to
the original metric neither the gauge field, it is obtained via
a time-dependent source introduced onto the boundary.

The present work is motivated by the above intriguing
scenarios and aims to study the properties of quasinormal
modes with external sources in the time-domain. To be spe-
cific, we will investigate the case when the master equation
in the time-domain is inhomogeneous. In order to show the
influences in perturbation behaviors caused by different char-
acteristics of the source, we first concentrate our attention
on the case where the source takes on the role of an initial
pulse. Intuitively the quasinormal frequencies should not be
affected by such an initial pulse source. We will confirm that
such intuition holds not only for static spherical black hole

backgrounds but also for rotating configurations. It is espe-
cially not straightforward to confirm such intuition for rotat-
ing case, since the eigenvalues of the radial and angular parts
of the master equation are coupled, which makes the origi-
nal arguments based on contour integral invalid. Moreover,
in comparison to the case of a driven harmonic oscillator, it
is meaningful to examine further the non-trivial influences
on the perturbation caused by external source terms. We will
show that different from the initial pulse source, the external
field introduced to the system may bring additional modes
to the perturbed system. This is because the external source
term can introduce dissipative singularities in the complex
plane, which results in novel modes in the system.

The organization of the paper is as follows. In the follow-
ing section, we first discuss the solution of a specific driven
harmonic oscillator. Then in Sect. 3, we generalize to a rigor-
ous discussion on black hole quasinormal models in terms of
the analysis of the pole structure of the associated Green func-
tion in the Laplace s-domain. We concentrate on the effects
of the source on the perturbated system as the initial pulse. In
Sect. 3.1, we confirm the physical intuition on the influence
of the initial pulse in the perturbation around static spheri-
cal black hole backgrounds. In Sect. 3.2, we present a proof
to support the intuition on the initial pulse source effect on
perturbation system in rotating configurations. In Sect. 4, we
extend our discussions to the external source influence on
the perturbation system generated by the external field. We
show that the external source term may induce additional
quasinormal frequencies due to its modifications to the pole
structures of the solution. We present numerical confirmation
to support our analytic arguments in Sect. 5. The last section
is devoted to further discussions and conclusions.

2 The quasinormal frequencies of a vibrating string
with dissipation

As characterized by complex natural frequencies, a damped
oscillator is usually employed to illustrate the physical con-
tent for the quasinormal oscillations in a dissipation system.
Moreover, regarding a dissipative wave equation, a vibrating
string subjected to a driven force is an appropriate analogy.
To illustrate the main idea, the following derivations con-
cerns a toy model investigated recently by the authors of Ref.
[21]. In this model, the wave propagating along the string is
governed by the following dissipative wave equation with a
source term, namely,

∂2�

∂x2 − ∂2�

∂t2 − 2

τ

∂�

∂t
= S(t, x), (1)

where the the string is held fixed at both ends, and there-
fore the wave function �(t, x), as well as the source S(t, x),
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satisfies the boundary conditions

�(t, 0) = �(t, L) = 0

S(t, 0) = S(t, L) = 0, (2)

respectively, where L denotes the length of the string. Here,
the relaxation time τ = const. carries out the role of a sim-
plified dissipation mechanism.

If the source term vanishes, � is governed by the super-
position of the quasinormal oscillations

�(t, x) =
∑

n

An sin(nπx/L)e−iωn t , (3)

with complex frequencies ωn given by

ω±
n τ ≡ −i ±

√

n2 π2τ 2

L2 − 1. (4)

With the presence of the source term, it is straightforward
to verify that the formal solution of the wave Eq. (1) reads

�(t, x) = −
∑

n

∫ ∞

−∞
dω

S (ω, n) sin(nπx/L)e−iωt

n2π2/L2 − ω2 − 2iω/τ
, (5)

where we have conveniently expanded the source term
S(t, x) in the form

S(t, x) =
∑

n

∫ ∞

−∞
dω sin(nπx/L)e−iωtS (ω, n). (6)

We note that the integral range for the variable ω is from
−∞ to ∞, as it originates from a Fourier transform. Subse-
quently, for t > 0, according to Jordan’s lemma, one chooses
the contour to close the integral around the lower half-plane.
As a result, the integral evaluates to the summation of the
residue of the integrant, namely,

�(t, x) = 2π i
∑

n

Res

(
S (ω, n) sin(nπx/L)e−iωt

n2π2/L2 − ω2 − 2iω/τ

)

= 2π i
∑

n

sin(nπx/L)

ω+
n − ω−

n

×
[
S (ω+

n , n)e−iω+
n t − S (ω−

n , n)e−iω−
n t

]
.

(7)

Here we have assumed that the source term is a moderately
benign function in the sense that S (ω, n) does not contain
any singularity. The quasinormal frequencies can be read off
by examing the temporal dependence of the above results,
namely, the eiω

±
n t factors. They are, therefore, determined

by the residues of the integrant. The latter is related to the
zeros of the denominator on the first line of Eq. (7), which
are precisely the frequencies given in Eq. (4).

