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Abstract A five-dimensional spherically symmetric gen-
eralised radiating field is studied in Einstein–Gauss–Bonnet
gravity. We assume the matter distribution is an extended
Vaidya-like source and the resulting Einstein–Gauss–Bonnet
field equations are solved for the matter variables and mass
function. The evolution of the mass, energy density and pres-
sure are then studied within the spacetime manifold. The
effects of the higher order curvature corrections of Einstein–
Gauss–Bonnet gravity are prevalent in the analysis of the
mass function when compared to general relativity. The
effects of diffusive transport are then considered and we
derive the specific equation for which diffusive behaviour
is possible. Gravitational collapse is then considered and we
show that collapse ends with a weak and conical singularity
for the generalised source, which is not the case in Einstein
gravity.

1 Introduction

The radiating solution of Vaidya [1] has been paramount in
the study of spherically symmetric spacetime exteriors in
general relativity. Several well known solutions for radiat-
ing stars (by matching an interior solution to the radiating
exterior) have been found [2–7]. The important result was
that the pressure on the boundary of the radiating star, in
general, should be nonvanishing and proportional to the heat
flux. This provided a major avenue through which astrophys-
ical applications could be studied in the context of general
relativity. The generalised Vaidya spacetime was studied by
Wang and Wu [8] and extensions of that work were given in
[9] for various equations of state. These works include all the
well known solutions of Einstein’s equations with the addi-
tion of the type II fluid. The generalised Vaidya solution has
also proved pivotal in the study of spherically symmetric,
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dynamical gravitational collapse. Dawood and Ghosh [10]
obtained a large family of solutions to the field equations for
a type II fluid in general relativity, showing that some well
known black hole solutions were a particular case of this
family. The radiating Vaidya solution was also used to test
the cosmic censorship conjecture (CCC) and the Papapetrou
model [11,12] is one of the earliest examples that counters
the CCC. A physically reasonable field of matter was found,
obeying the energy conditions, in a shell-focusing central sin-
gularity which was formed by shells of radiation imploding.
Mkenyeleye et al. [13,14] developed a general mathematical
framework, in context of the CCC, to study the conditions
on the mass function where the end state of future-directed
nonspacelike geodesics is indeed the central singularity. This
framework was utilised by Brassel et al. [15] with mass func-
tions arising from various equations of state. It was found that
collapse terminated with the formation of a naked singularity
in all cases.

Such work has been extended to higher dimensions and
modified theories of gravity. The need to modify general
relativity arises from the fact that it is a global theory of
gravity and thus has certain shortcomings. One of those is
fundamental to cosmology; Einstein gravity cannot explain
the late time expansion of the universe. The introduction of
nonlinear forms of the Riemann and Ricci tensor, and the
Ricci scalar is one such approach to modifying general rel-
ativity. It is indeed possible to propose a quadratic polyno-
mial form of the Lagrangian which will still yield second
order equations of motion [16,17]. This form then gener-
ates the Einstein–Gauss–Bonnet (EGB) action, a modifica-
tion of the usual Einstein–Hilbert action. Therefore, curva-
ture terms which are quadratic in the spacetime will present
as corrections to general relativity. Unless some surface term
is involved or instigated, these higher order curvature terms
will have no ramifications in four-dimensional gravity. A fur-
ther point that should be highlighted is that EGB gravity can
be considered a concomitant of low energy heterotic string
theory [18,19]. The higher dimensional EGB analogue of the
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vacuum Schwarzschild solution from general relativity was
found by Boulware and Deser [20] and a radiating form of
the mass function of that solution was studied by Kobayashi
[21]. In the case of the latter solution, the energy momentum
tensor was assumed, as in the case of general relativity, to
be a superposition of a type I and type II fluid. Various solu-
tions for the Boulware–Deser mass function were found by
Brassel et al. [22] for various equations of state. These were
the EGB analogues of those found in [8,9]. New solutions
to the EGB field equations for a static spherically symmetric
interior of a fluid were found in [23–25], and the generalised
Israel junction conditions on a membrane were derived in
detail by Davis [26]. These results for type I or type II (or
combinations of the two) fluids have proven fruitful in stel-
lar modeling, both in general relativity and EGB gravity. A
recent paper by Nikolaev and Maharaj [27] showed that the
generalised Vaidya spacetime may be embedded in higher
dimensional Euclidean spaces. This opens avenues for fur-
ther astrophysical research in modified gravity theories.

