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Abstract We show that solutions of the self-similar grav-
itational collapse in the Einstein-axion–dilaton system exist
in higher-dimensional spacetimes. These solutions are invari-
ant under spacetime dilation combined with internal SL(2,R)
transformations. We rely on the recent setup of Antonelli
and Hatefi (JHEP 03:074, arXiv:1912.00078 [hep-th], 2020)
and use it for the three different conjugacy classes (ellip-
tic, parabolic and hyperbolic) in higher dimensions. Lastly,
we identify new families of physically distinguishable self-
similar solutions for all three conjugacy classes in six and
seven dimensions.

1 Introduction

An interesting thought experiment for critical phenomena
in gravitation was proposed by Choptuik in [2] (see [3]
for more references). Choptuik studied the spherical grav-
itational collapse of a scalar field, distinguishing the initial
conditions that lead to collapse solutions with black hole for-
mation from those that lead to the empty Minkowski space
[2,4].

Generally speaking, one can consider a one-parameter
class of initial conditions labelled by the value of the ini-
tial field amplitude p. If p is small, the time evolution is
linear and the collapse does not take place. Instead, for large
p a so-called trapped surface forms and a black hole should
exist in the final state. Therefore, there is a value pcrit that
marks the transition between these two regimes. A scaling
law can be illustrated, and for supercritical initial conditions
p > pcrit one finds that the mass of the black hole scales
as

Mbh(p) ∝ (p − pcrit)
γ , (1)

a e-mail:ehsan.hatefi@sns.it (corresponding author)
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with the Choptuik exponent γ ≈ 0.37 (see also [3,5]).
The solutions on the so called “critical surface” realize
some form of spacetime self-similarity. This phenomenon
has led to various research topics that can be potentially
related to critical phenomena, as well as to the issue of
scale invariance in gravity. For a real scalar field, the solu-
tions show a discretely self-similar behaviour, which is diffi-
cult to deal with algebraically. On the other hand, Contin-
uous Self-Similarity (CSS) means that there is an invari-
ance under continuous one-parameter groups of homoth-
eties, which reproduces itself once one introduces mat-
ter fields with internal symmetries. Therefore, one can
look for solutions that are invariant under some com-
binations of scalings and internal symmetry transforma-
tions.

Here we focus on the axion–dilaton system, which does
experience gravitational collapse with the fascinating prop-
erty of Choptuik scaling. However, various numerical results
with different matter fields have been carried out. For exam-
ple, critical solutions for a massless scalar field were obtained
in [6–9], and an interesting work on Einstein-Maxwell-
dilaton theories and critical collapse was recently done in
[10]. The specific case of a complex scalar field was studied
in [11]. The authors in [12–15] dealt with the critical col-
lapse of the radiation fluid, while [16] considered non-linear
σ -model computations. Interestingly, [16] has some over-
lap with our paper, because it scrutinizes the elliptic solu-
tions of the axion–dilaton configuration. The scaling in vac-
uum axisymmetric gravitational collapse was considered in
[17]. The correspondence between critical collapse and self-
similarity was thus explored beyond the well known spheri-
cally symmetric real scalar fields. The axion–dilaton system
was studied in the past only in four dimensions [11,18,19]
and also recently done in four and five dimensions [1]. The
aim of the present paper is not only to confirm that there
are indeed self-similar solutions for gravitational collapse
in higher dimensions, but also to show that one can iden-
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tify entire families of physically distinguishable self-similar
solutions.