It is observed that both quasinormal frequencies given by
Eq. (4) are below the real axis, and therefore will be taken
into account by the residue theorem. If n2π2τ 2/L2 > 1, the
two frequencies lie on a horizontal line, symmetric about the

imaginary axis. If, on the other hand, n2π2τ 2/L2 < 1, both
frequencies lie on the imaginary axis below the origin.

Under moderate assumption for the source term, we have
arrived at a conclusion which seemingly contradicts the
example of driven harmonic oscillator given initially. In the
following section, we first extend the results to the context of
black hole quasinormal modes. Then, Sect. 4, we resolve the
above apparent contradiction by further exploring the dif-
ferent characteristic between the initial pulse and external
driving force.

3 Moderate external source acting as the initial pulse

At this point, one might argue that the analogy given in the last
section can only be viewed as a toy model when compared
with the problem of black hole quasinormal modes. First, the
boundary condition of the problem is different: the solution
is divergent at both spatial boundaries. Besides, the system
is dissipative not due to localized friction but owing to the
energy loss from its boundary, namely, the ingoing waves at
the horizon and/or the outgoing waves at infinity. As a result,
the oscillation frequencies are complex, which can be further
traced to the fact that the system is non-Hermitian. In terms of
the wave equation, the term concerning the relaxation time
τ is replaced by an effective potential. Nonetheless, in the
present section, we show that a similar conclusion can also be
reached for black hole quasinormal modes. We first discuss
static black hole metric, then extend the results to the case
of perturbations in rotating black holes. The last subsection
is devoted to the scenario where the external source itself
introduces additional quasinormal frequencies.

3.1 Schwarzschild black hole metric

For a static black hole metric, the perturbation equation of
various types of perturbations can be simplified by using the
method of separation of variables χ = �(t, r)S(θ)eimϕ . The
radial part of the master equation is a second order differential
equation [3,4].

∂2

∂t2 �(t, x) +
(

− ∂2

∂x2 + V

)
�(t, x) = 0, (8)

where the effective potential V is determined by the given
spacetime metric, spin s̄ and angular momentum 
 of the per-
turbation. For instance, in four-dimensional Schwarzschild
or SAdS metric, for massless scalar, electromagnetic and
vector gravitational perturbations, it reads

V = f

[

(
 + 1)

r2 + (1 − s̄2)

(
2M

r3 + 4 − s̄2

2L2

)]
, (9)
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where

f = 1 + r2/L2 − 2M/r, (10)

M is the mass of the black hole, and L represents the cur-
vature radius of AdS spacetime so that the Schwarzschild
geometry corresponds to L → ∞. The master equation is
often conveniently expressed in terms of the tortoise coordi-
nate, x ≡ r∗(r) = ∫

dr/ f . By expanding the external source
in terms of spherical harmonics at a given radius, r or x , the
resultant radial equation is given by

∂2

∂t2 �(t, x) +
(

− ∂2

∂x2 + V (x)

)
�(t, x) = S(t, x), (11)

where S(t, x) corresponds to the expansion coefficient for a
given harmonics (
,m).

In what follows, one employs the procedure by carrying
out the Laplace transform in the time domain [1,2,26],

f̂ (s, x) =
∫ ∞

0
e−st�(t, x)dt,

S (s, x) =
∫ ∞

0
e−st S(t, x)dt, (12)

Subsequently, the resultant radial equation in s-domain reads

f̂ ′′(s, x) +
(
−s2 − V (x)

)
f̂ (s, x) = I(s, x) − S (s, x).

(13)

where a prime ′ indicates the derivative regarding x , and the
source terms on the r.h.s. of the equation consist of S (s, x)
and I(s, x). The latter is governed by the initial condition

I(s, x) = −s �|t=0 − ∂�

∂t

∣∣∣∣
t=0

. (14)

We note that the lower limit of the integrations in Eqs. (12)
is “0”. Subsequently, f̂ (s, x) and S (s, x) are not able to
capture any detail of �(t, x) for t < 0, unless the latter
indeed vanish identically in practice. It is apparent that the
above equation falls back to that of the sourceless case by
taking S(s, x) = 0 [26].

