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Abstract The existence of a minimum length in quantum

gravity is investigated by computing the in-in expectation

value of the proper distance in the Schwinger–Keldysh for-

malism. No minimum geometrical length is found for arbi-

trary gravitational theories to all orders in perturbation the-

ory. Using non-perturbative techniques, we also show that

neither the conformal sector of general relativity nor higher-

derivative gravity features a minimum length. A minimum

length scale, on the other hand, seems to always be present

when one considers in-out amplitudes, from which one could

extract the energy scale of scattering processes.

1 Introduction

As we live in a world where all of our daily observations take

place at scales such as the meter, the second and the kilogram,

it is not easy for modern human minds to grasp the possibility

that there exists fundamental upper or lower bounds on phys-

ical quantities that could otherwise become evident at much

smaller or larger scales. Our experience and the convenience

of describing it with continuum mathematics therefore make

us think that it is natural for physical quantities to admit an

infinite range of possible values. In fact, nothing in classical

mechanics forbids us from speeding to infinity or dismantling

the spacetime into infinitesimally small distances. Yet it is a

fact of nature that there exists a limiting speed, which special

relativity incorporates and allows us to describe its kinemat-
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ical consequences. Naturally, this raises the similar question

of whether it is possible to probe decreasingly small lengths

or if there is a limiting factor that keep us from accessing

some fundamental length scales.

The notion of a minimum length (see Ref. [1] for a

in-depth review) dates back to the early days of quantum

field theory, when physicists were desperately attempting to

get rid of the troubling ultraviolet divergences, but it soon

became unattractive with the advent of the more sophisti-

cated methods of renormalization. It only regained notoriety

with the increasing interest in trans-Planckian effects. Cur-

rently, many models of quantum gravity exhibit some notion

of minimum length, including string theory, loop quantum

gravity, asymptotically safe gravity and the conformal sector

of general relativity. However, some works have established

the possibility of a minimum geometrical length by employ-

ing the standard Feynman path integral for the calculation of

time-ordered in-out amplitudes [2]. These amplitudes are the

correct ingredients for obtaining S-matrix elements from the

LSZ formula, but are otherwise acausal and complex, being

subjected to Feynman boundary conditions. Taken literally,

an observable minimum length in quantum gravity should be

real to all loop orders and bare the statistical properties of an

expectation value. In this respect, it is therefore very impor-

tant to distinguish between the use of in-out amplitudes and

in-in amplitudes, the latter being the objects which admit

a proper statistical interpretation. These requirements lead

us to study the minimum length using the in-in expectation

value, which can be obtained in the Schwinger–Keldysh path
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integral formalism [3] and whose evolution is subjected to

retarded boundary conditions [4].

The main goal of this paper is to investigate the distinct

properties of the in-in proper distance, which can be directly

interpreted as a geometrical length, and the in-out proper

“length”, which cannot be interpreted as a physical distance

but sets the length scale of the underlying scattering process.

As we will see, the former vanishes quite generally at the

coincidence limit, suggesting that a geometrical minimum

length is most likely absent. On the other hand, when the latter

is evaluated at the coincidence limit, it acquires a finite value

of the order of the Planck scale under very general assump-

tions, indicating that a minimum length scale is very likely to

exist. The implication of these results is that nothing prevents

one from going through vanishingly small distances in prin-

ciple, but scattering experiments cannot reliably distinguish

between events taking place at the Planck scale, since any

two processes differing only at trans-Planckian scales would

produce the same scattering amplitudes.

This paper is organized as follows: in Sect. 2, we briefly

review some aspects of the Schwinger–Keldysh formalism

used for the calculation of in-in amplitudes; in Sect. 3, we

show that a minimum length cannot exist to second order in

the metric perturbation for any metric theory of gravity whose

gravitational propagator can be written as the sum of partial

fractions of the form (q2 − m2)−1, but a minimum length

scale is always present. The absence of interactions allows

the extension of this result to all orders in perturbation theory,

although interacting theories would require the evaluation of

higher-order amplitudes; Sect. 4 is devoted to the study of a

minimum length in higher-derivative gravity. Without resort-

ing to perturbation theory, we show that higher-derivative

gravity does not exhibit any obstruction to the continuous

shrinkage of the quantum proper length to zero; in Sect. 5,

we revisit the conformal degree of freedom in gravity, which

had previously been shown to yield a ground-state length

in the in-out approach. The Schwinger–Keldysh formalism

allows us to show that the minimum length is again absent

in this theory; we finally draw our conclusions and briefly

compare with other approaches in Sect. 6.