The content of this paper is motivated by the AdS/CFT
correspondence [20–22], by some holographic description
of black hole formation [23], and by the physics of black
holes and its applications [24–26]. In type IIB String The-
ory and AdS/CFT, one may investigate the gravitational col-
lapse on spaces that approach asymptotically to AdS5 × S5,
and a natural choice for the matter content involves the
axion–dilaton and the self-dual 5-form field. It can be shown
that in five dimensions the simplest dynamical setting is
the Einstein-axion–dilaton system with a cosmological con-
stant. However, Einstein spaces do not admit homothetic vec-
tor fields, which could be an apparent problem when con-
sidering self-similar collapse. Nevertheless, we are dealing
with critical gravitational collapse and we are only inter-
ested in a small spacetime region, close to the place where
the singularity happens. Hence, we are no longer concerned
about the asymptotic structure of the spacetime (this was
supported by numerical evidence, as seen in [8,9]). Hence-
forth, we shall drop the cosmological constant and analyse
self-similar critical collapse in dimensions ranging from four
up to seven for all elliptic, parabolic and hyperbolic cases
accordingly.

The organisation of this paper is as follows. First, we
briefly describe the axion–dilaton system and the so called
CSS ansatz. For the sake of completeness, we write the
equations of motion and discuss the initial conditions for
all three conjugacy classes of internal SL(2,R) transforma-
tions that must be applied to compensate the scaling trans-
formations in spacetime. We then shortly highlight self-
similar solutions for all three classes in four and five dimen-
sions, which provide the necessary backgrounds for higher-
dimensional spacetimes. Lastly, we discover new solutions
in six and seven dimensions for all three conjugacy classes,
which entails a number of distinguished CSS solutions for
six different cases. For instance, in six and seven dimen-
sions for the elliptic class, which have U (1) compensated
dilations, we shall explore four and three distinct collapse
solutions.

2 Axion–dilaton and continuous self-similarity

One can combine two real scalars, the axion a and dilaton φ,
into a complex scalar field τ ≡ a+ ie−φ , and its coupling to
gravity in d ≥ 4 dimensions is determined by the action

S =
∫

dd x
√−g

(
R − 1

2

∂aτ∂a τ̄

(Im τ)2

)
. (2)

where R is the scalar curvature. The corresponding equations
of motion read

Rab − 1

4(Im τ)2 (∂aτ∂b τ̄ + ∂a τ̄ ∂bτ) = 0, (3)

∇a∇aτ + i∇aτ∇aτ

Im τ
= 0. (4)

The effective action of the axion–dilaton system is classically
invariant under SL(2,R) transformations

τ → aτ + b

cτ + d
, (5)

where (a, b, c, d) ∈ R, ad − bc = 1. The SL(2,R) symme-
try is broken to an SL(2,Z) subgroup once one takes into
consideration the non-perturbative phenomena (more details
can be found out in [27–31]).

We assume spherical symmetry and Continuous Self-
Similarity (CSS) and look for solutions, as was discussed
in [18,19], with a metric of the form

ds2 = (1 + u(t, r))(−b(t, r)2dt2 + dr2) + r2d�2
q , (6)

where q = d − 2. CSS implies the existence of a homothetic
Killing vector, denoted by ξ in the following, which generates
the so called global scale transformation

Lξ gab = 2gab. (7)

Having introduced the scale invariant variable z = −r/t ,
CSS means that the two functions u(t, r) and b(t, r) in the
metric only depend upon z, so that b(t, r) = b(z), u(t, r) =
u(z). On the other hand τ(t, r) can be invariant up to an
SL(2,R) transformation, and in [32] we described in detail
the CSS condition for τ(t, r). Making use of an SL(2,R)
transformation, one can indeed compensate the action of the
homothetic vector field

ξ = t
∂

∂t
+ r

∂

∂r
. (8)

There are actually three different possible ansatzë for
the axion–dilaton configuration, depending on whether the
SL(2,R) transformation used to compensate the scaling
transformation in spacetime belongs to the elliptic, parabolic
or hyperbolic class. For all three distinct cases, ω is a real
constant to be found demanding that the critical solution be
regular, and f (z) is an arbitrary complex function.

The elliptic ansatz is

τ(t, r) = i
1 − (−t)iω f (z)

1 + (−t)iω f (z)
, (9)
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and in this case a scaling transformation t → λ t , τ(t, r) is
accompanied by an SL(2,R) rotation.