The solution of the inhomogeneous differential Eq. (13)
can be formally obtained by employing the Green function
method. To be specific,

f̂ (s, x) =
∫ ∞

−∞
G(s, x, x ′)(I(s, x ′) − S (s, x))dx ′, (15)

where the Green function satisfies

G ′′(s, x, x ′) +
(
−s2 − V (x)

)
G(s, x, x ′) = δ(x − x ′). (16)

It is straightforward to show that

G(s, x, x ′) = 1

W (s)
f−(s, x<) f+(s, x>) (17)

where x< ≡ min(x, x ′), x> ≡ max(x, x ′), and W (s) is the
Wronskian of f− and f+. Here f− and f+ are the two lin-
early independent solutions of the corresponding homoge-
neous equation satisfying the physically appropriate bound-
ary conditions [26]
{
f−(s, x) ∼ esx as x → −∞
f+(s, x) ∼ e−sx as x → ∞ (18)

in asymptotically flat spacetimes, which are bounded with
�s > 0

The wave function thus can be obtained by evaluating the
integral

�(t, x) = 1

2π i

∫ ε+i∞

ε−i∞
est f̂ (s, x)ds, (19)

where the integral is carried out on a vertical line in the com-
plex plane, where s = ε + is1 with ε > 0.

Reminiscent of the toy model presented in the previous
section, the discrete quasinormal frequencies are again estab-
lished by evaluating Eq. (19) using the residue theorem. In
this case, one employs extended Jordan’s lemma to close
the contour with a large semicircle to the left of the orig-
inal integration path [27]. The integration gives rise to the
well-known result
∮

est f̂ (s, x)ds = 2π i
∑

q

Res

×
(
est f̂ (s, x), sq

)
+ (other contributions), (20)

where sq indicates the poles inside the counter, “other con-
tributions” are referring to those [28–31] from branch cut on
the real axis, essential pole at the origin, and large semicircle.

Therefore, putting all pieces together, namely, Eqs. (19),
(20), (15), and (17) lead to

�(t, x) = 1

2π i

∫ ε+i∞

ε−i∞
estG(s, x, x ′)

× [I(s, x ′) − S (s, x ′)
]
dx ′ds

= 1

2π i

∮
est

1

W (s)

∫ ∞

−∞
f−(s, x<) f+(s, x>)

× [I(s, x ′) − S (s, x ′)
]
dx ′ds

=
∑

q

esq tRes

(
1

W (s)
, sq

)

∫ ∞

−∞
f−(sq , x<) f+(sq , x>)

× [I(sq , x
′) − S (sq , x

′)
]
dx ′, (21)

where the residues are substituted after the last equality. The
above results can be rewritten as

�(t, x) =
∑

q

cquq(t, x), (22)
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with

cq = Res

(
1

W (s)
, sq

)∫ xI

x1

f−(sq , x
′)

× [I(sq , x
′) − S (sq , x

′)
]
dx ′,

uq(t, x) = esq t f+(sq , x), (23)

where one considers the case where the initial perturbations
has a compact support, in other words, it locates in a finite
range x1 < x ′ < xI and the observer is further to the right
of it x > xI .

The quasinormal frequencies can be extracted from the
temporal dependence of the solution, namely, Eq. (23). Since
eisq t is the only time-dependent factor, it is dictated by the
values of the residues sq . The locations of the poles sq are
entirely governed by the Green function Eq. (17), which, in
turn, is determined by the zeros of the Wronskian. There-
fore, according to the formal solution Eqs. (21) or (23), they
are irrelevant to cq , where the source S (s, x) is plugged
in. As �sq < 0 the wave functions diverge at the spatial
boundaries, which can be readily seen by substituting s = sq
into Eqs. (18), consistent with the results from the Fourier
analysis [2,4,32], as mentioned above. It is observed that
from Eq. (23), for given initial condition I(sq , x), one may
manipulate the external driving force S (sq , x) so that only
one single mode sq presented in the solution.

We note that the above discussions follow closely to those
in the literature (see, for instance, Ref. [2,26]). The only dif-
ference is that one subtracts the contribution of the external
source, namely, S (s, x), from the initial condition I(s, x ′)
in Eq. (15). It is well-known that the initial conditions of
perturbation are irrelevant to the quasinormal frequencies,
which characterize the sound of the black hole. In this con-
text, it is inviting to conclude that the external source term
on the r.h.s. of the master . (11) bears a similar physical con-
tent. The Laplace formalism employed in this section facil-
itates the discussion. On the other hand, from Eq. (23), one
finds that the quasinormal modes’ amplitudes will still be
affected by the external source. Overall, regarding the detec-
tion of quasinormal oscillations, the inclusion of external
source does imply a significant modification of observables,
such as the signal-noise ratio (SNR). We note that the above
discussions are valid under ths assumption that S (s, x) fea-
tures a moderate spectrum in s-domain. A notable exception
will be discussed below in subsection C.