An interesting question now arises with regards to the
existence of different types of matter distributions includ-
ing dust, radiation, a cosmological constant, negative pres-
sures or any combination of these. Such an energy momen-
tum tensor could provide significant insights into gravity
under various different physical scenarios. An example of
a matter field was introduced by Kiselev [28] and a static
solution to the Einstein field equations was found, which
was a generalisation of the Schwarzschild solution in an
expanding background which was nonempty. The motiva-
tion for this generalisation was the fact that realistic black
holes are not necessarily isolated nor embedded into vac-
uum backgrounds. The Kiselev solution, which is an exam-
ple of a black hole solution coupled to one or more matter
fields, is physically interesting due to its application to the
study of distorted black holes [29–31]. With regards to mat-
ter fields in EGB gravity, Canfora et al. [32] considered a
manifold which was a warped product of a four-dimensional
expanding Friedmann–Robertson–Walker spacetime with a
D-dimensional Euclidean constant curvature space with two
independent scale factors. More recently, Pavluchenko [33]
studied spatially flat expanding models in EGB gravity in five
and six dimensions. Both dimensional cases produced differ-
ent dynamical properties of the spacetime. Heydarzade and
Darabi [34] extended the work of Kiselev [28] by consider-
ing a generalised Vaidya metric with the various matter fields.
They studied the possibility of naked singularity formation in
these differing surrounding fields. The work in this paper will
be an extension of some of the work done in [34] extended
to the regime of EGB gravity, as this has not been attempted
before. We will assume a generalised Boulware–Deser space-
time with a generalised matter background. We should point
out an interesting interpretation provided by Krasinski [35] in
which the radiating Vaidya density is superposed with perfect

fluids, anisotropic fluids and rotating fluids. This produces
generalised inhomogeneous matter distributions in the man-
ifold sourced by radiating matter. Such generalised radiating
fields have been shown to reduce to expanding Friedmann–
Robertson–Walker spacetimes at large distances. An exam-
ple of a generalised, inhomogeneous matter source with a
homogeneous limiting metric is given by Vaidya [36].

This paper is organised as follows: in the first section, we
outline second order Lovelock gravity theory, EGB gravity.
In Sect. 3, we assume the generalised form of the Boulware–
Deser spacetime and allow the matter distribution to be a
generalised field comprising of various different component
distributions. The EGB field equations are then derived and
solved for the mass function, which is expressed in terms
of the equation of state parameter which takes into account
the various distributions. This allows us to write expressions
for the energy density and pressure of the spacetime. Sec-
tion 4 entails the analysis of this mass function as well as
the matter variables. Plots are generated for the mass of the
matter distribution and its radial derivative, as well as for the
energy density and pressure. We highlight the differences
in the evolution of these quantities depending on the matter
background. In Sect. 5 we study the effects of diffusion on
the model and present two classes of solutions to the resulting
diffusion equation, the more general class being expressed in
terms of an exponential integral. The final section deals with
the gravitational collapse of the Boulware–Deser spacetime
and its effect on the solution found.

2 Einstein–Gauss–Bonnet gravity

The action in Lovelock gravity is given by

S =
∫

dN x
√−g

N/2∑
k=0

αkR
k + Smatter , (1)

where we have

Rk = 1

2k
δ
c1d1...ckdk
a1b1...akbk

k∏
r=1

Rarbr
cr dr ,

and δ
c1d1...ckdk
a1b1...akbk

is the Kronecker delta. In this paper, we have
considered Einstein–Gauss–Bonnet gravity, which is second
order Lovelock gravity, so the above action reduces to