The condition on f (z) for the elliptic class is | f (z)| < 1,
and the infinitesimal form of this type of transformation reads

Lξ τ = ω

2
(τ 2 + 1). (10)

The parabolic ansatz is

τ(t, r) = f (z) + ω log(−t), (11)

where a scaling transformation is compensated by a trans-
lation, and f (z) is an arbitrary complex function, subject to
the only condition Im f (z) > 0. Now the infinitesimal form
is

Lξ τ = ω, (12)

and it is worth emphasizing the presence of a new type of
transformation that is only relevant to the parabolic case.
Indeed, if we perform the scaling

ω → Kω, f (z) → K f (z), K ∈ R+ (13)

τ also transforms, and τ → K τ , which is a new kind of
symmetry.

The hyperbolic ansatz is

τ(t, r) = 1 − (−t)ω f (z)

1 + (−t)ω f (z)
, (14)

where under a scaling transformation t → λ t , τ(t, r)
undergoes an SL(2,R) boost, and the condition on f (z) is
Im f (z) > 0. One can show that using an SL(2,R) transfor-
mation, the following ansatz

τ(t, r) = → (−t)ω f (z). (15)

can be chosen for hyperbolic case, and this gives rise to the
same e.o.m.’s. In this case the infinitesimal form is

Lξ τ = ωτ. (16)

The case ω = 0 leads us to the trivial solution f (z) =
constant, b(z) = 1.1

2.1 The equations of motion

As we have explained in [1], taking into account the spherical
symmetry one can show that all u(z), b(z) functions can be

1 These are the initial conditions that produce the flat spacetime with a
constant τ0.

expressed in terms of f (z). Indeed, the Einstein equations
for the angular variables give

u(z) = zb′(z)
(q − 1)b(z)

, (17)

and therefore one can eliminate u(z) from the actual com-
putations and deal with the equations of motion for just
b(z) and f (z). Having done some simplifications, one thus
arrives at a first-order linear inhomogeneous equation for
b(z), expressed just in terms of f (z), f ′(z). There is also a
second order ordinary differential equation for f (z), whose
initial conditions are determined demanding the smoothness
of the solution, which also determines the value of ω.

Let us now display the reduced forms of the equations of
motion for f (z) and b(z) for the three classes. These equa-
tions hold in an arbitrary number of dimensions. Our e.o.m.’s
are in agreement with [32], where they were first derived.

2.2 Elliptic class

The e.o.m.’s for self-similar solutions for this particular ellip-
tic class in any dimension d = q + 2 are

b′ = −2z(b2 − z2) f ′ f̄ ′ + 2iω(b2 − z2)( f f̄ ′ − f̄ f ′) + 2ω2z| f |2
qb(1 − | f |2)2

,

(18)

and the second order ODE for f (z) is

qz(z2 − b2)(1 − | f |2)2 f ′′

= b2 f ′(−2 f (qz f̄ 2 f ′ − iωz f̄ ′ + q2 f̄ )

− 2z2 f ′ f̄ ′ + 2z f̄ (q − iω) f ′ + q2 | f |4 + q2)

+ z(2 f 2(q(−1 − iω)z f̄ 2 f ′ + ω2z f̄ ′ − iqω f̄ )

+ f (2iωz2 f ′ f̄ ′ + 2qz2 f̄ 2 f ′2 + 4qz f̄ f ′ + qω(ω + i))

− 2qz f ′(z f̄ f ′ − iω + 1) − qω(ω − i) | f |2 f )

+ 2z3

b2 (z f ′ − iω f )2(z f̄ ′ + iω f̄ ).