2 Schwinger–Keldysh formalism

Before elaborating on the minimum length, we need to clar-

ify an important point that has been largely ignored in the

literature. In all calculations of the expectation value of the

proper length 〈 ds2 〉, the in-out formalism has been implicitly

employed with no proper justification, which makes 〈 ds2 〉
a short-hand notation for 〈 0out |ds2| 0in 〉, namely some sort

of transition amplitude from an in-vacuum state to an out-

vacuum state. This is the standard kind of amplitude obtained

from functional derivatives of the generating functional Z [J ]
which results from Feynman path integrals and satisfies

Feynman boundary conditions. Transition amplitudes are in

general acausal and complex (even for Hermitian operators)

distributions, thus they cannot make up the list of observ-

ables of a quantum field theory. This is usually not an issue

because they only show up in intermediate steps of the cal-

culation of S-matrix components, eventually yielding cross

sections, which are the ultimate object of interest in scattering

experiments.

Although the in-out formalism is the standard approach for

the calculation of scattering amplitudes, its use obscures the

physical interpretation of the quantum proper length. For the

above reasons, the fact that | 0in 〉 �= | 0out 〉 makes it impos-

sible to interpret 〈 0out |ds2| 0in 〉 as an expectation value or

to attribute to it any statistical meaning. It appears hard to

accept that a length which is neither real nor respects causal-

ity can bare any physical reality. In order to talk of a minimum

length, we need to calculate 〈 0in |ds2| 0in 〉 instead, namely

the quantum proper length evaluated on one and the same

quantum state | 0in 〉. It is important to remark that the in-in

mean field 〈 0in |φ| 0in 〉 not only is real for Hermitian opera-

tors φ, it also evolve causally, which is particularly important

for time-dependent settings in which ones does not know, or

is not interested in, the final state | 0out 〉 of the system.

The calculation of in-in amplitudes does not follow

directly from the usual Feynman path integral, but it can be

performed using the slightly different Schwinger–Keldysh

formalism (or closed-time path integral) [3,4]. The idea is

to double each degree of freedom φ and commonly denote

the two peers with φ+ and φ−. The field φ+ is generated

by an external source J+ and is responsible for the transi-

tion between | 0in 〉 and an intermediate state | �α 〉 belong-

ing to a future Cauchy surface �, while φ− is generated
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by J− and takes care of the transition from | �α 〉 back to

| 0in 〉. Assuming {| �α 〉} form a complete set of states, the

functional generator of connected in-in correlation functions

is then obtained by summing over all possible intermediate

states | �α 〉, to wit

ei W [J+,J−] =
∑

α

〈 0in | �α 〉J−〈�α | 0in 〉J+ . (1)

If we further assume that {| �α 〉} are eigenstates of φ on �,

we can write Eq. (1) in terms of Feynman path integrals as

ei W [J+,J−] =
∫

Dφ+ Dφ− e
i
h̄ {S[φ+]+S[φ−]+J+ φ+−J− φ−}

,

(2)

where the integration variables are subjected to vacuum

boundary conditions in the remote past (corresponding to

the state | 0in 〉) and φ+ = φ− on �. The various in-in

correlation functions are obtained by functionally differen-

tiating W [J+, J−] with respect to the sources and setting

J+ = J− = 0 in the end. Because there are now two types

of fields and two types of sources, there will be two kinds of

vertices and four kinds of propagators involved in Feynman

diagrams, namely

Gab(x, x
′) = h̄ δ

sign(a) i δ Ja(x)

h̄ δ

sign(b) i δ Jb(x ′) e
i W [J+,J−]

∣∣∣∣
J+=J−=0

,

(3)

where

sign(a) =
⎧
⎨

⎩
+1 for a = +
−1 for a = −.

(4)

The diagonal components of Gab correspond to the Feynman

and anti-Feynman propagators,

G++(x, x ′) = 〈 0in |T φ(x) φ(x ′)| 0in 〉 (5)

G−−(x, x ′) = 〈 0in |T̄ φ(x) φ(x ′)| 0in 〉, (6)

where T and T̄ denote the time-ordered and anti time-ordered

operators, respectively. The off-diagonal components corre-

spond to Wightman correlation functions,

G+−(x, x ′) = 〈 0in |φ(x ′) φ(x)| 0in 〉 (7)

G−+(x, x ′) = 〈 0in |φ(x) φ(x ′)| 0in 〉. (8)

Apart from the additional vertices and propagators, the in-in

Feynman rules are identical to the standard ones.