S =
∫

dN x
√−g(α0 + α1R + α2R

2), (2)

where α0 is the cosmological term, α1 is the constant (set to
unity) associated with the Einstein–Hilbert action (R = R)

and α2 = α is the coupling constant associated with the
second order (Gauss–Bonnet) action. Thus the modified form
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of the Einstein–Hilbert action (2) in five dimensions is

S = − 1

16π

∫ √−g [(R − 2Λ + αLGB)] d5x . (3)

In the above, R is the five-dimensional Ricci scalar and Λ is
the cosmological constant, which we have set to zero in this
study. R2 = LGB is the Lovelock term, given by

LGB = R2 + Rabcd R
abcd − 4Rcd R

cd , (4)

which is a linear combination of the quadratic terms in cur-
vature. Upon varying (3) with respect to the action δS = 0,

we obtain the EGB field equations

Gab = Tab, (5)

where

Gab = Gab − α

2
Hab. (6)

In the above, Gab is the Einstein tensor, Tab is the energy
momentum tensor and Hab is the Lovelock tensor which is
defined as the following

Hab = gabLGB − 4RRab + 8RacR
c
b

+8Racbd R
cd − 4RacdeRb

cde. (7)

The Lovelock tensor vanishes in the limit when α → 0, and,
as a result, Einstein gravity will be regained.

3 A generalised radiating solution

In this section we will demonstrate a viable radiating solu-
tion to the EGB field equations in the spacetime manifold
which is our starting point. The static and spherically sym-
metric exterior vacuum solution to the Gauss–Bonnet action
(2) was first obtained by Boulware and Deser [20]. A radi-
ating analogue was first presented by Kobayashi [21] which
acts as a Vaidya-like solution in EGB gravity. The radiating
Boulware–Deser metric is given in the following form

ds2 = − f (v, r)dv2 + 2dvdr

+ r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2), (8)

where the function f (v, r) is given by

f (v, r) = 1 + r2

4α

(
1 −

√
1 + 16M(v, r)α

r4

)
, (9)

where M(v, r) represents the mass of the spherical radiat-
ing distribution. We are modeling a distribution which is not
isolated and the matter field is not empty which was first stud-
ied by [28]. Following [34] we can consider a total energy
momentum tensor of the form

T a
b = τ ab + T a

b, (10)

where τ ab is the energy momentum tensor associated with
null radiation

τ ab = μlalb, (11)

with la = δ0
a . In the above, μ is the energy density of the

outgoing radiation/ingoing accretion flow. The quantityT a
b

is the energy momentum tensor of the additional matter field
defined by

T 0
0 = −ρs(v, r), (12a)

T a
b = −ρs(v, r)γ

[
−(1 + 3β)

(
rarb

rnrn

)
+ βδab

]
, (12b)

as was shown in [28]. The above equations (12) represent
a generalised matter distribution where the subscript ‘s’ can
represent a component matter field of the solution or any com-
bination of these fields. The two arbitrary constant parame-
ters γ and β depend on the internal structure of the additional
matter field. This form of the energy momentum tensor for
the generalised radiating field implies that the spatial profile
of the Boulware–Deser solution is proportional to the time
component describing the dynamical energy density ρs(v, r)
[34].

The field equations for the matter field (10) can be written
as

G 0
0 = T 0

0 or G 1
1 = T 1

1, (13a)

G 1
0 = T 1

0, (13b)

G 2
2 = T 2

2 or G 3
3 = T 3

3 or G 4
4 = T 4

4, (13c)

for the spherically symmetric line element (8). In the above,
the components of T a

b contribute to the gravitational dynam-
ics. In conventional matter distributions, the T a

b are gen-
erally absent, for example see [9,13,23]. From [28], the
isotropic averaging over the angles gives the following

〈T a
b〉 = γ

3
ρs(v, r)δab = ps(v, r)δab, (14)

where 〈rarb〉 = 1
3δabrnrn was considered. We then have the

barotropic equation of state for the additional field being
given by

ps(v, r) = ωsρs(v, r), ωs = 1

3
γ, (15)

where ps(v, r) and ωs are the dynamical pressure and the
constant equation of state parameter of the field, respectively.
The Eqs. (10)–(12) and the EGB field equations (13) imply
that T 0

