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Abstract We investigate neutrino oscillation in the field of
an axially symmetric space-time, employing the so-called
q-metric, in the context of general relativity. Following the
standard approach, we compute the phase shift invoking
the weak and strong field limits and small deformation. To
do so, we consider neutron stars, white dwarfs and super-
novae as strong gravitational regimes whereas the solar sys-
tem as weak field regime. We argue that the inclusion of
the quadrupole parameter leads to the modification of the
well-known results coming from the spherical solution due
to the Schwarschild space-time. Hence, we show that in the
solar system regime, considering the Earth and Sun, there
is a weak probability to detect deviations from the flat case,
differently from the case of neutron stars and white dwarfs
in which this probability is larger. Thus, we heuristically dis-
cuss some implications on constraining the free parameters
of the phase shift by means of astrophysical neutrinos. A
few consequences in cosmology and possible applications
for future space experiments are also discussed throughout
the text.

1 Introduction

Ever since their discovery [1,2], neutrinos have been under
scrutiny for their exotic and enigmatic properties. In the stan-
dard model of particle physics, neutrinos are massless and
left-handed particles, albeit recent observations definitively
showed that these particles have a non-vanishing mass [3–5].

On the one hand, the absolute scale of neutrino’s mass
spectra is yet unknown, although on the other hand the min-
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imum scale1 is given by the larger mass splitting, set around
∼ 50 meV [6]. Both flavor mixing and neutrino oscillation
are therefore theoretical challenges for quantum field the-
ory since Pontecorvo’s original treatment in which the phe-
nomenon of oscillation was firstly described2 [9].

Immediately after having introduced the concept of neu-
trino oscillation, Mikheyev, Smirnov and Wolfenstein inves-
tigated transformations of one neutrino flavor into another in
media with non-constant density [10,11]. To understand the
origin of neutrino masses, possible extensions of the standard
model of particle physics have been extensively reviewed
[12], whereas several experimental studies have fixed bounds
on atmospheric and Solar neutrino oscillation. The theoret-
ical scheme behind oscillation has been widely investigated
so far, giving rise to a wide number of different treatments
and approaches [13] to disclose the origin of neutrino masses.

In particular, an intriguing challenge is to understand the
role played by strong gravitational fields on oscillation [14].
In fact, when the effects of gravity are not negligible, one is
forced to use curved space-times in general relativity (GR)
to characterize how matter’s distribution influences the oscil-
lation itself [15,16]. In this respect, neutrino oscillation in
curved space-times has been reviewed under several prescrip-
tions and conceptually one can consider two main perspec-
tives intimately interconnected between them. The first inter-
pretation assumes curved geometry to fuel the oscillation.
Here, space-time behaves as a source for neutrino oscillation,
whereas the second one assumes that oscillation is modified
by gravity, without being a pure source (see e.g. [17–20]). The

1 The mixing angles associated with atmospheric and Solar transitions
are so far quite large leading to unbounded results.
2 The original proposal for massive neutrino mixing and oscillation has
been argued in flat space-time [7]. Indirect evidence for massive neu-
trinos comes from the Solar neutrino deficit, the atmospheric neutrino
anomaly and the evidence from the LSND experiment [8].
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former does not act as a source for the oscillation itself. Obvi-
ously, the two approaches do not show a strong dichotomy
since the gravitational contribution is responsible for oscil-
lation in both the cases.

Both interpretations, although appealing, are so far theo-
retical speculations only in which the neutrino phase shift can
be computed once the space-time symmetry is assumed a pri-
ori [21–32]. In particular, there exists a number of exact and
approximate solutions of Einstein’s field equations [33,34]
capable of matching the neutrino oscillations with the space-
time symmetry [35,36]. Recent developments have prompted
that the effects of rotation for spherically symmetric space-
time can be neglected in the weak field and slow rotation
regimes [35], especially for the Solar and atmospheric neu-
trinos. The effects of deformation, then, could be of inter-
est even for Earth and stars but also for astronomical com-
pact objects, such as neutron stars (NSs) and white dwarfs
(WDs). Even though different metrics can be used to describe
such configurations, we here focus on the simplest space-
time departing from a pure spherical symmetry by adding a
deformation term, i.e. the Zipoy–Voorhees space-time. For
the sake of completeness, the investigation of the effects of
rotation the Hartle–Thorne metric is also involved [37,38].

In this work we therefore take into account the exterior
and well-consolidated Zipoy–Voorhees metric, often termed
in the literature as gamma-metric, delta-metric or more fre-
quently q-metric3 [40–43]. So, motivated by the fact that
the q-metric is able to model exteriors of several compact
objects, we investigate the corresponding consequences of
neutrino oscillation. To do so, we consider both weak and
strong field regimes with small deformation of the source.
Thus, we evaluate the phase shift and define the additional
terms that modify the shift with respect to the case of
Schwarzschild space-time. Afterwards, we apply our results
to astrophysical cases, i.e. to those compact objects which
exhibit a spherical symmetry. In this respect, we involve
WDs and NSs and we justify why supernovae, and well-
consolidate standard candles in general, are unable for being
indicators of neutrino production, through the fact that neu-
trinos are produced from the NSs born out of the explosion
and the corresponding oscillation is also affected by predom-
inant matter effects. In particular, by means of experimental
data from cosmological probes and nuclear physics exper-
iments, within the current paradigm purporting the three-
flavor neutrino mixing theory, we compute numerical con-
straints on survival probability for WDs and NSs, respec-
tively weak and strong gravitational fields. We compare our
results with previous expectations, concluding that on the
Earth the quadrupole moment effect is negligible, albeit in the

3 It describes a static and deformed astrophysical object whose gravita-
tional field generalizes the Schwarzschild metric through the inclusion
of a quadrupole term [39].

case of rotating WDs and NSs it affects the mass difference
Δm2

21 between neutrino eigenstates 1 and 2. We analyze the
dipole and quadrupole cases in view of maximally-rotating
configurations and we compare our findings with the ones
computed in the Hartle–Thorne (HT) space-time. We give
hints toward possible experiments to be performed in the
next years to check the theoretical deviations here developed.
Finally we produce a set of numerical bounds which agree
and extend the outcomes of previous works.