Before closing this subsection, we briefly comment on
the equivalence between the above formalism based on
Laplace transform and those in terms of Fourier analysis. The
results concerning the contour of integral and the quasinor-
mal modes can be compared readily by taking s = −iω [31].
To be more explicit, if one employs the Fourier transform
together with the Green function method to solve Eq. (8), the

formal solution has the form [33]

�(t, x) =
∫

dx ′G(t, x, x ′) ∂�(t, x ′)
∂t

∣∣∣∣
t=0

+
∫

dx ′ ∂G(t, x, x ′)
∂t

�(t, x ′)
∣∣
t=0 , (24)

where one considers the case without a source, and the con-
tributions from the boundary at spatial infinity are irrelevant
physically and have been ignored. The Green function is the
defined by

∂2

∂t2 G(t, x, x ′)

+
(

− ∂2

∂x2 + V

)
G(t, x, x ′) = δ(t − t ′)δ(x − x ′), (25)

If we assume that the perturbations vanish identically for
t < 0, in other words, G(t, x, x ′) = 0 for t < 0. By employ-
ing the Fourier transform in the place of Laplace transform,
we have

G̃(ω, x, x ′) =
∫ ∞

−∞
dtG(t, x, x ′)eiωt

=
∫ ∞

0
dtG(t, x, x ′)eiωt . (26)

where G̃(ω, x, x ′) satisfies

−ω2G̃(ω, x, x ′)

+
(

− ∂2

∂x2 + V

)
G̃(ω, x, x ′) = δ(x − x ′). (27)

Now, it is apparent that, up to an overall sign, the solu-
tion of Eq. (27) is essentially identical to Eq. (17) in terms of
Laplace transform. The boundary contributions to the formal
solution Eq. (26) are precisely those that the initial condition
I contribute to Eq. (15). As discussed above, the main rea-
son to employ the Laplace transform is that the formalism
provides a transparent interpretation of the role taken by the
external source.

3.2 Kerr black hole metric

As most black holes are likely to be rotating, calculations
regarding stationary but rotating metrics are of potential sig-
nificance from an experimental viewpoint. In this subsection,
we extend the above arguments to the case of the Kerr met-
ric. Here, the essential point is that the master equation of
the Kerr metric cannot be rewritten in the form of a single
second-order ordinary differential equation, such as Eq. (11).
To be specific, by employing the method of separation of vari-
ables χ = e−iωt eimϕR(r)S(θ), in standard Boyer–Lindquist
coordinates, the master equation is found to be [34]

−s̄ d

dr

(
s̄+1 d

dr

)
R̂(ω, r) + V R̂(ω, r) = 0, (28)
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[
d

du
(1 − u2)

d

du

]
s̄ S
m

+
[
a2ω2u2 − 2aωs̄u + s̄ + s̄ A
m − (m + s̄u)2

1 − u2

]
s̄ S
m = 0,

(29)

where

V (r) = 1

(r)

{
(r2 + a2)2ω2 − 4Mamωr + a2m2

+2ia(r − M)ms̄ − 2iM(r2 − a2)s̄ω
}

+(−a2ω2 + 2iωs̄r − s̄ A
m),

(r) = r2 − 2Mr + a2,

u ≡ cos θ. (30)

Also, M and aM ≡ J are the mass and angular momen-
tum of the black hole, m and s̄ are the mass and spin
of the perturbation field. The solution of the angular part,

s̄ S
m = s̄ S
m(aω, θ, φ), is known as the spin-weighted
spheroidal harmonics. Here we have adopted the formalism
in Fourier transform for simplicity.

Although both equations are ordinary differential equa-
tions, the radial equation for the quasinormal frequency ω

now depends explicitly on s̄ A
m . The latter is determined by
the angular part of the master equation, which again involves
ω. Therefore, when an external source is introduced, it seems
one can no longer straightforwardly employ the arguments
presented in the last section. In particular, the arguments
based on contour integral seem to work merely for the case
where the radial equation is defined in such a way that it is
independent of ω. In what follows, however, we elaborate to
show that the existing spectrum of quasinormal frequencies
remains unchanged. We divide the proof into two parts.

The starting point is to assume that the solution of the
homogeneous Eqs. (28)–(29) is already established. First,
let us focus on one particular quasinormal frequency ω =
ωn,
,m . For a given ωn,
,m , the angular part Eq. (29) is well-
defined, and its solution is the spin-weighted spheroidal har-
monics, s̄ S
m . The latter is uniquely associated with a given
value of s̄ A
m . Now let us introduce an external source to the
perturbation Eqs. (28)–(29). One can show that ω = ωn,
,m

must also be a pole of the Green function of the radial part
of the resultant master equation. The proof proceeds as fol-
lows. It is known that the spin-weighted spheroid harmonics
form a complete, orthogonal set for a given combination of
s̄, aω, and m [35]. Therefore, it can be employed to expand
any arbitrary external source. The expansion coefficient S
is a function of radial coordinate r will enter the radial part
of the master equation, namely,

−s̄ d

dr

(
s̄+1 d

dr

)

×R̂(ω, r) + V (s̄ A
mωn )R̂(ω, r) = S (ω, r), (31)

while the angular part Eq. (29) remains the same. It is note that

s̄ A
m is given with respect to given ωn,
,m , thus is denoted
by s̄ A
mωn . Now, one is allowed to release and vary ω in
Eq. (31) in order to solve an equation similar to Eq. (13).
As discussed in the last section, one may utilize the Green
function method, namely, for real values of ω one solves