For our purposes, the most important features of the

Schwinger–Keldysh formalism are the reality and causal-

ity of the in-in mean field 〈 0in |gμν | 0in 〉, and consequently

of 〈 0in |ds2| 0in 〉. These properties can be verified at every

loop order by using the effective equations derived from the

in-in effective action �[φ+, φ−], which is in turn given by

the Legendre transform of the in-in generating functional

W [J+, J−] with respect to the sources J±. The reality of the

mean field is crucial for the interpretation of 〈 0in |ds2| 0in 〉
as a physical length, whereas its causality uniquely deter-

mines the retarded Green’s function Gret = G++ − G+− as

the correct propagator to be used for the calculation of the

minimum length in the next section. We refer the reader to

Refs. [4,5] for the detailed proof of the reality and causality

of the mean field.

3 Absence of a minimum length, presence of a

minimum length scale

In the present section, we use the results of Sect. 2 to elab-

orate a model-independent argument for the absence of a

minimum geometrical distance to all orders of perturba-

tion theory. We only assume that the gravitational field is

described by a metric tensor gμν for which a background

value ḡμν exists in the vacuum | 0in 〉, and on which its quan-

tum fluctuations are free of interactions. While the latter

is obviously unrealistic, it should be enough for grasping

the idea of a minimum length. In fact, we would expect

that a minimum length could exist as a consequence of

quantum fluctuations, which promote uncertainties in the

proper length regardless of whether they are interacting or

not.

Instead of parameterizing the quantum field by the usual

linear perturbation gμν = ḡμν + hμν , we shall use the expo-

nential parameterization previously considered in Refs. [6–

8], that is 1

1 With this parameterization, the quantum fluctuation hμν has the

dimensions of a canonical scalar field, that is
√

mass/length.
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gμν = ḡμρ

⎛

⎝e

√
32 π 
p
mp

h

⎞

⎠
ρ

ν

= ḡμν +
√

32 π 
p

mp
hμν + 16 π 
p

mp
hμρ h

ρ
ν

+O
(
(
p/mp)

3/2
)

, (9)

where 
p = √
GN h̄ and mp = √

h̄/GN denote the Planck

length and mass, respectively. The exponential parameter-

ization has the advantage of transforming the problem of

calculating the expectation value of ds2 into the problem

of computing correlation functions of the quantum field hμν .

Note that, classically, there is nothing that prevents the proper

distance between two spacetime points of coordinates xμ and

yμ from going to zero in the limit in which dxμ = yμ − xμ

vanish and the points coincide. We thus expect

lim
x→y

ds2 = lim
x→y

(
ḡμν dxμ dxν

) ≡ lim
x→y

[

2(x, y)

]
= 0,

(10)

for any classical metric ḡμν . Nonetheless, since the expecta-

tion value of quadratic and higher-order quantities evaluated

at the same spacetime event, such as 〈 0in |hμρ(x) hρ
ν(x)| 0in 〉,

are divergent in quantum field theory, the coincidence limit

of the quantum proper length must be computed with care. In

fact, we must first regularize the divergences as there might be

occasional cancelations leading to a minimal length. Because

we are interested only in the coincidence limit, it is natural

to isolate the divergences with the covariant point-splitting,

namely

〈 0in |hμρ(x) hρ
ν(x)| 0in 〉

= lim
x→y

〈 0in |hμρ(x) hρ
ν(y)| 0in 〉, (11)

with similar expressions for higher-order correlators. This

allows us to write the quantum proper length in terms of

correlation functions, which at second order in hμν reads

lim
x→y

〈 0in |ds2| 0in 〉 = lim
x→y

(〈 0in |gμν | 0in 〉 dxμ dxν
)

= 16 π 
p

mp
lim
x→y

[〈 0in |hμρ(x) hρ
ν(y)| 0in 〉 dxμ dxν

]

≡ 16 π 
p

mp
lim
x→y

[
G ρ

μρ μ(x, y) dxμ dxν
]

(12)

where we used the expansion in Eq. (9) together with the fact

that the contribution at zero separation vanishes according to

Eq. (10), as well as does the first order 〈 0in |hμν | 0in 〉 = 0.

