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Abstract The ladder kernel of the Bethe–Salpeter equation
is amended by introducing a different flavor dependence of
the dressing functions in the heavy-quark sector. Compared
with earlier work this allows for the simultaneous calculation
of the mass spectrum and leptonic decay constants of light
pseudoscalar mesons, the Du , Ds , Bu , Bs and Bc mesons and
the heavy quarkonia ηc and ηb within the same framework
at a physical pion mass. The corresponding Bethe–Salpeter
amplitudes are projected onto the light front and we recon-
struct the distribution amplitudes of the mesons in the full
theory. A comparison with the first inverse moment of the
heavy meson distribution amplitude in heavy quark effective
theory is made.

1 Introduction

The introduction of hadronic light-cone distribution ampli-
tudes (LCDA) dates back to the seminal works on hard exclu-
sive reactions in perturbative QCD [1–5]. These nonpertur-
bative and scale-dependent functions can be understood as
the closest relative of quantum mechanical wave functions in
quantum field theory. They describe the longitudinal momen-
tum distribution of valence quarks in a hadron in the limit of
negligible transverse momentum, here given by the leading
Fock-state contribution to its light-front wave function, the
so-called leading-twist LCDA. In particular, the light-front
formulation of a wave function allows for a probability inter-
pretation of partons not readily accessible in an infinite-body
field theory, since particle number is conserved in this frame.
In other words, φ(x, μ) expresses the light-front fraction of
the hadron’s momentum carried by a valence quark.

a e-mail: elbennich@me.com (corresponding author)

The simplest hadronic distribution amplitude is that of
the pion and has justifiably received much attention [6–
19] due to increasing interest in, amongst others, precision
calculation of two-photon transition form factor [20–29]
and of weak semi-leptonic, B → π�ν�, and non-leptonic
B → ππ, B → ρπ, B → Kπ . . . decays. The latter can
also be treated as a hard exclusive process with associated
factorization theorem, which separates the decay amplitudes
for a given process into hard short-distance contributions and
soft nonperturbative matrix elements, where the distribution
amplitudes enter both, the hard-scattering integrals over Wil-
son coefficients and the heavy-to-light transition amplitudes
[30–38].

The slowly establishing consensus, after decade-long con-
troversies about the shape of pion’s distribution amplitude,
points at a function φπ(x, μ) that is a concave function sym-
metric about x = 1/2 and broader than the asymptotic distri-

bution φ(x, μ)
μ→∞−−−→ 6x(1−x) [19,39], where x is the lon-

gitudinal light-front momentum fraction and μ is the renor-
malization scale. For heavier quarkonia, such as the ηc and
ηb, the distribution amplitudes appear to be increasingly more
localized in x ∈ [0, 1] with narrower width and a convex-
concave functional behavior [40–42]. In the infinite-mass
limit these distribution amplitudes tend towards a δ-like func-
tion, though this limit is far from being reached at the bottom-
mass scale. The transition from concavely shaped distribu-
tion amplitudes to convex-concave ones occurs between the
strange and charm quark, a mass-scale region known for the
onset of important flavor-symmetry breaking effects [43–47].

With respect to factorization approaches in weak heavy-
meson decays, distribution amplitudes of heavy mesons
defined in heavy quark effective theory [48] were for the
longest time based on models whose functional form in a
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given limit is dictated by QCD sum rules [48–51], guided by
an operator product expansion [52] or obtained from a combi-
nation of dispersion relations and light-cone QCD sum rules
[53]. Additional model approaches exist, see Refs. [54–57]
for instance. A heavy-light LCDA was also extracted from the
extrapolation of Bethe–Salpeter amplitudes calculated with
an unphysical pion mass [58].

Herein we re-appreciate earlier work on heavy-light
mesons and quarkonia [59–65] within a continuum approach
to two-point and four-point functions whose salient features
will be summarized in Sect. 2. The crucial difference in the
present approach is the flavor-dependence of the interac-
tion in the ladder truncation of the Bethe–Salpeter kernel,
as we effectively take into account that the quark-gluon ver-
tex dressing has a different impact for a light quark than
for a charm or bottom quark. In general, D and B mesons
are of particular interest as they offer a rich laboratory to
study two limiting mass-scale sectors of QCD with associ-
ated emergent approximate symmetries: chiral symmetry in
the sector of light quarks where mq � ΛQCD and heavy
quark symmetry for masses mq � ΛQCD [45,66]. In Ref.
[67] we applied these considerations to a contact-interaction
model to obtain the mass spectrum and decay constants of
D mesons. It turned out that introducing different effective
couplings, due to unlike dressing effects for light and heavy
quarks, in the ladder truncation of the Bethe–Salpeter ker-
nel significantly improved the description of experimental
results. This was also observed in Ref. [68].