(19)

The e.o.m.’s are invariant under a residual symmetry of f (z),

f (z) → eiθ f (z). (20)

2.2.1 Parabolic class

The e.o.m.’s for the parabolic class in any d = q + 2 are

b′ = −2((z2 − b2) f ′(z f̄ ′ − ω) + ω((b2 − z2) f̄ ′ + ωz))

qb( f − f̄ )2
,

(21)
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qz(z2 − b2)( f − f̄ )2 f ′′

= b2 f ′(2z f ′(z f̄ ′ − ω) − 2q f (z f ′ + q f̄ )

+ 2qz f̄ f ′ + q2 f 2 − 2ωz f̄ ′ + q2 f̄ 2)

+ z(2ωz f̄ ′(ω − z f ′) + 2q f ((ω − z f ′)2 − f̄ (ω − 2z f ′))
− 2q f̄ (ω − z f ′)2 + q f̄ 2(ω − 2z f ′) + q f 2(ω − 2z f ′))

+ 2z3

b2 (ω − z f ′)2(ω − z f̄ ′). (22)

Note that in this case the e.o.m.’s are invariant under arbitrary
shifts of f (z) by a real constant,

f (z) → f (z) + a. (23)

2.2.2 Hyperbolic class

Finally, the e.o.m.’s for hyperbolic class in any d = q + 2
dimension are

b′ = −2((z2 − b2) f ′(z f̄ ′ − ω f̄ ) + ω f ((b2 − z2) f̄ ′ + ωz f̄ ))

qb( f − f̄ )2
,

(24)

qz(z2 − b2)( f − f̄ )2 f ′′

= b2 f ′(2z2 f ′ f̄ ′ − 2zω f f̄ ′ − 2 q f (z f ′ + q f̄ )

+ 2 q z f̄ f ′ + q2 f 2 − 2ωz f̄ f ′ + q2 f̄ 2)

+ z(qω(1 + ω) f 3 − 2qz f̄ f ′( f̄ − ω f̄ + z f ′)
− 2 f 2(qω f̄ + q(1 + ω)z f ′ − ω2z f̄ ′)
+ f (−q(−1 + ω)ω f̄ 2 + 4qz f̄ f ′ + 2z2 f ′(q f ′ − ω f̄ ′)))

+ 2z3

b2 (ω f − z f ′)2(ω f̄ − z f̄ ′). (25)

These equations for the hyperbolic case are invariant under
a constant scaling

f (z) → eλ f (z), λ ∈ R. (26)

3 Search for solutions and their properties

For the geometrical point of view, we follow the analysis in
[32,33] and to explore solutions we follow the procedures
given in [1,16]. Let us describe very briefly the properties of
the self-similar solutions. Basically, one obtains a system of
ordinary differential equations (ODEs)

b′(z) = B(b(z), f (z), f ′(z)), f ′′(z) = F(b(z), f (z), f ′(z)).
(27)

These equations have five singularities:

z = 0

z = z+ > 0, b(z+) = z+
z = ±∞
z = z− < 0, b(z−) = −z−

(28)

The point z = ±0 is related to the axis r = 0 and the reg-
ularity condition can be readily applied. Assuming that the
scalars are regular across this axis and using time re-scaling,
one can obtain

f ′(0) = 0, b(0) = 1. (29)

which provide three real boundary conditions.2 Using the
residual symmetry for the e.o.m.’s mentioned in the last sec-
tion, one would be able to eliminate one degree of freedom
from the complex number f (0). Ultimately we let

f (0) =
⎧⎨
⎩
x0 elliptic 0 < x0 < 1
i x0 parabolic 0 < x0

1 + i x0 hyperbolic 0 < x0

(30)

so that the problem is reduced to the determination of just
two real parameters, ω and x0.

The singularities b(z±) = ±z± are related to backward
and forward light cones of the spacetime origin and also cor-
respond to the surfaces where the homothetic Killing vector
becomes null. The solution is smooth across b(z+) = z+,
while the forward cone b(z−) = −z− is the Cauchy hori-
zon of the spacetime and in this region we need to have the
continuity of f , b. Now one needs to consider the relevant
part for z that embeds the infinite past and exists between the
following two singularities

z = 0, (31)

z = z+, b(z+) = z+. (32)

The surface z = z+ is also a coordinate singularity, and
the field τ(t, r) should be regular across it, which actually
means that f ′′(z) must remain finite as z → z+. We also note
that the vanishing of this divergent part of f ′′(z) is indeed a
complex-valued constraint at z+

C � G(b(z+), f (z+), f ′(z+)) = 0. (33)

The explicit form of the constraint G(b(z+), f (z+), f ′(z+))

for all three different cases can be found in Section 4.1.2 of
[1].