The question of a minimum length is thus translated into

the calculation of the in-in gravitational propagator G ρ
μρ μ.

But as we saw in Sect. 2, there are four different types of

propagators associated to in-in processes and, furthermore,

they can be combined into other propagators, such as the

retarded and the advanced ones. The immediate consequence

is that 〈 0in |ds2| 0in 〉 appears ambiguous as there is a priori

no reason to choose one propagator over the others. In our

case, the way we determine the relevant propagator should

depend on how one measures distances between two points

at such (expectedly Planckian) small scales. Such a measure-

ment can take place via scattering processes (e.g. to deter-

mine the mean free path), which requires the Feynman prop-

agator, or via the observation of a certain signal at different

times along its evolution, which would require the retarded

Green’s function. Thus, the requirement of causality in the

evolution of 〈 0in |ds2| 0in 〉 entails the use of the retarded

Green’s function [4,5]. Note that mid-step calculations will

involve all four types of Green’s functions, but the final result

must necessarily depend solely on the retarded Green’s func-

tion due to causality. In fact, as shown in Refs. [5] (see also

[9] for a detailed review), the in-in correlation functions (to

any loop order) are obtained by replacing form factors by

retarded Green’s functions. In the asymptotically flat and

empty spacetime, this agrees with the boundary conditions

in the remote past of the mean field.

The calculation of propagators for an arbitrary curved

background ḡμν only add unnecessary complication, thus

we shall take ḡμν = ημν as the Minkowski spacetime in the

rest of this paper. Our argument can then be generalised to

curved spaces with the aid of the Schwinger proper-time rep-

resentation for propagators. We shall also treat hμν as a free

field and assume the gravitational propagator in momentum

space to take the simplest form of a sum over the number of

simple poles m2
i in the q2-plane, that is

�μνρσ (q2) =
∑

i

h̄ Pi
μνρσ

q2 − m2
i

, (13)

where

Pi
μνρσ = αi ημρ ηνσ + β i ημσ ηνρ + γ i ημν ηρσ (14)

is the most general tensorial structure that can be combined

into a tensor of fourth rank and which is symmetric in {μν}
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and {ρσ }. The coefficients αi , β i and γ i take different values

according to the theory at hand. The propagator in position

space is obtained from the ε-prescription or, equivalently, the

integration contour corresponding to the retarded boundary

condition and reads

Gret
μνρσ (x, y) =

∑

i

[
−θ(x0 − y0)

2 π
δ(
2)

+θ(x0 − y0) θ(
2)
mi J1(mi 
)

4 π 


]
h̄ Pi

μνρσ ,

(15)

where 
2 ≡ 
2(x, y) = ημν dxμ dxν is the background

proper distance between x and y = x + dx . The contrac-

tion Pi ρ
μρ ν dxμ dxν will always result in a factor of 
2 in the

numerator that can potentially be canceled by a divergence


−2 of the propagator, leaving a non-zero minimum length

behind. Note, however, that the first term above only contains

a Dirac delta divergence that cannot be canceled by 
2 and

actually vanishes on integration, whereas the second term

diverges as 
−1 and cannot prevent 
2 from going to zero.

Putting this all together, gives

lim
x→y

〈 0in |ds2| 0in 〉 = 16 π 
p

mp
lim
x→y

[
Gret ρ

μρ ν(x, y) dxμ dxν
]

= 0 (16)

and we conclude that there is no minimum length to second

order in hμν . For an interacting theory, this does not imply

the absence of a minimum length to all orders in perturbation

theory. In the free theory, however, Wick’s theorem can be

used to reduce higher-order vacuum correlation functions

into a sum over products of the propagator, leading to

〈 hn+2 〉 ∼ 1


n+2 , n = 1, 2, . . . (17)

which suggests that there is no other relevant correlation

function (in addition to the one for n = 0) that could pos-

sibly cancel the vanishing length 
2 to produce a non-zero

minimum length, thus extending Eq. (16) to all orders in hμν .