0 = T 1
1 and T 2

2 = T 3
3 = T 4

4. This allows one
to calculate the free parameter β as

β = −1 + 3ωs

6ωs
, (16)

due to the principle of additivity [28,34]. Substituting the
parameters γ and β in (15) and (16) into (12), the nonva-
nising components of the energy momentum tensor for the
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additional field will be

T 0
0 = T 1

1 = − ρs(v, r), (17a)

T 2
2 = T 3

3 = T 4
4 = 1

2
(1 + 3ωs)ρs(v, r). (17b)

The nonvanishing components of (6) are given by

G 0
0 = G 1

1 = − 3

r3
Mr, (18a)

G 1
0 = 3

r3
Mv, (18b)

G 2
2 = G 3

3 = G 4
4 = − 1

r2
Mrr, (18c)

after a lengthy calculation; see the Appendix for details.
We can therefore finally write the EGB field equations. The
G 0

0 = T 0
0 and G 1

1 = T 1
1 components give the following

ρs = 3

r3
Mr. (19)

The G 1
0 = T 1

0 component gives

3

r3
Mv = μ. (20)

Similarly, for the components G 2
2 = T 2

2 and G 3
3 = T 3

3

and G 4
4 = T 4

4, we have

− 1

r2
Mrr = 1

2
(1 + 3ωs)ρs . (21)

Equations (18)–(21) give the EGB equations for the sur-
rounding medium with the barotropic equation of state (15).

Simultaneously solving the differential equations (19) and
(21) will yield the solution for the mass function for the matter
field as

M(v, r) = −Ns(v)r1− 3
2 (1+3ωs )

2 − 3(1 + 3ωs)
+ c2(v), (22)

where c2(v) is the second integration function. We have anno-
tated the first integration function as c1(v) = − Ns(v) which
could be considered a parameter for the additional dynamical
field structure. Therefore by (15) and (19) we have

ρs = −3

2
Ns(v)r

1
2 (7+9ωs ), (23a)

ps = −3

2
ωs Ns(v)r

1
2 (7+9ωs ). (23b)

The weak energy condition ρs ≥ 0 implies that we must have
ωs Ns(v) ≤ 0. This further implies the following regarding
the surrounding field and the equation of state parameter:

– If ωs > 0, then Ns(v) ≤ 0.
– If ωs < 0, then Ns(v) ≥ 0.

The equation of state parameter values ωs are as follows:

– ωs = 0: dust

– ωs = 1
3 : radiation

– ωs = − 1: cosmological-like
– ωs = − 2

3 : negative pressure
– ωs = − 4

3 : negative pressure

Therefore we regain the familiar equations of state for dust,
radiation and the cosmological-like constant. Two other
equations of state arise with negative pressures. The values
ωs = − 2

3 and ωs = − 4
3 fall into the range allowed for

quintessence and phantom fields respectively. However in
our case we have obtained specific values using only curva-
ture terms in EGB gravity whereas quintessence and phan-
tom fields are generally evolving and require additional scalar
fields.

4 Physical analysis

In this section we will consider the analysis of the evolu-
tion of mass function surrounded by the various different
matter fields mentioned previously. The behaviour of the
energy density and pressure of the different matter fields
will also be studied. We have assumed Ns(v) = v2 (for
ωs = − 4

3 ,− 2
3 ,−1, 0) and Ns(v) = −v2 (for ωs = 1

3 )
so the above conditions are obeyed. Figure 1 depicts the
evolutionary behaviour of the mass function with respect to
the retarded time variable v. We have also set cs(v) = v

and r = 2. It can clearly be seen that the behaviour differs
depending on the equation of state parameter ωs . In the sin-
gle case of the surrounding field being that of dust (ωs = 0),
the mass function increases over time. In all other cases, the
mass function decreases, the sharpest of which is for the case
of the surrounding field having negative pressure (ωs = − 2

3 ),
indicated by the dashed line in the plot.