2 The point z = ∞ is related to the surface t = 0. We used the change
of variable for the fields f (z), b(z) and showed that nothing special
happens on this surface (see the appendices in [33]).
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Therefore, our numerical procedure is as follows. We first
determine f (0) from x0 according to (30). We then use the
boundary conditions at z = 0. We also start integrating for-
ward the e.o.m.’s from a small z0 to avoid the singular point
z = 0. We stop the integrations once b(z)− z reaches a lower
level δ that is also positive and small. The value of z where
the crossing occurs is z+. Finally we make use of numeri-
cal solution to explore f (z+), f ′(z+), b(z+) as well as the
result of the constraint G introduced in (33). Therefore, we
are left out with two distinct constraints (which are the real
and imaginary parts of G) with just two unknown parame-
ters (ω, x0). Thus, we draw the curves where ReG and ImG
vanish in the plane of (ω, x0) and essentially look for their
intersections. Hence, using a starting point, the root-finding
reveals the locations of the roots. Therefore, ODE’s can be
entirely solved which have a discrete solution set. For fur-
ther numerical explanations, see Section 4 of [1]. In order
to provide some background, we now briefly revisit the CSS
solutions in lower dimensions, before generalizing them to
six and seven dimensions for all three conjugacy classes.

3.1 Results

The self-similar solutions in four and five dimensions were
recently determined in [1] by two unknown parameters of
(ω, x0), and we also explored the precise location of the
z+ singularity. One can construct the solutions integrating
numerically the CSS e.o.m.’s. For the sake of completeness,
here we briefly mention those solutions and then start explor-
ing higher-dimensional solution sets in parameter space with
their figures in six and seven dimensions for all distinct cases
of the elliptic, parabolic and hyperbolic classes.

3.1.1 Self-similar solutions for d = 4, 5 elliptic class

In [1] the curves of vanishing real and imaginary parts of
the constraint G(ω, | f (0)|) for the d = 4 elliptic case were
drawn. Only one solution at the intersection was obtained,
whose parameters are

w = 1.176, | f (0)| = 0.892, z+ = 2.605 (34)

Note that this single solution was also explored in [19,32].
On the other hand, for the five dimensional elliptic case

three distinct solutions (α, β and γ ) were found [1]. We
arrange them in order of increasing ω and represent those
three solutions in Table 1.

4 Solutions for d = 6 elliptic class

In this section we would like to explore higher dimensional
self-similar solutions for the elliptic class. We determine the

Fig. 1 Three dimensional plot of the solution for elliptic class in
four dimensions. The real part of the constraint G(ω, | f (0)|) is plot-
ted in orange, the imaginary part in blue. The plane of vanishing
Re(G), Im(G) is shown in gray, and this is where the intersection should
be looked for

Table 1 Solutions for the elliptic class in five dimensions

Solution w | f (0)| z+

α 0.999 0.673 1.246

β 1.680 0.644 1.397

γ 2.304 0.700 1.694

curves of vanishing real and imaginary parts of G(ω, | f (0)|)
for a wide range of (ω, | f (0)|) for the d = 6 elliptic case.
We were able to identify four intersections corresponding to
four solutions that are being called α, β, γ and δ, in order of
increasing ω and | f (0)|, as depicted in Fig. 2a. We have taken
β and γ solutions with (G ∼ 10−11 −10−12) and with confi-
dence. Note that, due to the small value of | f (0)|, the quality
of the α and δ solutions is of order (G ∼ 10−4 − 10−5). We
illustrate these four solutions accordingly. No other solution
was found outside this range. Using Fig. 2b, we are able to
identify the first branch solution in the d = 6 elliptic class,
which we called α solution and whose parameters are3:

w = 2.1287, | f (0)| = 0.0383, z+ = 1.0007, (35)

and we investigated all the other branches in a similar
fashion. The solutions for the six-dimensional elliptic case
are summarized in Table 2.