This is in fact confirmed by the following non-perturbative

calculation. From Eq. (9) we have,

lim
x→y

〈 0in |ds2| 0in 〉

= lim
x→y

⎡

⎣ημρ 〈 0in |
⎛

⎝e
1
2

√
32π
p
mp

h(x)
e

1
2

√
32π
p
mp

h(y)

⎞

⎠
ρ

ν

| 0in 〉 dxμ dxν

⎤

⎦

= lim
x→y

[
ημρ

(
e

8π
p
mp

〈 0in | h(x) h(y) | 0in 〉
)ρ

ν

dxμ dxν

]

= lim
x→y

[

2 e−4 
2

p θ(x0−y0) δ(
2)
∑

i (α
i+4βi+γ i )

]

= 0, (18)

where we used point-splitting in the first line, applying nor-

mal ordering in both exponential operators separately, and the

Baker–Campbell–Hausdorff formula together with Wick’s

theorem in the second equality. The third equality is obtained

by manipulating the exponential as an infinite series and

resuming back to the exponential form.2 Free gravitational

fluctuations are thus not prone to minimum length. Even

when interactions are switched on, loop corrections to the

free propagator cannot change this picture at second order.

In fact, the dressed propagator can be written in the Källén–

Lehmann spectral representation in terms of the free propa-

gator itself as

Gdressed
μνρσ (x, y) =

∫ ∞

0
dμ2 ρ(μ2)Gret

μνρσ (x − y;μ2) (19)

where ρ(μ2) is the spectral density. Therefore, replacingGret

withGdressed in Eq. (16) would still give zero. However, in the

interacting theory one can no longer rely on Wick’s theorem

to express higher-order correlation functions as products of

the two-point function. The vanishing of 〈 0in |ds2| 0in 〉 at

second order does therefore not allow us to come to any

definite conclusion about the existence of a minimum length

in an interacting theory.

Before continuing, let us comment on the in-out proper

“length” 〈 0out |ds2| 0in 〉. Although we have emphasized that

it cannot be interpreted as a physical length or a statistical

quantity, it might suggest the existence of a minimum length

scale. If we repeat the above argument for the in-out ampli-

tude, we find

lim
x→y

〈 0out |ds2| 0in 〉 = N lim
x→y

⎡

⎣
2 e
2
2

p
π
2

∑
i (α

i+4βi+γ i )

⎤

⎦

=
⎧
⎨

⎩

2 
2
p

π

∑
i

(
αi + 4 βi + γ i

)
∼ 
2

p for
∑

i (α
i + 4βi + γ i ) > 0

0 for
∑

i (α
i + 4βi + γ i ) ≤ 0 ,

(20)

whereN = 〈0out|0in〉 is a normalization factor chosen to can-

cel divergences at 
 = 0. We used the Feynman propagator

for small distances,

2 We defined the product of Dirac deltas as a convolution δ2 → δ ∗δ =
δ.
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GF
μνρσ (x, y) =

∑

i

h̄ Pi
μνρσ

4 π2 (x − y)2 + O(|x − y|) , (21)

which is obtained by Fourier transforming Eq. (13) with

Feynman boundary conditions.

Note that the exponential is divergent, but one can isolate

the divergences from the finite part by expanding the expo-

nential function as a Taylor series. The zeroth order term

is simply 
2 which goes smoothly to zero. The first order

term in the expansion is also finite (but non-zero) because of

the cancelation of 
2 in the numerator and in the denomina-

tor. Higher-order terms contain the divergences. Nonetheless,

one can use the arbitrariness of the normalization factor N
to cancel the divergent part so that the limit 
 → 0 is finite.

Eq. (20) points at the Planck scale as a potential limiting fac-

tor that screens everything that goes beyond it. This is not

to say that physical distances cannot vanish, but it suggests

that scattering experiments cannot tell apart trans-Planckian

effects. In the foreseeable future, astrophysics and cosmology

seem to be the only hope to probe quantum gravity experi-

mentally.

We kept the argument completely general, without the

need of specifying the gravitational theory, thus the conclu-

sions above are quite general with the only restriction that the

gravitational field be described solely in terms of the metric.

Different theories will differ by their propagators with differ-

ent values for the coefficients αi , β i and γ i , but they will all

produce vanishing minimum lengths and non-zero minimum

length scales of Planckian order unless

∑

i

(αi + 4β i + γ i ) ≤ 0. (22)

In general relativity, for example, the massless spin-2 field

(graviton) is the only degree of freedom,

h̄−1�μνρσ = ηρμ ησν + ησμ ηρν − ημν ηρσ

q2 . (23)

The above considerations imply that no minimum length

exists for general relativity, but a minimum length scale is

again inferred from

lim
x→y

〈 0out |ds2| 0in 〉 = 8 
2
p

π
. (24)