The paper is structured as follows. In Sect. 2 we give
details on the axially symmetric q-metric and on its principal
properties. There, we include details on motion of test parti-
cles explicitly reporting the space-time kinematics. In Sect.
3, we give a fully-detailed explanation on neutrino phase shift
first and then we specialize it to the case of the q-metric. The
neutrino oscillation is thus faced and the monopole, dipole
and quadrupole corrections are explicitly reported and com-
mented, particularly for the HT metric. Afterwards, we pass
through Sect. 4 in which we give a brief summary of the
current status-of-art of numerical constraints over neutrino
masses. We consider separately the cosmological case from
Solar system constraints and reactor bounds. Then, we give
our computational bounds which have been summarized in
the corresponding tables. In the same part, we emphasize the
physical reasons for adopting compact objects, such as NSs
and WDs as benchmarks for investigating neutrino oscilla-
tion in space. The case of weakly and strongly interacting
gravitational fields are summarized respectively in Sect. 4.2,
in which we analyze NSs as strong gravitational landscape
and WDs as weak gravitational scenario for neutrino oscil-
lation. Finally, in Sect. 5, we discuss the theoretical conse-
quences of our approach and the corresponding experimental
developments, emphasizing a possible Gedankenexperiment
in which future experiments can be calibrated. The last part
of the work, Sect. 6 presents final outlooks and perspectives.

2 Quasi axisymmetric space-time

We here start handling axisymmetric space-times highlight-
ing their general properties. To do so, let us first consider the
Weyl class of static axisymmetric vacuum solutions. In par-
ticular, by means of prolate spheroidal coordinates, namely
(t, x, y, φ), with x ≥ 1 and −1 ≤ y ≤ 1, the class of solu-
tions is defined by

ds2 = −e2ψdt2 + m̄2
[

f1

(
dx2

x2 − 1
+ dy2

1 − y2

)
+ f2dφ2

]
,

(1)

where

m̄2 ≡ m2e−2ψ , (2)
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f1 ≡ e2γ (x2 − y2) , (3)

f2 ≡ (x2 − 1)(1 − y2) , (4)

with ψ = ψ(x, y) and γ = γ (x, y), functions of spa-
tial coordinates only while m represents the standard mass
parameter.

The correspondence between such a class of models,
Eq. (1), and spherical coordinates for the well-known
Schwarzschild solution is found as

ψS = 1

2
ln

x − 1

x + 1
, γS = 1

2
ln

x2 − 1

x2 − y2 . (5)

Here, the functions ψ and γ may be generalized by means
of the Zipoy [44] and Voorhees [45] transformation once a
seed (Schwarzschild) solution is known. Hence, the Zipoy–
Voorhees generalization of the Schwarzschild solution

ψ = δ

2
ln

x − 1

x + 1
, γ = δ2

2
ln

x2 − 1

x2 − y2 , (6)

in which the parameter δ can be written by

δ = 1 + q , (7)

where q represents the deformation parameter of the source,
or alternatively, the quadrupole parameter. Hence the Zipoy–
Voorhees metric is often referred to as the q-metric to stress
the role played by q. In doing so, the q-metric is defined by
the line element Eqs. (1) and (6), with the requirement that
δ = 1 + q. When q vanishes, the q-metric reduces to the
Schwarzschild solution. We are interested in employing Eqs.
(1) and (6) to compute neutrino oscillation. To perform this,
let us first consider the dynamical consequences of Eqs. (1)
and (6) in the next subsection.

2.1 Motion of test particles

The geodesics of test particles in the q-metric are the key
ingredients to calculate the neutrino phase shift. To evalu-
ate the test particle motion we follow the standard procedure
[46–51] and particularly by considering Killing symmetries
and the normalization conditions gαβ ẋα ẋβ = −μ2, one can
assume E and L as the conserved energy and angular momen-
tum respectively. As usual, E and L are associated with the
Killing vectors ∂t and ∂φ respectively of the test particle.
Assuming that μ is the particle mass, we have

ṫ = E

e2ψ
, φ̇ = Le2ψ

m2 X2Y 2 ,

ÿ = − Y 2

X2

[
ζy + y

X2 + Y 2

]
ẋ2 + 2

[
ζx − x

X2 + Y 2

]
ẋ ẏ

+
[
ζy − y

X2 + Y 2
X2

Y 2

]
ẏ2

−e−2γ Y 2[L2e4ψ + E2m2 X2Y 2]ψy + yL2e4ψ

m4 X2Y 2(X2 + Y 2)
,

ẋ2 = − X2

Y 2 ẏ2 + e−2γ X2

m2(X2 + Y 2)

[
E2 − μ2e2ψ − L2e4ψ

m2 X2Y 2

]
,

where ζ ≡ ψ − γ and the dot indicates the derivative with
respect to the affine parameter λ along the curve, whereas

X =
√

x2 − 1 , Y =
√

1 − y2 . (8)