3 We keep track of solutions in higher dimensions up to four decimal
places.
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(a) (b)

Fig. 2 a Curves of vanishing real and imaginary parts of G(ω, | f (0)|) in the d = 6 elliptic case. Four solutions were found in order of increasing
ω and | f (0)|. b The curves of vanishing real and imaginary parts of G(ω, | f (0)|) in the d = 6 elliptic case for α branch

Table 2 Solutions for the elliptic class in six dimensions

Solution w | f (0)| z+

α 2.1287 0.0383 1.0007

β 2.7797 0.0526 1.0021

γ 3.4232 0.0609 1.0033

δ 4.6968 0.0790 1.0070

Table 3 Solutions for the elliptic class in seven dimensions

Solution w | f (0)| z+

α 0.0023 0.9996 1.8032

β 0.0078 0.9990 2.0440

γ 0.0153 0.9989 2.8275

5 Solutions for d = 7 elliptic class

For the seven-dimensional elliptic class we have been able
to identify three solutions at the intersections that are called
α, β, γ , in order of increasing ω. We have identified all these
three solutions with (G ∼ 10−9–10−11) with a good confi-
dence. We represent those solutions in Table 3.

For the sake of brevity we just display the profile of α

solution in Fig. 3.

6 Solutions for d = 4, 5 parabolic class

Due to extra symmetry for the parabolic class (see (13)), if
the parameters (ω, Im f (0)) correspond to a solution, so do

Fig. 3 Profile of α solution for elliptic case in seven dimensions

(Kω, K Im f (0)), since both e.o.m.’s and the G(ω, Im f (0))

are invariant under this scaling. Hence, the ratio ω/Im f (0),
is the only real unknown parameter for this parabolic class,
and one must search for zeroes of G(ω, Im f (0)) over just
one real parameter ω/Im f (0). Here we draw this complex
function over ω for the particular Im f (0) = 1. Notice that,
if a root ω∗ existed, it would produce a continuous ray of
solutions (ω, Im f (0)) = (Kω∗, K ).

The plots of absolute value and both real and imaginary
parts of G(ω, 1) over ω were displayed in [1], and no zeroes
were notified for ω > 0 in the four-dimensional parabolic
class. In Fig. 4 we show a two-dimensional plot of the zeroes
of the real and imaginary parts of G(ω, Im f (0)) in five
dimensions, which clarifies the degeneracy related to the
extra scaling symmetry of the parabolic class.
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Fig. 4 A two-dimensional plot of the zeroes of the real and imaginary
parts of G(ω, Im f (0)) in five dimensions

Fig. 5 The plot of absolute value (blue), real and imaginary parts
(orange) of G(ω, 1) in the d = 5 parabolic case

In Fig. 5 for the five-dimensional parabolic case one might
notice a very small value of |G| around a particular ω as the
following solution ray:

|G| ∼ 0.006, ω ∼ 1.65. (36)

We are not able to exclude these small values as a solution
ray in five dimensions that may not have been identified due
to numerical errors. Indeed, this might be a possible solution
for an over-determined configuration.

7 Solutions for d = 6, 7 parabolic class

In order to see whether or not there are possibly additional
solutions for the parabolic class in higher dimensions, here
we illustrate in two-dimensional plots the zeroes of the real
and imaginary parts of G(ω, Im f (0)), which displays the
degeneracy caused by a scaling invariance of the parabolic
class. It was not possible to identify solution rays, in both six
and seven dimensions, and we are tempted to conjecture that
there are also no solutions for the parabolic case in higher
dimensions.