More general theories of gravity are expected to contain other

degrees of freedom in addition to the graviton. This is evi-

dent in higher-derivative theories where new degrees of free-

dom are essential for the renormalizability of the theory. For

example, the propagator of Stelle’s theory reads [10,11]

h̄−1�μνρσ = 2 P(2)
μνρσ − P(0)

μνρσ

q2 − 2 P(2)
μνρσ

q2 − m2
2

+ P(0)
μνρσ

q2 − m2
0

,

(25)

where P(i)
μνρσ are spin-projection operators, and one can see

the additional massive degrees of freedom, namely a scalar

excitation of mass h̄ m0 and a spin-2 particle of mass h̄ m2,

that turn out to make the theory renormalizable. The mini-

mum length scale in this case vanishes

lim
x→y

〈 0out |ds2| 0in 〉 = 0. (26)

due to accidental cancelations of the coefficients in the

numerator
∑

i

(
αi + 4 β i + γ i

) = 0. When self-interactions

are considered for hμν , all the three degrees of freedom will

couple to each other, making the whole analysis much more

difficult. In this scenario, Wick’s theorem is of no help to us

and nothing can be said about the contributions from higher-

order correlation functions, thus a non-perturbative treatment

is certainly desirable. This is the subject of the following sec-

tion.

4 A non-perturbative example: higher-derivative

gravity

In this section, we compute the quantum proper length

〈 0in |ds2| 0in 〉 non-perturbatively for higher-derivative grav-

ity without resorting on the exponential parameterization

used in the last Section. The idea is to perform field redefi-

nitions in the action in order to make the additional degrees

of freedom explicit from the outset.

The action of higher-derivative gravity reads

S = mp

16 π 
p

∫
d4x

√−g

×
(
R + c1 R2 + c2 Rμν Rμν + c3 Rμνρσ Rμνρσ

)
,

(27)
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where R, Rμν and Rμνρσ are the Ricci scalar, Ricci tensor

and Riemann tensor of the metric gμν , respectively,3 and

ci are dimensionful coupling constants. The above action

contains massive particles of spin-0 and spin-2 in addition to

the usual graviton which corresponds to the massless spin-2

excitation. All these degrees of freedom can be made explicit

in the action via a Legendre transform [12] followed by a field

redefinition of the form [13]

gμν = e
−
√

16π 
p
3mp

χ
ḡμν, (28)

resulting in the action [13]

S =
∫

d4x
√−ḡ

[
mp

16 π 
p
R̄ − 1

2
∇̄μχ ∇̄μχ

− 3mp

32 π 
p
m2

0

⎛

⎝1 − e
−
√

16π 
p
3mp

χ

⎞

⎠
2

− mp

16 π 
p
Ḡμν πμν + mp

64 π 
p
m2

2

(
πμν πμν − π2

)]
,

(29)

where π ≡ ḡμν πμν , m0 = (6 c1 + 2 c2 + 2 c3)
−1/2 is the

inverse Compton length of the scalar field χ and m2 =
(−c2 − 4 c3)

−1/2 that of the massive spin-2 particle πμν .

Note that the action for πμν is not in canonical form (it

does not even contain a kinetic term). Canonicalizing πμν

requires an additional field redefinition (see Ref. [13]). This

additional field redefinition gives rise to the kinetic term

of πμν as well as it makes explicit the coupling between

πμν and χ . Nonetheless, the frame with a canonical πμν is

no better than any other frame. We chose to work in the

frame (29) because it simplifies the calculation of the mini-

mum length.

We interpret ḡμν as a classical background4 where the quan-

tum fields χ and πμν live on and, as before, we consider

the Minkowski background ḡμν = ημν . Since there is no

explicit interaction of χ with πμν in the action (29), we can

focus solely on the spin-0 sector. From the translational sym-

metry of the path integral measure, we can shift χ → χ +χ0

3 Note that the square of the Riemann tensor is usually eliminated in

favour of the other two curvature invariants by invoking Gauss-Bonnet

theorem. Here we choose to leave it explicit in the action just to follow

the same notations commonly used in the literature.
4 Fluctuations hμν of ḡμν would only contribute to higher-order terms

h χ �χ ∼ O(E5/m5
p), which are negligible to leading order.

and take χ0 → ∞, which simplifies the spin-0 action

to [14]

Sχ = 1

2

∫
d4x χ �χ, (30)

where we discarded a constant term as it does not contribute

to the equations of motion. The retarded propagator for χ is

thus simply given by the propagator of a massless scalar field

[14]