This logic was subsequently applied to the Bethe–Salp-
eter equation (BSE) [69,70] with a flavor-dependent infrared
component of the interaction model introduced in Ref.
[71]. We employ the combined approach of the Dyson–
Schwinger equation (DSE) for the quark and BSE with a
flavor-dependent, slightly modified interaction to first com-
pute the mass spectrum and weak decay constants of the pseu-
doscalar π , K , D, Ds , B, Bs and Bc mesons and ηc and ηb
quarkonia in Sect. 2. In doing so, we fix the light and heavy
quark flavors uniquely and solve the DSE on the complex
plane using Cauchy’s theorem [72,73]. The resulting non-
perturbative propagators are then inserted consistently and
simultaneously in the BSE for the aforementioned mesons.
Since the resulting masses and decay constants are obtained
without any extrapolations of eigenvalues or masses, we also
obtain the corresponding LCDA at a physical mass with
appropriate projections of the Bethe–Salpeter amplitudes on
the light front in Sects. 3 and 4. These distributions ampli-
tudes are then used to compute their first inverse moment
which we compare with values in heavy quark effective the-
ory in Sect. 5. We wrap up with a brief conclusion in Sect. 6.

2 Pseudoscalar bound states

The calculation of a meson’s distribution amplitude requires
the knowledge of the wave function of this bound state. We do
so regarding the mesons as a continuum bound-state problem
described by the homogeneous BSE in leading symmetry-
preserving truncation. The solution of this eigenvalue prob-
lem yields the mass and the Bethe–Salpeter amplitude (BSA)
of the meson which can be projected on the light-front to
extract a distribution amplitude. It also allows to obtain the
leptonic decay constant which directly tests the wave func-
tion normalization of the meson. The main ingredients of
the BSE’s kernel are the dressed-quark propagators and the
dressed effective gluon interaction which are described in the
next sections.

2.1 Dressed-quark propagators

The dressed propagators are solutions of the quark’s gap
equation which can be obtained from the appropriate DSE for
a given flavor. The DSE describes the two-point Green func-
tion in terms of a non-linear tower of coupled integral equa-
tions, each involving other Green functions, most prominent
amongst them the dressed-gluon propagator and the quark-
gluon vertex. The DSE for a quark of flavor f reads [74,75],1

S−1
f (p) = Z f

2

(
i γ · p + mbm

f

)

+ Z f
1 g

2
∫ Λ d4k

(2π)4 Dab
μν(q)

λa

2
γμS f (k)Γ

b
ν, f (k, p),

(1)

where mbm
f is the bare current-quark mass, Z f

1 (μ,Λ) and

Z f
2 (μ,Λ) are the vertex and wave-function renormaliza-

tion constants at the renormalization point μ, respectively.
The integral is over the dressed-quark propagator S f (k), the
dressed-gluon propagator Dμν(q)with momentumq = k−p
and the quark-gluon vertex, Γ a

μ (k, p) = 1
2 λaΓμ(k, p),

where the color SU(3) matrices λa are in the fundamental
representation; Λ is a Poincaré-invariant regularization scale,
chosen such that Λ � μ.