In particular λ is the proper time for time-like geodesics by
setting μ = 1. Furthermore, since UαUα = −1, we can
associate Uα with 4-velocity vector, while the additional case
of null geodesics are characterized instead by μ = 0 and
K α Kα = 0, which is now a tangent vector. The simplest
approach deals with the motion on the symmetry plane y = 0.
In particular, let us notice that if both y and ẏ vanish, then the
3rd equation of Eqs. (8) shows the motion is located inside
the symmetry plane only. This happens as all the derivatives
with respect to y of the functions defined in the q-metric are
zero.4

Finally, considering the relation between our space-time
and Boyer–Lindquist coordinates (t, r, θ, φ) is given by
t = t, x = r−M

σ
, y = cos θ, φ = φ, Eqs. (8) simply read:

ṫ = E

e2ψ

φ̇ = Le2ψ

σ 2 X2 ,

ẋ = ± e−γ X

m
√

1 + X2

[
E2 − μ2e2ψ − L2e4ψ

m2 X2

]1/2

, (9)

in which every parameter has been computed with the pre-
scription y = 0. In view of these results, we are now ready
to compute the phase shift for neutrino oscillation in the next
section.

3 The neutrino phase shift in the q-metric

The phase associated with neutrinos of different mass eigen-
state [14] is given by

Φk =
∫ B

A
Pμ (k)dxμ. (10)

This phase is associated with the 4-momentum P = mkU
of a given neutrino that is produced at a precise space-time
point, namely A, and is detected at another defined space-
time point, say B.

4 Relaxing the hypothesis y = 0 would lead to modifications in
geodesics, which we expect to depend upon the value of q. The larger
q, the greater changes are expected, showing always more complicated
expressions whose integration will be possible only numerically. This
motivates the simplest choice of lying at the symmetry plane.
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The standard assumptions [52] usually applied to the eval-
uation of the phase are enumerated below.

I. A massless trajectory is taken into account.
II. The mass eigenstates are energy eigenstates.
III. The ultrarelativistic approximation is valid, i.e. mk �

E .

The conditions above reported imply respectively that

– neutrinos travel along null geodesic paths;
– neutrino eigenstates have all a common energy, say E ;
– all quantities are evaluated up to first order in mk/E .

Thus, the integral is carried out over a null path, so that Eq.
(10) can be also written as

Φk =
∫ λB

λA

Pμ (k)K μdλ , (11)

where K is a null vector tangent to the photon path. The com-
ponents of P and K are thus obtained from Eq. (9) by setting
μ = mk and μ = 0 respectively. In the case of equatorial
motion the argument of the integral in Eq. (11) depends on
the coordinate x only, so that the integration over the affine
parameter λ can be switched over x by

Φk =
∫ xB

xA

Pμ (k)

K μ

K x
dx , (12)

where K x = dx/dλ. By applying the relativistic condition
mk � E we find

Φk � ∓ m2
k

2E

∫ xB

xA

σ 2xeγ

√
σ 2(x2 − 1) − e2ψ(b − ω)2

dx , (13)

to first order in the expansion parameter mk/E � 1, where
E is the energy for a massless neutrino and b = L/E the
impact parameter. Hence, the phase shift Φk j ≡ Φk − Φ j

responsible for the oscillation is given by

Φk j � ∓Δm2
k j

2E

∫ xB

xA

σ 2xeγ

√
σ 2(x2 − 1) − e2ψ(b − ω)2

dx ,

(14)

where Δm2
k j = m2

k − m2
j .

3.1 Neutrino oscillations in the q-metric

The exterior field of a deformed object is described by the
q-metric [39,43,53], whose line element can be written in
the Lewis–Papapetrou form, Eq. (1), by means of

ψ = (1 + q)ψS , γ = (1 + q)2γS , (15)

where ψS and γS are given5 by Eq. (5). Then the phase shift,
Eq. (14), expressed in terms of the standard spherical coor-
dinates (t, r, θ, φ), for the q-metric becomes

Φk j � ∓
Δm2

k j

2E

[
r + m2

r

{
q − b2

2m2 + 2q(b2 + m2) + b2

2mr

}]rB

rA

,

or alternatively

Φk j � ∓Δm2
k j

2E
Δr

×
[

1 + m2

rBrA

{
q + b2

2m2 + (rB + rA)
2q(b2 + m2) + b2

2mrBrA

}]
,

(16)

where Δr ≡ rB − rA and the second and higher order terms
in q as well as the weak field expansions m/r � 1 have
been neglected. In the limiting case of vanishing quadrupole
parameter, Eq. (16) reproduces previous results developed in
the literature [35,36] for the Schwarzchild space-time.

It is also useful to replace the parameters m and q by the
total mass and quadrupole moment6 Qq [54]

M = m(1 + q) , Qq = −2

3
m3q . (17)

For instance, when b = 0, Eq. (16) reads

Φk j ≡ Φ
(m)
k j + Φ

(q)

k j , (18)

where the monopole (m) and quadrupole (q) moments are

Φ
(m)
k j = ∓Δm2

k j

2E
Δr ,

Φ
(q)

k j = Φ
(m)
k j

M2

rBrA

[
1 + M(rB + rA)

rBrA

](
3

2

Qq

M3

)
. (19)

The monopole term is the dominant one, due to the large dis-
tance between the source and detector. However, describing
the background gravitational field simply by using the spheri-
cally symmetric Schwarzschild solution is not satisfactory in
most situations. In fact, astrophysical sources are expected to
be rotating as well endowed with shape deformations leading
to effects which cannot be neglected in general.7