〈 0in |χ(x) χ(y)| 0in 〉 = −h̄
θ(x0 − y0)

2 π
δ(
2). (31)

From Eqs. (28) and (31), the quantum proper length in the

in-vacuum state vanishes in the coincidence limit as

lim
x→y

〈 0in |ds2| 0in 〉

= lim
x→y

⎡

⎣
〈

0in|e−
1
2

√
16π 
p
3mp

χ(x)
e
− 1

2

√
16π 
p
3mp

χ(y)|0in

〉
, ημν dxμ dxν

⎤

⎦

= lim
x→y

[

2 e

4π
p
3mp

〈 0in |χ(x) χ(y)| 0in 〉
]

= 0. (32)

As before, we performed a point-splitting in the first line,

imposing normal ordering in each of the exponential opera-

tors separately. The second equality follows from the Baker–

Campbell–Hausdorff formula in combination with Wick’s

theorem.5. Therefore, the finding (32) confirms that the van-

ishing of the quantum proper length observed in Eq. (16)

for non-interacting fluctuations hμν actually extends to the

interacting case as well. Similarly, the in-out proper “length”

reads

lim
x→y

〈 0out |ds2| 0in 〉 = N 
2 lim
x→y

[
e

4π
p
3mp

〈 0out |χ(x) χ(y)| 0in 〉
]

= 
2
p

3 π
, (33)

5 Notice that we started with the full interacting theory Eq. (29), but we

managed to reduce the scalar sector to that of a free scalar field (30),

which permits the application of the Wick’s theorem. That is not to

say that χ is physically free of interactions as the action we started

with does contain interaction terms among all degrees of freedom. In

fact, choosing a background other than Minkowski would invalidate

our argument, since the path integral measure would no longer have

translational symmetry. Non-trivial path integral contributions would

then come into play, making the calculation very difficult at the non-

perturbative level. As long as we make the simplifying assumption that

the background is Minkowski, non-perturbative calculations are possi-

ble. The same applies to the example of Sect. 5

123
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where we again chose the normalization factor N to absorb

the divergence and we used

〈 0out |χ(x) χ(y)| 0in 〉 = h̄

4 π2 (x − y)2 . (34)

This shows that the finite part of 〈 0out |ds2| 0in 〉 is not zero

and indicates the existence of a minimum length scale. It is

important to stress that Eq. (33) is a non-perturbative result

which takes into account all interactions between the degrees

of freedom present in the theory. This explains the difference

with respect to the non-interacting case in Eq. (26).

5 Revisiting the conformal degree of freedom

In Ref. [2], it was argued that a Planckian minimum length

exists when one quantizes the conformal degree of freedom

of general relativity on a classical background. This was per-

formed by first parameterizing the metric as6

gμν = (1 + φ)2 ḡμν, (35)

which separates the conformal degree of freedom φ from the

other degrees of freedom present in the classical background

ḡμν . In the parameterization (35), the Einstein–Hilbert action

becomes

S = mp

16 π 
p

∫
d4x

√−ḡ

×
[
R̄ (1 + φ)2 − 2 �(1 + φ)4 − 6 ∂μφ ∂μφ

]
. (36)

In a Minkowski background, namely R̄ = � = 0, the action

effectively becomes that of a free and massless scalar field.

Because of the simplicity of the action when ḡμν = ημν ,

one is able to perform non-perturbative calculations. Upon

quantizing the conformal degree of freedom φ, its Feynman

propagator can be easily obtained as7

〈 0out |φ(x) φ(y)| 0in 〉 = h̄ 
2
p

3 π mp (x − y)2 . (37)

6 We keep the field φ dimensionless here, instead of choosing the canon-

ical normalization of previous sections, in order to ease the comparison

with the original work [2].
7 The non-standard numerical factor appears because of the non-

canonical normalization of φ.

The quantum proper distance 〈 0out |ds2| 0in 〉 in the in-out

formalism was then calculated with the aid of the point-

splitting regularization as in Section 3. One therefore obtains

lim
x→y

〈 0out |ds2| 0in 〉
= lim

x→y

[〈 0out |φ(x) φ(y)| 0in 〉 ημν dxμ dxν
]

,

= 
2
p

3 π
, (38)

which precisely equals the result (33).