−s̄ d

dr

(
s̄+1 d

dr

)
G(ω, r, r ′)

+V (s̄ A
mωn )G(ω, r, r ′) = δ(r − r ′), (32)

and then considers analytic continuation of ω onto the com-
plex plane. It is evident that ωn,
,m must be a pole of the above
Green function. This is because Eq. (32) does not involve the
external source S(ω, r), and therefore the poles must be iden-
tical to the quasinormal frequencies of related sourceless sce-
nario. As we have already assumed, the latter, Eqs. (28)–(29),
have already be solved and ωn,
,m is one of the quasinormal
frequencies. Besides, we note that the other poles of Eq. (32)
are irrelevant, since they obviously do not satisfy Eq. (29).
Moreover, the forms of Eq. (31) as well as the Green function
both change once a different value for ωn,
,m is considered.

Secondly, let us consider a given ω but of arbitrary value.
Again, the angular part of the master equation Eq. (29) is
a well-defined as an eigenvalue problem. Subsequently, its
solution, the spin-weighted spheroid harmonics, as a com-
plete, orthogonal set for given s̄, aω, and m, can be utilized
to expand the external source. One finds the following radial
equation

−s̄ d

dr

(
s̄+1 d

dr

)
R̂(ω, r)

+V (s̄ A
mω)R̂(ω, r) = S (ω, r). (33)

It is noted that the only difference is that s̄ A
m explicitly
depends on ω and it is therefore denoted as s̄ A
mω. Although

s̄ A
mω is a function of ω, the above equation is still a sec-
ond order ordinary differential equation in r . In other words,

s̄ A
mω can be simply viewed as a constant as long as one
is solving the differential equation regarding r . Once more,
we will employ the Green function method, where the Green
function in question satisfies

−s̄ d

dr

(
s̄+1 d

dr

)
G(ω, r, r ′)

+V (s̄ A
mω)G(ω, r, r ′) = δ(r − r ′). (34)

Now, one is left to observe that the pole at ω = ωn,
,m of the
Green function Eq. (32) is also a pole for the Green function
Eq. (34). The reason is that the pole ω = ωn,
,m of the Green
function Eq. (32) corresponds to one of the zeros of the related
Wronskian. The latter is an algebraic (nonlinear) equation for
ω. Likewise, the poles of the Green function Eq. (34) also
correspond to the zeros of a second Wronskian. The latter is
also an algebraic equation except that the constant s̄ A
mωn is
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replaced by s̄ A
mω, a function of ω. However, since

s̄ A
mω|ω=ωn,
,m
= s̄ A
mωn ,

ωn,
,m must also be a zero of the second Wronskian. We,
therefore, complete our proof that quasinormal frequencies
ω = ωn,
,m are also the poles for the general problem with
the external source.

The above results will be verified in the following section
against explicit numerical calculations. Moreover, we note
that additional poles, besides those originated from the zeros
of the Wronskian, might also be introduced owing to the pres-
ence of an external source. One interesting example is that
they may come from the “quasi-singularity” of the external
source. This possibility will be explored in the next section.

4 Additional modes introduced by the external source

In the above, we mentioned that when a sinusoidal external
force is applied, the frequency of the steady-state oscillation
is known to be identical to that of the driving force. Moreover,
it is understood that the resonance takes place when the mag-
nitude of the driving frequency matches that of the natural
frequency of the oscillator. At a first glimpse, since the driven
force’s frequency is usually independent of the natural fre-
quency of the oscillator, the above results seem to contradict
our conclusion so far. In previous sections, we have shown
that if the external source is not singular, namely, character-
ized by a moderate frequency spectrum, the system’s natural
frequencies will not be affected. However, the results given
in Eqs. (7) and (21) will suffer potential modification when
the source term S contains singularity.

First of all, we argue that in the context of black hole
physics, the sinusoidal driving force is not physically rel-
evant, as it corresponds to some perpetual external energy
source. A physically meaningful scenario should be related to
some dissipative process, such as when the external source is
characterized by some resonance state. In particular, the reso-
nance will be associated with a complex frequency, where the
imaginary part of the frequency gives rise to the half-life of
the resonance decay. Mathematically, the external source thus
possesses a pole on the complex plane. The physical require-
ment of dissipative nature indicates that, in the Laplace s-
domain, the real part of s = −iω is negative. In other words,
the poles of the source term, if any, must be located on the
left of the imaginary axis, and therefore they are inside the
contour in Eq. (20). In turn, according to the residue theorem,
they will introduce additional quasinormal frequencies to the
temporal oscillations.