It is worth pointing out that Eq. (19) and following deal
with the oscillation baseline Δr and the asymptotic neutrino
energy E . To make a comparison with the experiments, these

5 The Schwarzschild solution corresponds to q → 0.
6 According to Geroch–Hansen definitions of the multipole moments,
we can match the quadrupole moment of Hartle and Thorne with the
q-metric by QG H = Qq = −Q H T = QGL − 2J 2/M . Hence, pos-
itive Q H T = Q > 0 is for oblate objects and vice versa. QGL is the
quadrupole moment defined by [35].
7 The modification to the phase shift induced by space-time rotation
has been already taken into account in Ref. [25].
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quantities have to be expressed as measured by a locally iner-
tial observer at rest with the oscillation experiment. In gen-
eral for both source and observer at rest with respect to the
reference frame, the proper oscillation baseline is given by

Δr = c
∫ √

g00(xμ
obs)dt , while the observed neutrino energy

Eobs = Eem

√
g00(xμ

em)/g00(xμ
obs) relates to the emitted one

Eem . For distant observers we have g00(xμ
em) = e2ψ and

g00(xμ
obs) ≈ 1, therefore the experimental setup measures

effectively Δr = cΔt and Eobs = eψ Eem ; for observers
close to the source of neutrinos, as we are going to consider
in the next sections, we have g00(xμ

em) ≈ g00(xμ
obs) = e2ψ ,

therefore the experimental setup measures effectively Δr =
c
∫

eψdt and Eobs = Eem . In the following, the above cor-
rection will be included in the definitions of the baseline and
E , if not otherwise specified.

4 Numerical constraints

It is possible now to draw some considerations by using
experimental data. In particular, we can split two different
data surveys in which it is possible to take data points. The
first set is based on cosmological constraints, whereas the
second by data coming from reactors and nuclear physics in
general. Let us explore in detail both the possibilities below.

Cosmological constraints The current limit on the sum
of the neutrino masses has been obtained from the analy-
sis of the cosmic microwave background anisotropy com-
bined with the galaxy redshift surveys and other data and has
been set to

∑
i mνi ≤ 0.7 eV [55]. On the other hand, Big

Bang nucleonsynthesis gives constraints on the total number
of neutrinos, including possible sterile neutrinos which do
not interact and are produced only by mixing. The number
is currently 1.7 ≤ Nν ≤ 4.3 at 95% of confidence level
[55]. More recent results seem to indicate tighter limits over
neutrino masses. This has been found by the Planck satel-
lite where analyses made by combining more data sets con-
strain the effective extra relativistic degrees of freedom to
be compatible with the standard cosmological model predic-
tions, with neutrino masses constrained by

∑
i mνi ≤ 0.12

[56].

“Reactor-like” data Long-baseline reactors and low-
energy Solar neutrino experiments, in which the matter
effects are subdominant compared to vacuum oscillations,
are specially suited to estimate the parameter phase space
for the mass eigenstates 1 and 2 [see, e.g., 57].

Recently, a new global fit of neutrino oscillation parame-
ters, within the simplest three-neutrino, obtained by includ-
ing

1) new long-baseline disappearance and appearance data
involving the antineutrino channel in T2K, and the νμ-
disappearance and νe-appearance data from NOνA,

2) reactor data such as from the ν̄e-disappearance spec-
trum of Daya Bay, the prompt reactor spectra from
RENO, and the Double Chooz event energy spectrum,

3) atmospheric neutrino data from the IceCube Deep-
Core and ANTARES neutrino telescopes, and from
Super-Kamiokande, and

4) solar oscillation spectrum from Super-Kamiokande,

has established that Δm̃2
21 = 7.55+0.20

−0.16 × 10−5 eV2 within
the normal ordering picture [see [58], for details].

A part from the possible sterile neutrinos, cosmological
constraints are in agreement with the current paradigm pur-
porting the existence of three different neutrino mass eigen-
states. Global analyses of neutrino and antineutrino experi-
ments seem to favor the normal hierarchy of the three mass
eigenstates, namely (m3 � m2 > m1) that we pursue
throughout this work [58–60].

In the following we consider the experimental values from
reactos and low energy solar neutrino experiments.

4.1 Computation of numerical bounds in the weak field
regime

With the numerical limits imposed by the previous discussion
above, we can now compute the phase shift on the surfaces
of:

a. the Earth, from nuclear reactors, that can be built up
with current technology, and

b. the Sun, detected from an hypothetical neutrino detec-
tor in its proximity.

Let us indicate the mass and the radius of the above
astronomical objects with general labels M� and R�, respec-
tively. Their quadrupole moments can be expressed as
Q� = −J �

2 M� R2
� , where J �

2 is the dimensionless quadrupole
moment. On the surface of the above the astronomical objects
we can use the following approximations rB + rA ≈ 2R�,
rBrA ≈ R2

� , and rB − rA � d, where d is the oscillation
baseline. Hence, after cumbersome algebra and replacing the
above approximations in Eq. (18) we can compute the effect
of Q� to the shift phase

Φ21 = Δm2
21

2E
d

[
1 − 3

2
J �

2

(
1 + 2M�

R�

)]
, (20)

where the sign “∓” has been ignored since it does not affect
the following analysis. Moving from the assumption that the
experiments measure the phase shift affected by the gravi-
tational effects Δm̃2