Figure 2 shows the radial evolution of the mass function
with respect to the equation of state parameters. The values
we have assumed are the same as for the first plot, except we
now have set v = 2. We have that the mass function increases
with increasing radius, within the confines of a surrounding
field of radiation (ω = 1

3 ). Initially, the increase is profound
for a lower radius, before settling into a much slower increase
as the radial coordinate becomes larger. With regards to all
the other cases, the mass function decreases with increas-
ing radius. In the case of the dust parameter (ωs = 0) the
decrease begins sharply before slowing with increasing r,
however, like the radiation case the mass function remains
positive. This indicates that matter fields of dust or radiation
are physically more realistic cases. For the remaining three
cases, we have that the mass function is initially positive
for small r, however decreases with increasing r, eventually
becoming negative. It is also interesting to note that in the
case of ωs = − 4

3 , the mass function decreases at a slower
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Fig. 1 Plot indicating the temporal evolution of the mass function with respect to each of the matter field parameters

Fig. 2 Plot indicating the radial evolution of the mass function with respect to each of the matter field parameters

rate than for the ωs = − 2
3 and cosmological constant-like

(ωs = −1) cases, initially. However, it soon causes the mass
function to decrease significantly faster than those two cases.

In Fig. 3, the radial derivative of the mass function is
plotted against r. It can clearly be seen that in the case of
radiation (ωs = 1

3 ), the rate of change of the mass func-
tion is positive and slows down as the radius of the fluid
distribution increases. Conversely, for ωs = − 2

3 , this rate

of change is also positive but increases with increasing r.
The negative pressure and cosmological constant-like fields
(ωs = − 4

3 ,−1, respectively) show that, initially, the rate of
change is seemingly unchanging. However, as r increases,
these rates decrease more rapidly, becoming negative. The
case ωs = − 4

3 also has a faster rate of decrease. Finally in
the case of the matter field being dust (ωs = 0), the rate
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Fig. 3 Plot indicating the evolution of the radial derivative of the mass function with respect to r, for each of the matter field parameters

of change is negative and increases initially severely, before
slowing with larger r, but never becoming positive.

Figures 4 and 5 depict the behavioural evolution of the
energy density and pressure of the fluid distribution, respec-
tively with respect to each of the equation of state parameters.
It can clearly be seen that only when ωs = 1

3 , do we have
any realistic behaviour for the energy density in Fig. 4; as r
increases, we have a positive decreasing energy density. The
remaining cases all indicate negative densities implying that
the radiation case is the more physically realistic case.

With regards to the pressure of the fluid distribution, every
case is positive. For the cases ωs = 1

3 and ω = − 2
3 we

have that the pressure decreases as the radial coordinate
increases which is, again, physically reasonable astrophys-
ical behaviour. For the cases of cosmological constant-like
(ωs = −1) and ωs = − 4

3 , we have that the pressure is
increasing with increasing r. In fact, for the former case,
the pressure increases linearly. For the final case of the dust
background, the pressure vanishes by definition.

In summary, it can be seen from Figs. 1, 2, 3, 4 and 5
that the radiation case (ωs = 1

3 ) produces the most realistic
behaviour indicative of a physical model. Considering the
fact that this mass function (22) is a Vaidya-like solution in
EGB gravity, this is not surprising.

5 Diffusion

In order to understand several physical systems on a deeper
level, the idea of diffusion is one that is of significant impor-

tance. Glass and Krisch [37] have shown that generalised
Vaidya radiating distributions permit diffusive processes in
globular clusters containing dark matter and atmospheres
around black holes. Consequently effects of diffusive pro-
cesses, in spacetimes with Vaidya-like geometries, have been
studied in general relativity, including the treatment of Bras-
sel et al. [9]. They obtained various diffusive solutions for
the Vaidya mass function for different physical equations of
state. We will be utilising their approach in this section.

It is interesting to determine the nature of diffusive pro-
cesses in EGB gravity for the generalised matter field (10).
The effects of the higher order curvature terms, indicative of
the EGB theory, and the new matter distributions should lead
to new solutions.