In the case of the toy model, if a given frequency gov-
erns the driven force, it corresponds to the case where a
single frequency dominates S (ω, n), namely, S (ω, n) ∼

δ(ω − ωR).1 Regarding Eq. (7), this will affect the evalua-
tion of residue. To be specific, the driving force gives rise to
a pole in the complex plane at ω = ωR − iε, where the addi-
tional infinitesimal imaginary part iε corresponds to a reso-
nance state with infinite half-life. As a result, the long-term
steady-state oscillations will be entirely overwhelmed by the
contribution from this pole. In other words, a normal mode
will govern the system’s late-time behavior, consistent with
our initial observations. As discussed above, in the case of the
black hole, one deals with some external resonance source,
which corresponds to quasinormal modes. Since the external
driving force is independent of the nature of the system, those
quasinormal modes are not determined by the Green function
Eq. (17). In other words, by definition, they are not governed
by the black hole parameters as for the conventional quasi-
normal modes of the metric. In the following section, we will
show numerically that additional quasinormal frequency can
indeed be introduced by the external source.

It is worth noting that the physical nature of external source
discussed in the present section is different from that of the
initial pulse or initial condition. To be specific, in literature
[2,4,26], the quainormal modes are defined regarding the per-
turbation equation in the time domain, Eq. (8). By consider-
ing the Laplace transform, the equation is rewritten where the
initial condition I(s, x) appears on the r.h.s. as a source term.
As discussed above, this term might affect the amplitudes of
the quasinormal oscillation but is irrelevant to the quasinor-
mal frequencies. This is because the real physical content it
carries is an initial pulse. It is evident that a harmonic oscilla-
tor’s initial condition will never affect the oscillator’s natural
frequency. On the other hand, as in Eq. (11), if one introduces
a source term directly onto the r.s.h. of the master equation
in the time domain, one might encounter a different scenario.
As discussed above, now the physical content resides in the
well-known example that a driven harmonic oscillator will
follow the external force’s frequency when, for instance, a
sinusoidal driving force is applied. Therefore, these are two
distinct scenarios associated with the term external source,
which, as discussed in the text, lead to different implications.
The above conclusion can be confirmed mathematically. In
fact, it can be readily shown that the term I(s, x) given by the
Laplace transform must not contain any singularity. Observ-
ing Eq. (14), its frequency dependence is linear in s, thus
averting any potential pole on the complex plane.

1 It is noted that the Dirac delta function has to be viewed as a limit of a
sequence of complex analytic functions, such as the Poisson kernel, for
the discussions carried out in terms of the contour integral to be valid.
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5 Numerical results

In this section, we demonstrate that the results obtained ana-
lytically in previous sections agree with numerical calcula-
tions. To be specific, we first solve the inhomogeneous differ-
ential equations numerically. Subsequently, the evolution of
perturbations in the time domain is used to extract the dom-
inant complex frequencies by utilizing the Prony method.
These frequencies are then compared against the numerical
results of the corresponding quasinormal modes, obtained by
standard approaches.

We first demonstrate the precision of our numerical
scheme by studying the toy model presented in Sect. 2. Then
we proceed to show the results for the Schwarzschild as well
as Kerr metrics.

For the toy model, one considers the master Eq. (1) numer-
ically for τ = 1, L = 1, n = 1 and the source Eq. (6) where

S(1)(ω, n) = 1, (35)

and

S(2)(ω, n) = 1

ω2 + 1
, (36)

Our first goal is to find the temporal dependence of the
solution for the two arbitrary sources chosen above. This
is accomplished by first solve Eq. (1) in the frequency space
and then carry out an inverse Fourier transform at an arbitrary
given position x for various time instant t . Although part of
the above procedure can be obtained analytically, we have
chosen to adopt the numerical approach, since later on, for
more complicated scenarios, we will eventually resort to the
“brutal” numerical force. The resultant time series are shown
in Fig. 1. It is observed that the temporal evolution indeed
follows the pattern of quasinormal oscillations.

In order to extract the quasinormal frequencies, the Prony
method [36] is employed. The method is a powerful tool in
data analysis and signal processing. It can be used to extract
the complex frequencies from a regularly spaced time series.
The method is implemented by turning a non-linear mini-
mization problem into that of linear least squares in matrix
form. As shown below, in practice, even a small dataset of
40 points is often sufficient to extract precise results. In the
following, we choose the modified least-squares Prony [36]
over others, as the impact of noise is not significant in our
study.

For Eq. (35), the two most dominating quasinormal fre-
quencies are found to be ω±

(1) = −0.999i−2.982,−0.999i+
2.967. For Eq. (36), one also obtains two dominating complex
frequencies ω±

(2) = −0.999999i −2.978190,−0.999998i +
2.978189. The numerical results together with their respec-
tive weights are shown in Table 1. When compared with the
analytic values ω± = −i ±√

π2 − 1 ∼ −i ±2.978188, one
finds that desired precision has been achieved.