The most general Poincaré covariant form of the solutions
to Eq. (1) is written in terms of scalar and vector contribu-
tions:

S f (p) = −iγ · p σ f
v (p2) + σ f

s (p2)

= 1/
[
iγ · p A f (p

2) + B f (p
2)

]

1 Henceforth we employ a Euclidean metric which implies: {γμ, γν} =
2δμν ; γ †

μ = γμ; γ5 = γ4γ1γ2γ3, tr[γ4γμγνγργσ ] = −4 εμνρσ ; σμν =
(i/2)[γμ, γν ]; a ·b = ∑4

i=1 ai bi ; and for a time-like vector Pμ we have
⇒ P2 < 0.
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= Z f (p
2)/

[
iγ · p + M f (p

2)
]
. (2)

The scalar and vector dressing functions are σ
f

s (p2) and
σ

f
v (p2), respectively, whereas Z f (p2) defines the quark’s

wave function and M f (p2) = B f (p2)/A f (p2) is the run-
ning mass function. In a subtractive renormalization scheme
the two renormalization conditions,

Z f (p
2) = 1/A f (p

2)

∣∣∣
p2=μ2

= 1, (3)

S−1
f (p) |p2=μ2 = iγ · p + m f (μ), (4)

are imposed, wherem f (μ) is the renormalized current-quark
mass related to the bare mass by,

Z f
4 (μ,Λ)m f (μ) = Z f

2 (μ,Λ)mbm
f (Λ), (5)

and Z f
4 (μ,Λ) is the renormalization constant associated

with the Lagrangian’s mass term.
The rainbow-ladder (RL) truncation of the integral equa-

tion (1) and of the BSE kernel has proven to be a robust and
successful symmetry-preserving approximation of the full
tower of equations in QCD when it comes to the description
of light ground-state mesons in the isospin-nonzero pseu-
doscalar and in the vector channels as well as of the N , N∗
and Δ baryons. The rainbow truncation of the DSE is given
by the prescription,

Z f
1 g

2Dμν(q)Γν, f (k, p) = (
Z f

2

)2 G(q2)Dfree
μν (q)

λa

2
γν, (6)

where we work in Landau gauge in which the free gluon
propagator is transverse [74,76],

Dfree
μν (q) := δab

(
δμν − qμqν

q2

)
1

q2 , (7)

and G(q2) in an effective interaction model of the gluon and
vertex dressing. In essence, the complexity of the nonper-
turbative quark-gluon vertex is reduced to the one leading
Dirac term, where an Abelianized Ward–Green–Takahashi
identity,

iq · Γ f (k, p) = S−1
f (k) − S−1

f (p), (8)

is enforced which leads to Z f
1 = Z f

2 [74]. In perturbation
theory this is tantamount to neglecting the contributions of
the three-gluon vertex to Γμ(k, p) and obviously a drastic
simplification of the Slavnov–Taylor identity for the quark-
gluon vertex, as it implies equality of the renormalization
constants of the ghost-gluon vertex and ghost wave function:
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Fig. 1 The interaction function G(k2)/k2 in Eq. (11) for different
quark flavors and with ω f and κ f reported in Table 1. The shaded bands
describe the model uncertainty in varying the interaction parameter ω f ;
see Sect. 2.3 for details

Z̃1 = Z̃3 [77–83]. Furthermore, with the ansatz (6) we intro-
duce an additional factor Z f

2 to ensure multiplicative renor-
malizability of Eq. (1) and thus the renormalization-point
independence [84] of the mass function M f (p2):

Γμ(k, p) = Z f
2 γμ. (9)

With this, the constants, Z f
2 (μ,Λ) and Z f

4 (μ,Λ), are deter-
mined using Eqs. (3) and (4), respectively, which leads to
a non-linear coupled renormalization condition [65]. Their
values at μ = 2 GeV are listed in Table 1.

The ansatz in Eq. (6) implies that a single dressing func-
tion G(q2) describes the joint effects of vertex and gluon
dressing in the DSE. While this truncation is effective and
successful for light hadrons for reasons elucidated in Ref.
[85], the dynamics in open-flavor mesons is dominated by a
wide array of energy scales. In particular, the nonperturba-
tive interactions of a light quark and a charm or bottom quark
with a gluon cannot be assumed to be similar and therefore
be described by equal dressing functions. And whilst the
truncation of Eq. (6) preserves the axialvector Ward–Green–
Takahashi identity (WTI) and therefore chiral symmetry, it
is clear that the identity (8) for a bare vertex,

iq · γ = ik · γ Z−1
f (k2) − i p · γ Z−1

f (p2)