Fig. 6 The plots of absolute value (blue) and real and imaginary parts
(orange) of G(ω, 1) over ω in the d = 6 parabolic case. We cannot
identify any zero for ω > 0

Fig. 7 The plots of absolute value (blue) and real and imaginary parts
(orange) of G(ω, 1) over ω in the d = 7 parabolic case. Again, we
cannot identify any zero for ω > 0

Fig. 8 The curves of vanishing real and imaginary parts of
G(ω, Im f (0)) for d = 4 hyperbolic case

8 Solutions for d = 4, 5 hyperbolic class

Four distinct solutions for four dimensions in the hyperbolic
case were explored in [1], in order of decreasing Im f (0), as
depicted in Fig. 8.
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Fig. 9 Three-dimensional plot of the solution for the hyperbolic class
in four dimensions. The real part of the constraint G(ω, Im f (0)) is
plotted in orange, the imaginary part in blue. The vanishing plane
Re(G), Im(G) is shown in gray. The solutions lie at the intersection
of these three surfaces

Fig. 10 The profile of δ branch for hyperbolic class in four dimensions

Table 4 4d hyperbolic solutions

Solution w Im f (0) z+

α 1.362 0.708 1.440

β 1.003 0.0822 3.29

γ 0.541 0.0059 8.44

δ 0.6404 0.0015 19.2923

As was argued, using a root-finding procedure one can also
investigate the fourth intersection, which is called δ whose
parameters are given by:

w = 0.6404, Im f (0) = 0.0015, z+ = 19.2923 (37)

The three dimensional plot of the constraint G(ω, Im f (0))

is also shown in Fig. 9.
The profile of δ solution is shown in Fig. 10.
The solutions in four and five dimensions are summarised

in Table 4 and in Table 5.

Table 5 5d hyperbolic solutions

Solution w Im f (0) z+

α 1.546 1.555 1.254

β 1.305 3.086 1.129

γ 1.125 1.705 1.109

δ 0.588 0.364 1.156

Table 6 6d hyperbolic solutions

Solution w Im f (0) z+

α 0.0100 0.0070 1.0901

β 0.0063 0.0038 1.1201

Table 7 7d hyperbolic solutions

Solution w Im f (0) z+

α 0.0021 0.0014 1.0828

β 0.0017 0.0011 1.0952

9 Solutions for d = 6, 7 hyperbolic class

For the hyperbolic class, especially in higher dimensions,
we were able to obtain two solutions, in both six and seven
dimensions. They are displayed in Tables 6 and 7, in order
of decreasing ω and Im f (0). The output of the root-finding
procedure is accurate, and hence we have checked that the α

and β solutions can be identified with (G ∼ 10−11 − 10−12)

with good precision. The source of inaccuracy in the solu-
tions can be ascribed to the magnitude of the regularisation
parameters z0 and δ.4

Notice that, due to the small values of Im f (0), we can
not exclude the presence of further solutions for the hyper-
bolic class in higher dimensions. The numerical accuracy
decreases as the dimension increases and we trust the solu-
tion parameters only up to four decimal places. Indeed, for
the higher dimensional hyperbolic class we could not rely
on the graphical representations to get hints as to where the
intersections of Re(G), Im(G) may lie. Still, the numerical
procedure does discover some roots with good precision and
we are confident about them.

4 So far we have set z0 = 0.001 and δ = 10−4. Instead, for the hyper-
bolic class in six and seven dimensions we have chosen z0 = 0.0001
and δ = 10−5. We have also checked that our previous results in lower
dimensions are not affected if we change these parameters.
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Fig. 11 Three dimensional
plots of the constraint function
G(ω, Im f (0)) for the
hyperbolic solutions in five
dimensions

10 Conclusions

In this paper we have shown that there are various spherically
symmetric self-similar collapse solutions for the Einstein-
axion–dilaton system in six and seven dimensions for the
elliptic, parabolic and hyperbolic cases. As in lower dimen-
sions [1], one can make use of various algebraic simplifi-
cations (e.g., the possibility of eliminating u and its deriva-
tives). Therefore, this new numerical procedure of obtain-
ing scale-invariant solutions has significantly improved the
actual computations with respect to the old setting [16], thus
allowing to investigate more accurately z+ crossing.