Next, one proceeds to the case of the Schwarzschild black
hole. Here, we consider massless scalar perturbation with the
following source term

S(3)(ω, x) = 1

1 + ω2

1

r f 2(r)
V (r)eiωr , (37)

where we take s̄ = 0, rh = 2M = 1, 
 = 1, L = ∞,
V and f are given by Eqs. (9)–(10), the tortoise coordinate
x = ∫

dr/ f . It is noted that the factor eiωr V (r)/ f 2(r) is
introduced to guarantee that the source satisfies appropri-
ate boundary conditions. The remaining factor 1

1+ω2
1
r can

largely be chosen arbitrarily.
To find the temporal evolution, we again solve the master

equation in the frequency domain of Eq. (11) by employing
a adapted matrix method [37,38]. To be specific, the radius
coordinate is transform into a finite interval x ∈ [0, 1]by r →
2M
1−x , which subsequently discretized into 22 spatial grids.
For simplicity, we consider α = 1, 
 = 1. By expressing the
function and its derivatives in terms of the function values
on the grids, the differential equation is transformed into a
system of linear equations represented by a matrix equation.
The solution of the equation is then obtained by reverting the
matrix, as shown in the left plot of Fig. 2. Subsequently, the
inverse Fourier transform is carried out numerically at a given
spatial grid x = 5

21 , presented in the right plot of Fig. 2. As an
approximation, the numerical integration is only carried for
the range ω ∈ [−20, 20], where a necessary precision check
has been performed. By employing the Prony method, one
can readily extract the most dominate quasinormal frequency.
The resultant value is ω(3) = −0.5847 − 0.1954i , consistent
with ωn=0,
=1 = −0.5858−0.1953i obtained by the matrix
method [38].

Now, we are ready to explore the master Eq. (31) for Kerr
metric with the following form for the source term

S(4)(ω, r) = 1

1 + ω2

r(r − r+)


eiωr , (38)

where r+ = M + √
M2 − a2 is the radius of the event hori-

zon. Here, the form r(r−r+)


eiωr is to guarantee that the exter-
nal source vanishes at the spatial boundary as a → 0, so
that the asymptotical behavior of the wave function remains
unchanged. Also, the factor 1

1+ω2 is again introduced, based
on the observation that its presence in Eq. (36) has led to bet-
ter numerical precision. The latter is probably due to that the
resultant numerical integration regarding the inverse Fourier
transform converges faster. This choice turns out to be par-
ticularly helpful in the present scenario where the numerical
precision becomes an impeding factor. In the following cal-
culations, we choose M = 0.5, a = 0.3, and 
 = 2.

Based on the matrix method, the entire range of the spatial
and polar coordinates r and θ is divided by 22 grids. Sub-
sequently, the radial, as well as angular parts of the master
equation, are discretized into two matrix equations [39]. We
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Fig. 1 The calculated time series of the toy model for two different types of sources given in Eqs. (35) and (36) are shown in the left and right
plot, respectively. The calculations are carried out to generate a total of 40 points in the time series

Fig. 2 Results on massless scalar perturbations in Schwarzschild black
hole metric with external source. Left: The calculated imaginary part of
the numerical solution of the master equation in the frequency domain,

shown as a 2D function of ω and x . Right: The calculated time series
of the massless scalar perturbations. The calculations are carried out to
generate a total of 50 points in the time series

Fig. 3 Results on massless scalar perturbations in Kerr black hole met-
ric with external source. Left: The real and imaginary parts of the mas-
ter equation’s numerical solution in the frequency domain, evaluated at

x = 4
21 . Right: The calculated time series of the massless scalar pertur-

bations. The calculations are carried out to generate a total of 40 points
in the time series
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first solve the angular part of the master Eq. (29) for a given
ω to obtain s̄ A
mω. This can be achieved with relatively high
precision, namely, with a WorkingPrecision of 100 in Math-
ematica. The obtained ω to obtain s̄ A
mω is substituted back
into Eq. (31) to solve for the wave function in the frequency
domain. To improve efficiency, we only carry out the cal-
culation for a given spatial point at x = 4

21 , without losing
generality. The resultant wave function is shown in the left
plot of Fig. 3. To proceed, we evaluate the wave function at
600 discrete points between −30 < ω < 30 and then use
those values to approximate the numerical integration in the
frequency domain. The resultant time series with 40 points
are shown in the right plot of Fig. 3. By using the Prony
method, the most dominant quasinormal frequency is found
to be ω(4) = −0.9981 − 0.1831i , in good agreement with
the value ωn=0,
=2 = 0.9918−0.1869i obtained by the 21th
order matrix method [39].

Last but not least, we investigate whether the poles in
the external source will also demonstrate itself in the resul-
tant temporal series. This can be demonstrated by revisiting
the toy model. In particular, it is evident the external source
Eq. (36) contains two poles on the complex plane, for t > 0
the relevant pole is ωe = −i . Therefore, if everything checks
out, the additional frequency ωe must also be captured by
the Prony method. Taking a close look at the results listed
in Table 1 reveals that this is indeed the case. For the source
term S(1), the first two modes overwhelm others by two
orders of magnitude. On the other hand, concerning S(2),
not only it helps to improve the precision of the numeri-
cal integration, a third dominant mode appears, which reads
ωe

(2) = −0.999999i−6.035914×10−08. It readily confirmed
that the poles in the driving force are relevant, and present
themselves as additional quasinormal modes in the resultant
time series.