+ M f (k
2)Z−1

f (k2) − M f (p
2)Z−1

f (p2), (10)

can only hold approximately when M f (k2) 	 M f (p2) and
Z f (k2) 	 Z f (p2) 	 1 ∀ k2, p2 > 0. This is, at best, the
case for very heavy quarks as dynamical chiral symmetry
breaking (DCSB) contributes little to their mass functions.
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Table 1 Model parameters (in GeV): mμ19
f = m f (19 GeV), mμ2

f =
m f (2 GeV), ω f and κ f = (ω f D f )

1/3. ME
f is the Euclidean constituent

quark mass: ME
f = {p2|p2 = M2(p2)}. Renormalization constants in

DSE: Z f
2 and Z f

4 at μ = 2 GeV

f mμ19
f mμ2

f ω f κ f ME
f Z f

2 Z f
4

u, d 0.0034 0.018 0.50 0.80 0.408 0.82 0.13

s 0.082 0.166 0.50 0.80 0.562 0.82 0.32

c 0.903 1.272 0.70 0.60 1.342 0.94 0.53

b 3.741 4.370 0.64 0.56 4.259 0.97 0.62

Yet, this is far from true for the charm quark [45] and for
lighter quarks dressing effects are important.

In order to introduce the flavor asymmetry in the anti-
quark-quark interaction kernel of the D and B mesons,
we assume an explicit flavor dependence in the interaction
G f (q2) and denote it by a subscript. Herein, we will use
Gu(q2) = Gd(q2) = Gs(q2) �= Gc(q2) �= Gb(q2). The dress-
ing functionG f (q2) is modeled after Ref. [71] and consists of
the sum of an ansatz in the infrared region, which dominates
for |k| < ΛQCD and is suppressed at large momenta, and a
second term that implements the regular continuation of the
perturbative QCD coupling and dominates large momenta,

G f (q2)

q2 = GIR
f (q2) + 4πα̃PT(q2), (11)

where we deliberately absorb a factor 1/q2 from the gluon
propagator (7) in the definition. The expressions for both
terms are given by,

GIR
f (q2) = 8π2

ω4
f

D f e
−q2/ω2

f

4πα̃PT(q2) = 8π2γmF(q2)

ln
[
τ + (

1 + q2/Λ2
QCD

)2] , (12)

with γm = 12/(33 − 2N f ) being the anomalous dimension
and N f the active flavor number, ΛQCD = 0.234 GeV, τ =
e2−1,F(q2) = [1−exp(−q2/4m2

t )]/q2 andmt = 0.5 GeV.
The ansatz in Eq. (12) can be parametrized by

G(q2)

q2 = 4παs(q2)

q2 + m2
g(q

2)
, m2

g(q
2) = M4

g

q2 + M2
g
, (13)

where m2
g(q

2) is an effective gluon mass that vanishes in the
ultraviolet and Mg is a mass scale [86]. The low-momentum
component leads to an infrared massive and finite interaction
consistent with modern DSE and lattice-QCD results and is
responsible for DCSB.

Hence, the flavor dependence is explicit in the infrared
component of the interaction via the constant,

D f ω f := κ3
f , (14)

where we use equal values of κ f and ω f for f = u, d, s and
different ones for κc, ωc and κb, ωb; note that κ f is in unit
of GeV. For comparison, we plot G f (q2)/q2 in Fig. 1, from
which it is clear that the interaction is strongly attenuated in
the heavy sector and the interaction probes more the light
quarks in the infrared domain. The interaction strengths of
the heavy quarks overlap within the uncertainty bands due
to Δω f discussed in Sect. 2.3, albeit that of the charm quark
is slightly more suppressed contrary to expectation. Indeed,
Gb(q2)/q2 can be made weaker than Gc(q2)/q2 with read-
justments of ωb and κb, while keeping the mass spectrum of
the B, Bs , Bc and ηb virtually the same. However, the decay
constants of the B mesons suffer a decrease of 20 − 30%.

With this interaction ansatz, we solve the DSE for each
quark flavor at space-like momenta, p2 > 0, using the param-
eters reported in Table 1. These parameters have been cho-
sen so to reproduce the masses and decay constants stud-
ied herein. More precisely, mu(μ) = md(μ) and κu and ωu

are set with the pion’s mass and decay constant, ms(μ) is
fixed likewise with the kaon using κs = κu , ωs = ωu , and
these same light-quark parameters are employed in the heav-
ier mesons. Similarly, the values of mc(μ), κc and ωc are
chosen so to reproduce mD and fD , whereas mηb and fηb are
obtained from adjusting mb(μ), κb and ωb. We fix the quark
masses at μ = 19 GeV and then evolve them to a scale of
2 GeV at which we compute the quark propagators in the
complex plane, as will be discussed shortly in Sect. 2.3.