21, from Eq. (20) it is immediately clear
that this mass difference is essentially given by
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Table 1 The estimate of Δm2
21 without the effects of the quadrupole

moment for the Earth (⊕) and the Sun (�). Columns list, respectively:
the dimensionless quadrupole moment, the mass and the radius of the

object, the inferred value of Δm2
21, and the percent departure from the

experimental value Δm̃2
21

Object J �
2 M� R� Δm2

21 1 − Δm2
21/Δm̃2

21
(m) (m) (10−5 eV2) (%)

⊕ 1.0826 × 10−3 4.4350 × 10−3 6.3781 × 106 7.56+0.20
−0.16 −0.2

� 2.1106 × 10−7 1.4771 × 103 6.9551 × 108 7.55+0.20
−0.16 ≈ 0

Δm̃2
21 = Δm2

21

[
1 − 3

2
J �

2

(
1 + 2M�

R�

)]
, (21)

where Δm2
12 is the real mass difference between the neutrino

eigenstates 1 and 2.
Using the the actual values of J �

2 , M�, and R� for the
Earth [61] and the Sun [62], employing the above value of
Δm̃2

21 given by [58], and by reverting Eq. (21) one obtains the
correction induced by the quadrupole contribution on Δm2

12
and the percent departure from the experimental value (see
Table 1). The inferred values of Δm2

12 are indistinguishable
from the experimental one and so we definitively conclude
that the effects due to the quadrupole moment turn out to be
negligibly small, for both the Earth and Sun, in agreement
with previous results.

For completeness, immediately after the study of the Earth
and Sun, one can investigate cosmological sources for neu-
trino phase shift. To do so, the simplest idea is to take stan-
dard candles, widely used in observational cosmology, and
to measure neutrino oscillations from their sources. How-
ever, the aforementioned considerations and limits suggest
an intriguing fact: standard candles, such as supernovae Ia,
cannot be treated at this step. In fact, the Solar System regime
involves weak gravitational fields while, in the framework of
supernovae Ia, neutrinos are produced in the nuclear pro-
cesses taking place in the WD. In a similar way, in the case
of supernovae II, what produces neutrinos is the newly-born
NS at the center of their explosion.

This clearly represents a limitation, since supernovae are
objects of great interest in cosmology, whose physical prop-
erties are well established by observations. A possible hint is
to consider supernova explosions as indications for inves-
tigating neutrinos from WDs or NSs for example, in the
strong gravitational field. Hence, motivated by this fact, in the
next subsection, we investigate how the quadrupole moment
affects the value of Δm̃2

12 in the case of rotating WDs and
NSs, i.e. two astrophysical configurations in which the neu-
trino phase shift may produce more relevant results.

4.2 Rotating white dwarfs and neutron stars

The computation of the basic parameters of rigidly rotat-
ing WDs and NSs is not straightforward, as it may seem

at first glance. It is related to the fact that unlike in New-
tonian gravity where the field equations, the equations of
motion (hydrostatic equilibrium and the mass balance equa-
tions) are given separately, in GR all these equations are con-
tained in the Einstein gravitational field equations.8 The pro-
cedures to follow are well-known in the literature [63,64] and
for static objects the field equations reduce to the Tolman–
Oppenheimer–Volkoff equations [65,66].

Due to rotation the Tolman–Oppenheimer–Volkoff equa-
tions i.e. the mass balance, the hydrostatic equilibrium and
gravitational potential equations will be modified. The solu-
tions of those equations with a chosen EoS will yield the
parameters of rotating objects such as angular momentum,
quadrupole moment etc. In our computations we make use
of the Hartle formalism, which allows one to construct and
investigate the equilibrium configurations of slowly rotating
stellar objects [37,38]. For qualitative rough analyzes one
may employ the Hartle formalism at mass-shedding limit,
though for quantitative analyzes one should use full GR equa-
tions [67,68].

It is well know that unlike magnetic field or anisotropic
pressure, rotation is the main contributor to the deformation
of compact objects such as WDs and NSs [69–71]. Here by
exploiting the HT formalism [37,38,72] the rotating equilib-
rium configurations of WDs [73,74] and NSs [69,75,76] are
constructed and the mass quadrupole moment as a function
of central density for maximally rotating stars (see Fig. 1) are
calculated and compared with the Kerr quadrupole moment
which is related to the angular momentum of the source (see
Fig. 2). The EoS of NSs is taken from [77], where all funda-
mental interactions are taken into account. We adopted the
so-called NL3 model, well-known in the compact object lit-
erature, in the EoS for NS, which was derived in the frame of
the relativistic mean field theory with nonlinear parametriza-
tion set (see [78–80] for further details). This EoS is one of
many stiff equations of state which are in accordance with
the observational constraints on NSs [69]. The degenerate

8 One should derive them directly from the field equations and solve
them for matter, preliminary adopting an equation of state (EoS) and
external vacuum. On the matter-vacuum interface one has to perform
the matching between the metric functions, finding out the integration
constants.
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Fig. 1 The mass quadrupole moment Q over the total mass cubed M3 versus central density ρc. Left panel: maximally rotating WDs. Right panel:
maximally rotating NSs, where ρ0 is the nuclear density

Fig. 2 The mass quadrupole moment Q over the Kerr quadrupole moment QKerr = J 2/(c2 M) versus central density ρc. Left panel: maximally
rotating WDs. Right panel: maximally rotating NSs, where ρ0 is the nuclear density

electron gas EoS was employed for the WD matter [81,82]
as it is the simplest EoS.