However, as we stressed previously, 〈 0out |ds2| 0in 〉 should

not be interpreted as a physical distance because it is a com-

plex number in general. Eq. (38) only gives a real result

because it was computed at the tree level, but when loop

corrections are taken into account, an imaginary part shows

up in Eq. (38). The correct way of computing geometrical dis-

tances at the quantum level is via in-in amplitudes, in which

case we must replace the Feynman propagator (37) with the

retarded propagator (31) (with φ in place of χ and taking

into account the field normalizations), which yields

lim
x→y

〈 0in |ds2| 0in 〉

= lim
x→y

[
(1 + 〈 0in |φ(x) φ(y)| 0in 〉) 
2

]

= 0, (39)

showing, once again, the absence of a minimum length.

6 Conclusions

In this paper, we have reconsidered the idea of a minimum

geometrical length in quantum gravity through the lens of the

Schwinger–Keldysh formalism, from which in-in amplitudes

can be derived. Because the in-in quantum proper distance

is calculated from a single state, one is able to interpret it

as a truly geometrical length that happens to be real at all

loop orders and satisfies a causal equation of motion, which

is manifested via retarded Green’s functions. When the in-

in proper length is evaluated at coinciding points, we used

perturbative arguments to show it vanishes at second order

for any metric theory of gravity. In the absence of interac-

tions, this result can be extended to all orders of perturbation

theory. Under suitable reparametrizations of the metric, we

also showed non-perturbatively that a minimum length can-

not exist in higher-derivative gravity or in the conformal sec-
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tor of general relativity. Whereas the requirement of reality

should be obvious for the notion of a geometrical distance,

one might argue why causality is also a welcome property.

The use of the retarded propagator demanded by the in-in

formalism implies that quantum corrections to the distance

between two spacetime points will always vanish when the

points lie outside the respective light cones in the background

metric. This result therefore appears as a consistency condi-

tion for the very existence of a background metric and the

geometrical description of gravity.8 Moreover, and indeed

equivalently, this result implies that the free propagation of

physical signals of any frequency will not be affected by a

fundamental length scale. Their dispersion relation will be

simply determined by the background metric and quantum

gravity effects cannot be probed by detecting the way signals

travel through spacetime.

While a geometrical minimum length seems to be unlikely,

we made the case for a minimum length scale, namely the

scale extracted from the in-out amplitude 〈 0out |ds2| 0in 〉
at the coincidence limit. By following the same reasoning

as for the in-in length, we found theoretical evidence that

points at the Planck length as a universal scale beyond which

scattering experiments become useless as, even in princi-

ple, they cannot distinguish between physical effects taking

place at energies E � mp. This only reinforces the need for a

change of paradigm in quantum field theory from scattering

experiments to time-dependent evolutions, which signifies

the importance of in-in amplitudes in physics. Of course, one

could further argue that most physical processes involve scat-

terings at some level. For instance, the physical signals we

can detect will have been produced by interactions, whose

field theoretic description is given in terms of an S-matrix

involving Feynman propagators. Here is where the minimum

length scale seems to enter the picture again, opening up the

possibility of probing quantum gravity indirectly from the

imprints left in the signals at lower energies.9

8 Note that the background metric could still be determined self-

consistently by solving effective field equations which include loop

corrections without affecting our argument.
9 We also mention that scatterings at trans-Planckian energies are

expected to produce (quantum or semiclassical) black holes and the

issue of a minimum length becomes intertwined with the features of such

non-perturbative configurations, which generalised uncertainty princi-

ples were envisioned to account for [1,15].

We would like to conclude by remarking once more that

the basic assumption in our analysis is the existence of a

background metric (irrespectively of what that metric actu-

ally is). Approaches which lead to the appearance of a min-

imum geometric length must somehow violate this require-

ment. For instance, the resemblance of general relativity to

thermodynamics [16] suggests that the classical geometry of

spacetime is an emergent phenomenon, very much like the

notion of thermodynamics for a classical fluid emerges from

the statistical mechanics of a more fundamental microscopic

theory. Waves in such a fluid can be produced and freely prop-

agate only if their wavelength is significantly larger than the

scale of the underlying microscopic structure. This brings

forth the questions of what is the fundamental dynamics of

gravity at the Planck scale and, not less important, what is the

quantum state | 0in 〉, which describe the Universe as we see

it. Results from effective field theoretic descriptions at exper-

imentally accessible scales can hopefully serve as a guideline

in this quest.
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