2.2 Bound-state equation

The axialvector WTI is crucial to satisfy the chiral properties
of the Goldstone bosons of QCD and to guarantee that the
pion is massless in the chiral limit. The identity is derived
from chiral transformations and reads [87],

PμΓ
f g

5μ (k; P) = S−1
f

(
kη

)
iγ5 + iγ5S

−1
g

(
kη̄

)

− i
[
m f + mg

]
Γ

f g
5 (k; P), (15)

where Γ
f g

5μ (k; P) and Γ
f g

5 (k; P) respectively denote the axi-
alvector and pseudoscalar vertices for two quark flavors, f
and g, and P is the total four-momentum of the meson,
P2 = −m2

M . The short notation for the quark momenta,
kη = k + ηP and kη̄ = k − η̄P , defines momentum-fraction
parameters, η + η̄ = 1, η ∈ [0, 1].

In order to constrain the Bethe–Salpeter kernel by the
quark propagators S f (k), the interaction and the ansatz for
the quark-gluon vertex (9), one inserts the DSE (1) as well
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as the axialvector and pseudoscalar vertices given by,

Γ
f g

5μ (k; P) = Z f
2 γ5γμ

+
∫ Λ d4q

(2π)4 K fg(q, k; P) S f (qη)Γ
f g

5μ (q; P)Sg(qη̄),

(16)

Γ
f g

5 (k; P) = Z f
4 γ5

+
∫ Λ d4q

(2π)4 K fg(q, k; P) S f (qη)Γ
f g

5 (q; P)Sg(qη̄),

(17)

in which K fg(q, k; P) is the fully-amputated quark-anti-
quark scattering kernel and the Dirac- and color-matrix
indices are implicit, into Eq. (15) which leads to the rela-
tion (l = k − q),
∫ Λ d4q

(2π)4 K f g(q, k; P)
[
S f (qη)γ5 + γ5Sg(qη̄)

]

= −
∫ Λ d4q

(2π)4 γμ

[
Δ f

μν(l)S f (qη)γ5

+γ5Δ
g
μν(l)Sg(qη̄)

]
γν, (18)

where we define:

Δ f
μν(l) = 4

3

(
Z f

2

)2 G f (l
2)

(
δμν − lμlν

l2

)
1

l2
. (19)

Closely inspecting both sides of Eq. (18) one realizes that, in a
RL truncation with a flavor-dependent interaction, the kernel
K f g(q, k; P) on the left-hand side must express an average

of the interactions. Note that in the limit Δ
f
μν(l) = Δ

g
μν(l)

the identity Eq. (18) is satisfied by the usual RL kernel,

K (q, k; P) = −Z2
2 G(l2)Dfree

μν (l) γμ

λa

2
γν

λa

2
. (20)

In a consistent ansatz for K f g(q, k; P) that satisfies
Eq. (18), it can be shown [70] that the kernel behaves for
large momenta q → ∞ as,

K f g ∼ − γμ

(
Δ

f
μν + Δ

g
μν

2

)
γν, (21)

whereas in the infrared limit this becomes,

K f g ∼ − γμ

(
Δ

f
μνσ

f
s (0) + Δ

g
μνσ

g
s (0)

σ
f
s (0) + σ

g
s (0)

)
γν. (22)

In both cases the kernel tends to an average of interaction
functions, in the latter case weighted with flavored quark-
dressing functions.