A new method of setting up the perturbation theory of
self-similar solutions for elliptic and hyperbolic cases was
recently proposed in [34]. Given the self-similar solutions,
one may perturb5 the field h(t, r) of the self-similar back-
ground solution letting

h(t, r) = (−t)�(hCSS(z) + ε (−t)−κh1(z)), (38)

with � the scaling dimension of the field h. One can also
investigate solutions for the specific exponent κ that finds all
the modes. In [34], the Choptuik critical exponents γ were
found in four and five dimensions, relating them to the most
relevant mode via the following equation [14]:

1

Reκ
= γ. (39)

We hope to be able to systematically study the perturbations
for the generic parabolic case and also investigate the per-
turbations of the distinct solutions of this paper in the near
future. It would be also interesting to investigate whether or
not there could be elements � ∈ SL(2,Z) such that

τ(e�� t, e�� r) = aτ + b

cτ + d
; � =

(
a b
c d

)
∈ SL(2,Z),

(40)

5 Various perturbed solutions over spherical symmetric background for
a specific theory had been revealed in [35].

where �� is the echoing parameter. In order to address this
open question one need not assume CSS ad instead carry out
the entire numerical integration of Einstein’s equations. We
hope to return to these open questions in the near future.

Acknowledgements We would like to thank R. Antonelli, E.
Hirschmann, L. Alvarez-Gaume, I. Basile and A. Sagnotti for their use-
ful comments. We are really grateful to R. Antonelli and E. Hirschmann
for bringing to our attention various points on some of the numerical
parts. EV carried out part of the work during her visit to Scuola Nor-
male Superiore, and is grateful for the kind hospitality. This work was
supported by INFN (ISCSN4-GSS-PI), by Scuola Normale, and by the
MIUR-PRIN contract 2017CC72MK_003.

Data Availability Statement This manuscript has associated data in
a data repository. [Authors’ comment: All data generated or analyzed
during this study are included in this published article and some data is
produced by Mathematica software.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. R. Antonelli, E. Hatefi, On self-similar axion-dilaton configura-
tions. JHEP 03, 074 (2020). arXiv:1912.00078 [hep-th]

2. M.W. Choptuik, Universality and scaling in gravitational collapse
of a massless scalar field. Phys. Rev. Lett. 70, 9 (1993)

3. C. Gundlach, Critical phenomena in gravitational collapse. Phys.
Rep. 376, 339 (2003). arXiv:gr-qc/0210101

4. L. Alvarez-Gaume, C. Gomez, A. Sabio Vera, A. Tavanfar,
M.A. Vazquez-Mozo, Critical formation of trapped surfaces in the
collision of gravitational shock waves. JHEP 0902, 009 (2009).
arXiv:0811.3969 [hep-th]

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1912.00078
http://arxiv.org/abs/gr-qc/0210101
http://arxiv.org/abs/0811.3969


952 Page 10 of 10 Eur. Phys. J. C (2020) 80 :952

5. R.S. Hamade, J.M. Stewart, The spherically symmetric collapse of
a massless scalar field. Class. Quantum Gravity 13, 497 (1996).
arXiv:gr-qc/9506044

6. E. Sorkin, Y. Oren, On Choptuik’s scaling in higher dimensions.
Phys. Rev. D 71, 124005 (2005). arXiv:hep-th/0502034

7. J. Bland, B. Preston, M. Becker, G. Kunstatter, V. Husain,
Dimension-dependence of the critical exponent in spherically sym-
metric gravitational collapse. Class. Quantum Gravity 22, 5355
(2005). arXiv:gr-qc/0507088

8. M. Birukou, V. Husain, G. Kunstatter, E. Vaz, M. Olivier, Scalar
field collapse in any dimension. Phys. Rev. D 65, 104036 (2002).
arXiv:gr-qc/0201026 [gr-qc]

9. V. Husain, G. Kunstatter, B. Preston, M. Birukou, Anti-de Sit-
ter gravitational collapse. Class. Quantum Gravity 20, L23–L30
(2003). arXiv:gr-qc/0210011 [gr-qc]
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