5.1 Derivation of the diffusion equation

Assuming that string diffusion is similar to point particle like
diffusion, we have

∂

∂v
n = D∇2n, (24)

where ∇2 = r−2
(

∂
∂r

)
r2( ∂

∂r ) and D is the positive coefficient
of self-diffusion, which is assigned as a constant. In the theory
of classical transport, the diffusion equation is derived using
Fick’s law as a commencement point. It is given by

J(n) = −D∇n, (25)
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Fig. 4 Plot indicating the evolution of the energy density of the matter field with respect to r, for each of the constant parameters

Fig. 5 Plot indicating the evolution of the pressure of the fluid distribution with respect to r, for each of the matter field parameters

where the quantity ∇ is a purely spatial gradient. The 4-
current Ja

(n);a = 0, where we have

Ja(n);a = (n, J(n))

= n
∂

∂u
− D

(
∂n

∂r

) (
∂

∂r

)
, (26)

then gives the diffusion equation (24). Expressing the EGB
field equations (19) and (20) as Mr = 1

3 rρs and Mv = 1
3 rμ,

we can write the integrability condition for the mass function
M as

∂ρs

∂v
= 1

r3
∂

∂r
(r3μ). (27)

Comparing ∂ρs
∂v

in the above result (27) with the heat equa-
tion (24) (where n is replaced by ρs), we have, after some
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algebraic manipulation

∂M

∂v
= Dr3

∂ρs

∂r
. (28)

Solving the above equation for the mass function M(v, r) will
yield solutions to the field equations of EGB gravity. Using
Eq. (19) and substituting it into (28) gives us the following

∂M

∂v
= D

(
∂2M

∂r2
− 3

r
∂M

∂r

)
, (29)

which is of the functional form F1(Ṁ, M ′, M ′′) = 0. This is a
generalisation of the result found in [9] for general relativity,
and this can be further amplified. We require a functional
form F2(Ṁ, M ′) = 0 in order to solve (29) entirely, and this
necessitates isolating ∂2M

∂r2 in our master equation (21) and
substituting that result into (29). This finally yields

∂M

∂v
+ 3D

2r
(3 + 3ωs)

∂M

∂r
= 0. (30)

The Eq. (30) is the diffusion equation in EGB gravity for the
matter distribution (10) and the resulting equation of state
(15). Note that (30) is a linear partial differential equation.

5.2 Solutions and consistency

The Eq. (30) can be solved trivially using the method of
characteristics. Its solution is given by

M(v, r) = F

(
1

2
r − 3D

2
(3 + 3ωs)v

)
, (31)

which is an infinite family of solutions for M . To acquire the
consistency condition on F , we have to substitute the above
Eq. (31) into (21). Doing this gives

r2Frr + 3

2
(1 + 3ωs)Fr = 0. (32)

With regards to solving (32), two cases arise.

5.2.1 Case I

A closed form solution to the consistency condition is pos-
sible if ωs = − 1

3 . This reduces (32) to r2Frr which has the
solution

F

(
1

2
r − 3D

2
(3 + 3ωs)v

)
= l1

(
1

2
r − 3D

2
(3 + 3ωs)v

)

+l2, (33)

where l1 = l1(v) and l2 = l2(v) are functions of integra-
tion. It is important to note that the assumption placed on ωs

above has no real significance since ωs = − 1
3 , which doesn’t

represent a realistic matter field.

5.2.2 Case II

In general, the differential equation (32) can be solved via a
reduction of order, and has a solution in terms of an expo-
nential integral, which is a special function in the complex
plane. This solution is given in quadrature form by

F = h1

∫
e

3+9ωs
2r dr + h2, (34)

where h1 = h1(v) and h2 = h2(v) are integration functions.
The integral in the above solution is a special case of the
general exponential integral. In full, the solution is given by

F

(
1

2
r − 3D

2
(3 + 3ωs)v

)
= h1

[
re

3+9ωs
2r

−
(

3 + 9ωs

2

)
Ei

(
3 + 9ωs

2r

)]
+ h2, (35)

where the notation Ei(...) represents an exponential integral.
The solution (33) is contained in the above (35). Therefore,
for the relevant values of the equation of state parameter
ωs , the expression (35) is a general family of new diffu-
sive solutions to the EGB field equations for the mass func-
tion M(v, r). Therefore, the diffusive processes for the gen-
eralised matter distribution (10) are different from general
relativity.