For our purposes, in Fig. 1 the ratio of the mass quadrupole
moment Q to the total mass cubed is given as a function of
the central density in physical units. Here Q is rotationally
induced. The value of Q/M3 is larger in WDs (left panel)
than in NSs (right panel) this means that rotation deforms
strongly objects with a soft EoS, whereas the EoS of a NS,
considered here, is stiff.

On the contrary, Fig. 2 shows the ratio of the mass
quadrupole moment to the Kerr quadrupole moment as a
function of the central density for maximally rotating WDs
(left panel) and NSs (right panel). As one can see, the
quadrupole moment contribution is larger than that due to
spin (angular momentum) in the case of WDs. However, in
the case of NSs, the spin contribution may be larger than that
due to deformation.

It is worth stressing that, even though rotation (and corre-
spondingly angular momentum) induces deformation of stel-
lar objects, its effect on the phase shift of neutrino oscillations
becomes significant only in NSs. Therefore we confirm the
previous results obtained in [35], where the phase shift was
computed employing the HT space-time [37,46]. Although
in Figs. 1 and 2 we have maximally rotating objects, their

slow-rotation limit will display a similar behavior though the
value of Q will be much lower. Thus, for both WDs [73,74]
and NSs [69,75,76], we select three different mass-radius
configurations computed for the following three cases:

A. maximally-rotating objects;
B. 0.1×maximally-rotating objects;
C. 0.01×maximally-rotating objects.

For both NSs and WDs, we compute the quadrupole-induced
mass difference Δm̃2

21 from the real value Δm2
21 inferred

previously, splitting, for WDs and NSs, the phase for the
q-metric by

Φ
q
k j ≡ Φ

q,(m)

k j + Φ
q,(q)

k j , (22)

where Φ
q,(m)

k j is given by the first relation of Eq. (19) while

Φ
q,(q)

k j ≡ 3QqΦ
q,(m)

k j

M2Δr

{
log

[
(rA − M)(rB − 2M)

(rA − 2M)(rB − M)

]
+

rA

2M
log

[
rA(rA − 2M)

(M − rA)2

]
− rB

2M
log

[
rB(rB − 2M)

(M − rB)2

]}
.

(23)
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Note that, in the weak field regime, Eq. (23) reduces to the
corresponding one given by Eq. (19).
Since q-metric describes a static and deformed astrophysical
object, we check the above results by computing the phase
shift within the HT metric in the strong field regime:9

ΦHT
k j � Φ

HT,(m)
k j + Φ

HT,(d)
k j + Φ

HT,(q)

k j , (24)

where again Φ
HT,(m)
k j is given by the first relation of Eqs. (19)

and the dipole (d) and quadrupole terms are

Φ
HT,(d)
k j = − J 2

M

⎡
⎣Φ

HT,(q)

k j

Q
+ Φ

HT,(m)
k j

2M

M (rA + rB) + rArB

r2
Ar2

B

⎤
⎦ ,

Φ
HT,(q)

k j = 15QΦ
HT,(m)
k j

8M3 ×
[
1 + rA

Δr
gA − rB

Δr
gB

]
, (25)

where

gi ≡
(

1 − ri

2M

)
log

(
1 − 2M

ri

)
. (26)

Note that in the weak field also Eq. (25) reduces to the one
in [35] by replacing Q = Q H T = 2J 2/M − QGL .

As one may notice, unlike Eq. (19), the corrections to
the monopole term in Eqs. (22–25) display the dependence
upon the neutrino oscillation baseline. To get rid of it, we
study the neutrino oscillation occurring at the surface of the
compact object by setting rB = rA+Δr , where rA ≡ R is the
compact object radius averaged between the equatorial and
the polar radii, defined as R = (Rpol + 2Req)/3, and expand
Eqs. (22–25) around Δr ≈ 0 at the lowest order. Finally,
like in Eq. (21), we get the measured mass difference in the
strong field regime for the q-metric

Δm̃2
21,q = Δm2

21

{
1 − 3Qq

2M3 log

[
R (R − 2M)

(M − R)2

]}
, (27)

and for the HT metric

Δm̃2
21,H T = Δm2

21

{
1 − J 2(R+2M)

2M2 R3 + 15
8M3

(
Q − J 2

M

)
×

[
2 − g(R) + R

2M log
(
1 − 2M

R

)]}
. (28)

The results are summarized in Table 2. As it is immedi-
ately clear, deviations with respect to the real value Δm2

21
are observable only for (nearly) maximally-rotating WDs
and NSs. In these cases the estimates Δm̃2

21,q and Δm̃2
21,H T

are both outside the experimental constraints on Δm2
21. In

Table 2 we consider WDs and NSs having three distinct cen-
tral densities in each case and different rotation rate. For max-
imally rotating configurations the corresponding parameters
M, R, Q, J are larger with respect to intermediate and slow
rotation cases. This fact is due to the equilibrium conditions

9 In the HT space-time definition the quadrupole Q moment is defined
positive (negative) for oblate (prolate) objects, while for the q-metric
the viceversa holds.

of the configurations possessing the same central densities
[38]. The principal results are summarized in Table 3.