In this light, we choose the ansatz for the kernel,

K f g(k, q; P) = −Z2
2
G f g(l2)

l2
λa

2
γν

λa

2
γν, (23)

combining the wave-function renormalization constant of
both quarks Z2(μ,Λ) = √

Z f
2
√
Zg

2 and introducing the
ansatz,

G f g(l2)

l2
= GIR

f g(l
2) + 4πα̃PT(l2), (24)

where the averaged interaction in the low-momentum domain
is described by:

GIR
f g(l

2) = 8π2

(ω f ωg)2

√
D f Dg e

−l2/(ω f ωg), (25)

We insert this ansatz in the homogeneous BSE,

Γ
f g
M (k, P)=

∫ Λ d4q

(2π)4 K f g(k, q; P)S f (qη)Γ
f g
M (q, P)Sg(qη̄),

(26)

and obtain Poincaré-invariant solutions which are the BSAs,
Γ

f g
M (k, P), in the pseudoscalar channel J PC = 0−+. They

can be expanded in a non-orthogonal base with respect to the
Dirac trace:

Γ
f g
M (k, P) = γ5

[
i E f g

M (k, P) + γ · P F f g
M (k, P)

+ γ · k k · P G fg
M (k, P) + σμνkμPν H fg

M (k, P)
]
. (27)

We remind, though, that mesons with unequal quarks, such
as the kaon, D and B mesons, are not eigenstates of the
charge-conjugation operator defined as,

ΓM (k, P)
C−→ Γ̄M (k, P) := CΓ T

M (−k, P)CT . (28)

Thus, Γ̄M (k, P) = λcΓM (k, P) does not imply λc = ±1
for their charge parity. For mesons made of valence quarks
with equal current mass and J PC = 0−+, the constraint that
the Dirac base in (27) satisfies λc = +1 requires the scalar
amplitudes to be even under k ·P → −k ·P . Each amplitude,
Fi = EM , FM , GM , HM , can furthermore be decomposed
in terms of,

Fi (k, P) = F0
i (k, P) + k · P F1

i (k, P), (29)

in which F0,1
i (k, P) are even under k · P → −k · P . As a

consequence, the neutral pion and quarkonia have the prop-
erty F1(k, P) ≡ 0, yet F1(k, P) will contribute to flavored
mesons.
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Im[q2η]

Re[q2η]

(0,±2η2m2
M)(−η2m2

M , 0)

×

×

Fig. 2 The integration domain defined by the BSE for a meson of mass
mM described by a parabola in the complex q2

η -plane

We apply the Nakanishi normalization condition [88,89]
which makes use of the eigenvalue trajectory λ(P2) of the
BSE,

(
∂ ln(λ)

∂P2

)−1

= trCD

∫
d4k

(2π)4 Γ̄
f g
M (k;−P)

× S f (kη)Γ
f g
M (k; P)Sg(kη̄), (30)

to normalize the BSA and verify the normalization with the
usual canonical method:

2Pμ = ∂

∂Pμ

∫
d4k

(2π)4 TrCD
[
Γ (k;−K )

× S(kη)Γ (k; K )S(kη̄)
]∣∣∣

P2=K 2=−M2
. (31)

The normalization is required to calculate the weak decay
constant of the pseudoscalar meson:

fM Pμ = NcZ2√
2

∫ Λ d4k

(2π)4 TrD
[
γ5γμ χM (kη, kη̄)

]
. (32)

Henceforth, χM (kη, kη̄) := S f (kη)Γ
f g
M (k, P)Sg(kη̄) defines

the Bethe–Salpeter wave function. As already noted, the
quark momenta, kη = k + ηP and kη̄ = k − η̄P , define
momentum-fraction parameters; no observables can depend
on them owing to Poincaré covariance.

The weak decay constant may also be inferred from the
Gell–Mann–Oakes–Renner (GMOR) relation which is just
a different expression of the axialvector WTI that describes
the axialvector-current conservation in the chiral limit; see
for instance Refs. [59,69] for details of the calculation. Com-
paring the decay constant obtained with Eq. (32) and with the
GMOR relation provides us an additional check of the kernel

in Eq. (23) and we find variations for fD and fB of the order
of 3 %.

2.3 Numerical results on the complex plane

The numerical solution of the BSE (26) implies the knowl-
edge of the quark propagator,

S f (qη) = −iγ · qη σ f
v (q2

η) + σ f
s (q2

η)

= Z f (q
2
η)/

[
iγ · qη + M f (q

2
η)

]
, (33)

and likewise for S f (qη̄). In Euclidean space, the arguments
q2
η and q2

η̄ define parabolas on the complex plane,

q2
η = q2 − η2m2

M + 2iηmM |q|zq , (34)

q2
η̄ = q2 − η̄2m2

M − 2i η̄mM |q|zq , (35)

where z = q · P/|q||P|, −1 ≤ z ≤ +1, is an angle. In
Fig. 2, we illustrate a typical situation encountered in numer-
ical studies of the DSE with an external time-like momentum.