6 Gravitational collapse

In general relativity, after the first analysis of vacuum col-
lapse undertaken by Oppenheimer and Snyder [38], the gen-
eralised Vaidya metric has been used extensively to study
gravitational collapse models as in [10,39,40]. Various mod-
els studied indicate that the collapse of the Vaidya spacetime
can lead to the formation of locally naked singularities, see
[11–15,41,42]. In modified theories of gravity, Dominguez
and Gallo [43] later studied black hole solutions in Einstein–
Gauss–Bonnet gravity. In the same theory, the gravitational
contraction of the Boulware–Deser spacetime was studied in
detail by [44–46]. It was shown that in five dimensions, the
collapse of the Boulware–Deser spacetime terminated in the
formation of an extended and weak curvature, initially naked
conical singularity at the centre, which then subsequently
becomes covered by an apparent horizon. This result was sig-
nificantly different to the five-dimensional Vaidya collapse
in general relativity. In dimensions higher than five, the col-
lapse process was analogous to that of general relativistic
collapse, as in the end point was a black hole with a strong
curvature singularity. We consider the metric (8) from earlier

ds2 = − f (v, r)dv2 + 2dvdr

+ r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2), (36)
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Fig. 6 Spacetime diagram
depicting radiation shell
collapse in five-dimensional
EGB gravity

with

f (v, r) = 1 + r2

4α

(
1 −

√
1 + 16M(v, r)α

r4

)
. (37)

In the above, all of the metric functions are regular and well
defined in the vicinity of r = 0, v ≥ 0, insinuating the
absence of a strong curvature singularity. The Kretschmann
invariant is calculated as

K = − 1

2αr4
(r2 + 16αM)−3

[(
−r2 +

√
r4 + 16αM

)2

×
(
−7r12 − 2r10

√
r4 + 16αM − 184αr8M

−2048α2r4M2 − 6144α3M3

+ 32αr6M
√
r4 + 16αM

)]
, (38)

which diverges as K ≈ r−4. This divergence proves that
while the metric (37) is regular, the spacetime itself is singu-
lar. Therefore one could consider the spacetime metric as a
whole as being quasi-regular. The spacetime singularity, in
its very nature, is one that is conical and weak. This result is
fundamentally different to radiating collapse in general rela-
tivity, where a sufficiently strong curvature singularity forms
upon the cessation of collapse. There exists an open set of
mass functions M(v, r), including (22) and the diffusive mass

function (33) for which the continual gravitational collapse
of the Boulware–Deser spacetime will cease with the forma-
tion of a weak conical singularity at the centre of the black
hole. Further to this notion, there will be no violation of any
of the energy conditions for any stress energy tensor attached
to the spacetime. In order to ascertain the dynamics of the
trapping horizon, we let

f (v, r) = 0,

which is

1 + r2

4α

(
1 −

√
1 + 16αM(v, r)

r4

)
= 0. (39)

Solving for the radial component r we have

r = √
2M(v, r) − 2α. (40)

Therefore for v ∈ [0, M−1(α)], the conical singularity at the
centre (r = 0) remains naked, before capitulating to the trap-
ping horizon. If we consider our mass function from earlier

M(v, r) = −Ns(v)r1− 3
2 (1+3ωs)

2 − 3(1 + 3ωs)
+ v, (41)

where we have set the integration function c2(v) = v, then
at r = 0 we have that v = α in Eq. (40).
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In Fig. 6 the radiating matter is falling into a five-
dimensional quasi-regular black hole. Within the region
0 < v < α, there is no trapping horizon concealing the con-
ical singularity, since the Gauss–Bonnet coupling constant
α is delaying its formation. The apparent horizon begins
to form at v = α and covers a region of null and trapped
compact surfaces which descend into the black hole within
α < v < V0. At time v = V0 a single event horizon separates
the exterior five-dimensional Boulware–Deser vacuum from
the radiating trapped surfaces at

r =
√

2

1 + 9ωs

(
Ns(v)r1− 3

2 (1+3ωs )
)

+ 2v − 2α.