5 Theoretical discussion and experimental
developments

We have obtained expressions describing the phase shift
responsible for the neutrino oscillations in the case of
deformed and static astrophysical objects described by the
q-metric, both in weak and strong field regime. In the latter
case, similar expressions have been derived also by consid-
ering rotating objects described by the HT metric and com-
pared to the case of the q-metric. These expressions reduce to
the Schwarzschild case for: a) vanishing quadrupole moment
only, in the q-metric case, and b) for both vanishing dipole
and quadrupole moments, in the HT metric case. From the
expressions of the phase shift obtained so far, we made use
of the constraint from long-baseline reactor and low-energy
solar neutrino experiments to get equivalent expressions for
the mass difference Δm2

21.
Our outcomes have shown that all the effects of rota-

tion for spherically symmetric space-time are negligible, in
agreement with previous estimates made with the use of
Schwarzschild space-time. Deformations become quite rel-
evant for massive objects, among all NSs and WDs. Under
the simplest choice of describing such objects by means of
q-metric, we have described a static and deformed astro-
physical object whose gravitational field generalizes the
Schwarzschild metric, introducing a quadrupole term that
becomes significant when the mass shedding limit (the max-
imum rotation rate) is taken into account.

As it is immediately clear, deviations with respect to
the real value Δm2

21, as well as from that from the Earth
reactor experiments Δm̃2

21, are observable only for (nearly)
maximally-rotating WDs and NSs. In these cases the esti-
mates from the q-metric Δm̃2

21,q and from the HT met-

ric Δm̃2
21,H T are both outside the experimental constraints

on Δm2
21. This implies that a measurement of Δm̃2

21 from
such extreme astrophysical sources may give numerical con-
straints on their value of J and Q and, then, also on R and M .
Reducing the rotation rate implies that one can analyze dif-
ferent configurations with smaller quadrupole moment and
angular momentum. In this way, by keeping the central den-
sity fixed, the mass and corresponding radius will be also
decreased.

Although relevant, those results are jeopardized by the
degeneracy which occurs in defining rB − rA = d and in
the choices on rB and rA. The sensibility of current instru-
ments are quite enough to probe deviations from the standard
spherical case up to 1−sigma confidence level. Over the past
years, steady progresses in probing neutrino masses have
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Table 2 The effects of the quadrupole moment (for q- and HT met-
rics) and the dipole moment (for HT metric only), for both WDs and
NSs, on Δm2

21. All the parameters have been estimated for maximally-,
0.1×maximally-, and 0.01× maximally-rotating compact objects. In
order, the columns list: the central density ρc in g/cm3 and in units of

the nuclear density ρ0 = 2.7×1014 g/cm3, the mass M in solar masses
M�=1.47 km , the radius R, and the quadrupole Q and the dipole J
moments of the compact object; the following columns summarize the
mass difference Δm̃2

21,i and the difference δΔm2
21,i ≡ Δm̃2

21,i −Δm2
21

for the q-metric from Eq. (27) and for the HT metric from Eq. (28)

ρc M R Q J Δm̃2
21,q Δm̃2

21,H T δΔm2
21,q δΔm2

21,H T
(g/cm3) (M�) (103 m) (109 m3) (104 m2) (10−5 eV2) (10−5 eV2) (10−5 eV2) (10−5 eV2)

Maximally-rotating configurations

WD 105 0.18 18304.5 3352780.0 208.54 7.13+0.18
−0.15 7.19+0.19

−0.15 −0.43 −0.37

106 0.47 12260.6 3727340.0 728.23 7.16+0.19
−0.15 7.23+0.19

−0.15 −0.40 −0.34

108 1.33 4859.3 912628.0 1753.62 7.34+0.19
−0.16 7.37+0.20

−0.16 −0.22 −0.19

NS 1.67ρ0 1.07 13.61 13.48 151.09 6.88+0.18
−0.15 7.03+0.19

−0.15 −0.68 −0.53

1.91ρ0 1.45 13.86 19.92 290.24 6.78+0.18
−0.14 6.99+0.19

−0.15 −0.78 −0.57

2.55ρ0 2.18 14.00 29.50 717.26 6.63+0.18
−0.14 7.06+0.19

−0.15 −0.94 −0.50

0.1×maximally-rotating configurations

WD 105 0.15 16383.0 33527.8 20.85 7.56+0.20
−0.16 7.56+0.20

−0.16 < −0.001 < −0.01

106 0.40 10971.9 37273.4 72.82 7.56+0.20
−0.16 7.56+0.20

−0.16 < −0.001 < −0.01

108 1.19 4332.8 9126.3 175.36 7.56+0.20
−0.16 7.56+0.20

−0.16 < −0.01 < −0.01

NS 1.67ρ0 0.91 12.70 0.13 15.11 7.55+0.20
−0.16 7.56+0.20

−0.16 < −0.01 < −0.01

1.91ρ0 1.27 13.13 0.20 29.02 7.55+0.20
−0.16 7.56+0.20

−0.16 < −0.01 < −0.01

2.55ρ0 2.00 13.66 0.29 71.73 7.55+0.20
−0.16 7.56+0.20

−0.16 −0.0103 < −0.01

0.01×maximally-rotating configurations

WD 105 0.15 16363.8 335.28 2.09 7.56+0.20
−0.16 7.56+0.20

−0.16 < −0.01 < −0.01

106 0.40 10959.0 372.73 7.28 7.56+0.20
−0.16 7.56+0.20

−0.16 < −0.01 < −0.01

108 1.18 4327.5 91.26 17.54 7.56+0.20
−0.16 7.56+0.20

−0.16 < −0.01 < −0.01

NS 1.67ρ0 0.91 12.69 0.0013 1.51 7.56+0.20
−0.16 7.56+0.20

−0.16 < −0.01 < −0.01

1.91ρ0 1.26 13.12 0.002 2.90 7.56+0.20
−0.16 7.56+0.20

−0.16 < −0.01 < −0.01

2.55ρ0 1.99 13.65 0.003 7.17 7.56+0.20
−0.16 7.56+0.20

−0.16 < −0.01 < −0.01

Table 3 Principal parameters and results involved in our landscapes. The table summarizes the effects of the quadrupole moment for the q- and
the HT metrics in the regimes of weak and strong gravity on Δm̃2