In this figure, the points (−η2m2
M , 0) and (0,±2η2m2

M )

are respectively the intersection points with the real and imag-
inary axis defined by,

Re[q2
η ] = q2 − η2m2

M , (36)

Im[q2
η ] = 2η|q|mMzq , (37)

and similarly for η̄. We note that the size of the parabolic
domain is determined by the meson mass mM and the
parabola is fully defined once mM and η are known. Since
the entire interior of the parabola is sampled in the numer-
ical integration of the BSE, singularities inside this domain
must be avoided. For the simple case of the pion, where
mM < 1 GeV, these complex-conjugate singularities will
be outside the parabolic region, as illustrated with the sym-
bol “×” in Fig. 2.2 In this case, the propagator functions σ

f
s,v

are analytic and Cauchy’s integral theorem can be applied.
On the other hand, with increasing meson mass, such as for
the D where mD > 1 GeV, singularities may lie within the
integration domain and the parameters η and η̄ can be chosen
to adapt the parabola size and shift external momentum from
one constituent propagator to the other. In doing so, there is a
limiting bound-state mass for which the integration domain
starts to overlap these singularities.

The numerical application of Cauchy’s integral theo-
rem we employ is explained in detail in Ref. [73] and our
parametrization of the parabola contour is described in Ref.
[59]. In particular, we use a distribution of momenta on the
contour that is skewed towards the vertex of the parabola. As
an example, we plot the real part of σ u

s (q2
η) on the complex

2 These complex-conjugated singularities are merely illustrative, as
there may occur additional singularities and even cuts deeper into the
complex plane and off the real axis; see Ref. [60], for example.
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Fig. 3 Comparison of σ u
s (q2

η ) and Δσ u
s (q2

η ) for the u-quark on the complex plane (P2 = −m2
π , η = 1/2, mπ = 0.140 GeV)

Fig. 4 Comparison of σ b
s (q2

η ) and Δσ b
s (q2

η ) for the b-quark on the complex plane (P2 = −m2
ηb

, η = 1/2, mηb = 9.392 GeV)

plane in the left-hand panel of Fig. 3, where the maximal
hadron mass that can be reached is mmax

M = 0.2 GeV > mπ .
Clearly, the dressing function is analytical in this complex
domain.

In case of the B mesons we consider, their large masses
do not allow for an optimized η and η̄ pair that produces a
parabola free of singularities in the b-quark propagator and
in the light(er)-quark propagator. We therefore resort to a
complex-conjugate pole representation of the b-propagator
for these mesons. The BSA of the ηb, on the other hand, is
obtained with the propagator solution on the complex plane,
as the conjugate-complex singularities remain outside the
parabolic region which can be inferred from the left-hand
panel of Fig. 4.

Hence in order to compute the static properties of ground-
state Bu,s,c mesons, we combine two approaches. Due to the
issue of unavoidable singularities in the b-quark propagator

on the complex plane, we implement a complex conjugate
pole (ccp) parametrization for the heavy-quark propagator,
while for the u, s and c quarks we use their solutions on the
complex plane. The ccp parametrization is given by,

S f (q) =
N∑

k=1

[
z f
k

iγ · q + m f
k

+
(
z f
k

)∗

iγ · q + (
m f

k

)∗
]

, (38)

m f
k and z f

k being complex numbers. These parameters are
fitted to the DSE solution (2) for N = 2 on the real space-
like axis p2 ∈ [0,∞), and the thus obtained ccp repre-
sentation is then analytically extended to complex momenta.
Since we make use of the this representation to calculate the
Mellin moments (45) of the LCDA, we list their parameters
in Table 2 for all flavors.
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Table 2 Parameters of the ccp
representation of the
propagators (38) for N = 2
complex-conjugate poles. The
pair (x, y) represents the
complex number x + iy

f z1 m1 z2 m2

u (0.387, 0.243) (0.503, 0.258) (0.142,−0.002) (−0.900, 0.666)

s (0.432, 0.155) (0.667, 0.318) (0.148,−0.024) (−1.143, 0.641)

c (0.494, 1.040) (1.822, 0.273) (0.035,−0.037) (−3.011, 0.000)

b (0.501, 1.213) (5.254, 0.466) (0.015, 0.013) (−8.376,−0.019)