Past this final trapping horizon is a quasi-regular black hole
with a weak central conical singularity. An important note to
make is the fact that the collapse process remains unchanged
for all values of the equation of state parameter ωs and so for
the generalised radiating field, collapse ceases in the same
way.

7 Discussion

In this paper we considered a generalised radiating space-
time in EGB gravity with various types of matter fields. The
Boulware–Deser spacetime, which is an analogous space-
time to the generalised Vaidya solution, was analysed with
matter distributions sourced by a radiating metric which is
Vaidya-like. The EGB field equations were derived and then
solved for the mass function which was expressed in terms
of the equation of state parameter which represented differ-
ent equations of state. These fields included dust, radiation,
cosmological constant-like and negative pressures. A phys-
ical analysis of the solution was then undertaken where the
evolution of the behaviour of the mass function and matter
variables was probed. We found that the behaviour differed
greatly depending on the background matter distribution. The
case of radiation proved to be the most consistently realistic
background. This analysis is the first of its kind undertaken
in EGB gravity and acts as an extension of the work done by
[28,34]. The effects of diffusion were also presented and two
classes of solutions to the diffusion equation were found, with
one class being a specific closed form family, and the other the
most general family of solutions known. Finally, a discussion
on gravitational collapse was given highlighting the work
done in [44–46] with regards to the end state of Boulware–
Deser collapse. Using our mass function, we showed that
collapse terminates with a weak and conical singularity. The
trapping horizon formation was initially delayed by the pres-
ence of the Gauss–Bonnet coupling constant, however even-
tually formed covering the singularity within the confines of
a quasi-regular black hole. The generalised radiating field did

not affect the gravitational collapse process in EGB gravity,
as any of the values for the equation of state parameter ωs

would result in the collapse terminating in the same way.
This is fundamentally different to the general relativity case
analysed in detail by [34].
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Appendix A: Einstein and Lovelock tensor calculations

The nonvanishing components of the Einstein tensor Ga
b are

G0
0 = G1

1 = − 3

2
√

1 + 16αM
r4

×
[

1

αr2
+ 8M

r4
+ 2Mr

r3

− r4
√

1 + 16αM

r4

]
, (A.1a)

G1
0 = 3Mv

r3
√

1 + 16αM
r4

, (A.1b)

G2
2 = G3

3 = G4
4 = − −1

2r8α + 32α2r4M

×
[
−3r8

√
1 + 16αM

r4

+ 2Mrrαr6 + 3r8 + 32α2r2Mrr − 16α2r2M2
r

+ 72αr4M + 128α2rMr + 128α2M2

− 48αr4M

√
1 + 16αM

r4

]
, (A.1c)
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where

Mv = ∂M

∂v
, Mr = ∂M

∂r
.

The nonvanishing components of the Lanczos tensor (7)
become

H0
0 = H1

1 = − 3

α2r3(r4 + 16αM)

×
[
r7

√
1 + 16αM

r4

+ 2αr4Mr

√
1 + 16αM

r4

− r7 − 2αr4Mr − 32α2MMr

+ 8αr3M

√
1 + 16αM

r4
− 16αr3M

]
, (A.2a)

H1
0 =

6Mv

[
r4

√
1 + 16αM

r4 − r4 − 16αM
]

αr3(r4 + 16αM)
, (A.2b)

H2
2 = H3

3 = H4
4 =

(
1 + 16αM

r4

)− 1
2

α2r4(r4 + 16αM)

×
[

2αr6Mrr

√
1 + 16αM

r4

+ 3r8
√

1 + 16αM

r4
− 2αr6Mrr − 3r8

+ 32α2r2MMrr − 32α2r2MMrr

+ 16α2r2M2 − 128α2rMr − 128α2M2

+ 48αr4M

√
1 + 16αM

r4
− 72αr4M

]
. (A.2c)
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