21. The expected values are reported in view of possible future experiments

Regime of weak gravity Main parameters Outstanding results

Solar system M ∈ [M⊕; M�] Results using HT and q metrics are indistinguishable

Quadrupole moment: Q� Spherical symmetric effects are the unique to be measured

Φ
HT,(m)
k j � Φ

HT,(d)
k j δΔm2

21/Δm̃2
21 currently indistinguishable from the flat case

Regime of strong gravity Main parameters Outstanding results

NSs & WDs M ∈ [0.15; 2.18] M� Deviations are observable only for maximally-rotating compact objects

Q ∈ [105; 1016] m3 Results using HT and q metrics are indistinguishable

NSs: Φ
HT,(d)
k j � Φ

HT,(q)

k j Instrument sensibility can probe 1σ deviations from spherical symmetry

WDs: Φ
HT,(d)
k j � Φ

HT,(q)

k j

been carried forward by means of direct measurements of
decay kinematics.

Several experiments have tried to measure net deviations
from the case mν = 0. In particular, from the study of the
shape of the β-decay spectrum near the end point energy,

there is a very slight discrepancy between massless state and
massive state plots. For the sake of clearness, the two plots
exhibit sharp cut offs at the end point energy, although mas-
sive state plots smoothly vanish as energy increases. Such
discrepancies are, however, below our current detection sen-

123



964 Page 10 of 12 Eur. Phys. J. C (2020) 80 :964

sibility. As a further example, tritium β-decay is commonly
used for such measurements for its low endpoint energy and
simple nuclear structure (for the case of tritium β-decay see
[83]). Finally, all these aspects have been found in laboratory
experiments, where gravitational effects are neglected.

A possible Gedankenexperiment is based on a spatial plat-
form on which a baseline is physically constructed “near” a
maximally-rotating object. The distance between the base-
line might be fixed, imposing both rA and rB , once the dis-
tance from the baseline of the compact object is known a
priori. The idea of a spacial baseline is plausible thanks to
the recent developments on the tomography of black holes
for example. The previous estimations of angular momen-
tum and mass can give hints on the expected ratios in the
correction formulas due to the dipole and quadrupole contri-
butions. In particular the term ∼ J �

2 (1 + 2M�/R�) ∼ 0.03
if one wants Δm̃2

21 to show a discrepancy of ∼ 0.05 with
respect to Δm2

21.
As a final discussion about our approach, we can notice

that a natural generalization of our results could be argued
for non-static space-time. This extension is possible if one
understands how time dependence of the metric would influ-
ence neutrino oscillation. For example, in the framework of
non-homogeneous space-time such as the Lemaître-Tolman-
Bondi universe, one involves two generalized functions: the
scale-factor and the curvature term. This implies that it is nec-
essary to postulate how the functions depend upon t and r
otherwise the corresponding integration turns out to be com-
plicated and in many cases impossible to pursue. This limi-
tation is however based on the constraint that, as time goes
to infinite, the static results might be recovered as limiting
cases. This would fix the boundaries over the extra terms
induced within the neutrino oscillation phase. For the above
considerations, it is reasonable to assume these corrections
would give small deviations from the static case.

6 Final outlooks and perspectives

Neutrino oscillations have been investigated in the field of
an exterior static axially-symmetric Zipoy–Voorhees metric,
often termed in the literature as: gamma-metric, delta-metric
or more frequently q-metric. This metric describes a static
and deformed astrophysical object whose gravitational field
generalizes the Schwarzschild metric through the inclusion
of a quadrupole term.

Particularly, we investigated the consequences of neutrino
oscillation on compact object analyzing the weak and strong
gravitational regimes, respectively for Solar System, WDs
and NSs. For the sake of completeness, we further demon-
strated that supernovae alone can not be indicators for devi-
ations from the spherical case of neutrino oscillation. In this
case, in particular, neutrinos are produced from the NS born

out of the explosion, so neutrino oscillation is also affected
by predominant matter effects once neutrinos travel in super-
nova eject.

Furthermore we showed that Earth’s quadrupole moment
negligibly affects the final phase, albeit the quadrupole
moment affects the value of Δm̄2

12 in the case of rotating
WDs and NSs. Thus, specializing our attention to compact
objects, we analyzed the dipole and quadrupole cases in view
of maximally-rotating configurations and we compared our
findings with the ones computed in the Hartle-Thorne and
Schwarzschild configurations respectively. Moreover, using
experimental data from cosmological probes and nuclear
physics experiments, we used the current paradigm purport-
ing the three-flavor neutrino mixing theory. Thence, we com-
puted numerical constraints on survival probability for WDs
and NSs, giving basic suggestions toward possible experi-
ments to perform in the next years to check the theoreti-
cal deviations here predicted, based on spatial baselines. We
showed that for neutrinos detected on Earth the quadrupole
moment correction to phase shift is at most −0.2%. From the-
oretical reasons, we expected this value to be large enough
in the field of WDs and NSs. Therefore, we explored this
possibility and demonstrated that the angular momentum is
crucial for NS, while for the Earth, Sun and WDs the effects
of rotation can be neglected with respect to the quadrupolar
deformation.

In view of the fact that in the following years one can
propose the construction of space missions devoted to the
direct test of neutrino oscillations in the field of compact
objects. The results obtained here will be studied in a more
general and complicated space-time.
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