One can proceed to show explicitly that it is also the case
in the context of black hole configurations. However, on the
numerical aspect, it is a bit tricky. We note that, by comparing
Eq. (36) against Eq. (37), it is evident that the latter also
contains the pole at ωe. Unfortunately, the present numerical
scheme is not robust enough to pick out this singularity. In
order to accomplish our goal, one might deliberately bring
the singularities to the region where their detection becomes
feasible while the frequency domain integral still converges
reasonably fast. This can be achieved by replacing the source
term in Eq. (37) by an appropriately chosen form

S(3)(ω, x) = 1

(ω + 1
3 i + 1)(ω − 1

3 i + 1)

1

r f 2(r)
V (r)eiωr .

(39)

It gives rise to an additional pair of singularities, out of which
ωe− = − 1

3 i − 1 is relevant to the contour in question. By
carrying out an identical procedure, we manage to extract

the latter using the present algorithm.. The first two domi-
nant modes extracted by the Prony method are found to be
ω(5) = −0.5824 − 0.1896i and ω(6) = −0.9952 − 0.3326i .
In other words, both the fundamental quasinormal mode and
the singularity in the source term are identified successfully.
We are looking forward to improving the algorithm further so
that its application to more sophisticated scenarios becomes
viable.

6 Further discussions and concluding remarks

To summarize, in this work, we study the properties of exter-
nal sources in blackhole perturbations. We show that even
with the presence of the source term in the time-domain, the
quasinormal frequencies may largely remain unchanged. In
this case, the physical content of the external source is an
initial pulse. The statement is valid for various types of per-
turbation in both static and/or stationary metrics. Although,
for rotating black holes, the arguments are elaborated with
additional subtlety. We also discuss the physically relevant
scenraio where the external source acts as a driving force and
introduces additional modes. The findings are then attested
against the numerical calculations for several particular sce-
narios.

It is noted that in our discussions, the effects of the branch
cut on the negative real axis have not been considered. These
discontinuity from the branch cut arises from that of the
solution of the homogeneous radial equation, which satisfies
the boundary condition at infinity. As a result, their effects
remain unchanged as the external source is introduced. More-
over, as the branch cut stretches from the origin, it primarily
associated with the late-time behavior of the perturbations.
Therefore, they are largely not relevant to the quasinormal
frequencies in the context of the present study.

The numerical calculations carried out in the present paper
only involve rather straightforward scenarios such as the
Schwarzschild metric. Since our results are expected to be
valid in a more general context, as mentioned above, it is
physically meaningful to explore further the possible impli-
cations in more sophisticated cases. These include the pertur-
bations in modified gravity theories, such as the scalar–tensor
theories. One relevant feature of the theory is that the scalar
perturbations are entirely decoupled from those of the Ein-
stein tensor. In some recent studies, the metric perturbations
in the DHOST theory are found to possess a source term
[20,21]. Besides, the master equation for scalar perturba-
tions is shown to be a first-order differential equation decou-
pled from the Einstein tensor perturbations. Subsequently,
for such specific cases, one may obtain the general solution
(see, for example, Eq. (26) of Ref. [21]), which does not
contain any pole in the frequency domain. In other words,
the discussions in Sect. 3.B can be readily applied to these
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Table 1 The calculated quasinormal frequencies by using the Prony method for the source terms Eqs. (35) and (36). The numerical code has been
implemented to extract five modes while the first four most dominante ones, as well as their respective amplitudes, are listed

Source 1st 2nd

ω− Weight ω+ Weight

S(1) −0.999878i − 2.982507 7.5 × 10−01 −0.998883i + 2.966696 7.5 × 10−01

S(2) −0.999999i − 2.978190 7.0 × 10−02 −0.999998i + 2.978189 7.0 × 10−02

Source 3rd 4th

ω Weight ω Weight

S(1) −2.236222i − 7.901108 4.7 × 10−03 −2.229535i − 11.873706 2.2 × 10−03

S(2) −0.999999i − 6.035914 × 10−08 2.5 × 10−01 0.016891i − 9.887078 2.1 × 10−07

cases. In this regard, we have demonstrated that while the
magnitude of the perturbation wave function is tailored by
the source and initial condition, the quasinormal frequencies
might stay the same. Therefore, the findings of the present
work seem to indicate a subtlety in extracting information
on the stealth scalar hair in the DHOST theory via quasi-
normal modes. In our view, it is rather inviting to explore the
details further, and also for other modified theories of gravity.
Further studies along this direction are in progress.
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