Table 3 Masses and decay constants (in GeV) of pseudoscalar mesons.
Experimental masses and leptonic decay constants are taken from the
Particle Data Group [90] except for the D and Ds decay constants

which are FLAC 2019 averages [91] and fηc which is from Ref.
[92]. The relative deviations from experimental values are given by
εv
r = 100% |vexp. − vth.|/vexp.

Mesons/observables mM mexp.
M εmr (%) fM f exp./lQCD

M ε
f
r (%)

π(ud̄) 0.136 0.140 2.90 0.094+0.001
−0.001 0.092(1) 2.17

K (sū) 0.494 0.494 0.0 0.110+0.001
−0.001 0.110(2) 0.0

Du(cū) 1.867+0.008
−0.004 1.870 0.11 0.144+0.001

−0.001 0.150(0.5) 4.00

Ds(cs̄) 2.015+0.021
−0.018 1.968 2.39 0.179+0.004

−0.003 0.177(0.4) 1.13

ηc(cc̄) 3.012+0.003
−0.039 2.984 0.94 0.270+0.002

−0.005 0.279(17) 3.23

ηb(bb̄) 9.392+0.005
−0.004 9.398 0.06 0.491+0.009

−0.009 0.472(4) 4.03

Table 4 Masses and decay constants (in GeV) of the B mesons and
ηb calculated with the hybrid approach of using a 2ccp representation
for the bottom quark and the numerical cp solutions for the u, s and
c quarks. Experimental masses are taken from the Particle Data Group

[90]. The leptonic decay constants of the Bu and Bs are the FLAC 2019
averages [91] and those of the Bc and ηb are from Ref. [92]. The relative
deviations are as in Table 3

Mesons/observables mM mexp.
M εmr (%) fM f lQCD

M ε
f
r (%)

Bu(bū) 5.277+0.008
−0.005 5.279 0.04 0.132+0.004

−0.002 0.134(1) 4.35

Bs(bs̄) 5.383+0.037
−0.039 5.367 0.30 0.128+0.002

−0.003 0.162(1) 20.50

Bc(bc̄) 6.282+0.020
−0.024 6.274 0.13 0.280+0.005

−0.002 0.302(2) 7.28

ηb(bb̄) 9.383+0.005
−0.004 9.398 0.16 0.520+0.009

−0.009 0.472(4) 10.17

Obviously, we want to make sure that these parametriza-
tions constitute a realistic reproduction of the dressing func-
tions on the complex plane. To this end, we define the func-
tion,

Δσs(q
2) =

∣∣∣σcp
s (q2) − σ2ccp

s (q2)

∣∣∣ , (39)

where the superscripts cp and 2ccp denote respectively
numerical solutions on the complex plane and solutions using
Eq. (38) with two complex conjugate poles and the fitted
parameters in Table 2. As can be seen in Figs. 3 and 4,
the deviations Δσs(q2) are noticeable near the vertex of the
parabola, yet the scale of these variations is dwarfed by the
magnitude of σ

cp
s (q2). We also note that the weak decay con-

stant of the pion calculated with the 2ccp approach differs
by only 3% from the cp result; similar observations hold for
the kaon and D mesons and the ηb mass is almost equal with
either method, while the decay constant differs by 6%. We

conclude that the use of the 2ccp bottom-propagator is a
reliable approach and gives us confidence to calculate the B
meson’s static properties.

Our results for the masses and leptonic decay constants of
the ground-state pseudoscalar mesons are listed in Table 3,
from which it becomes clear that they are in very good agree-
ment with experimental data when available or lattice-QCD
results otherwise. In this table, we exclude the B mesons, the
reason for which is that the above mentioned hybrid approach
is employed. The results for the B mesons as well as for the ηb
using the hybrid approach are found in Table 4. The masses
of these mesons are in excellent agreement with experimental
values, while our decay constants compare reasonably well
with simulations of lattice-QCD.

The theoretical uncertainties are obtained as follows: in
adjusting the dressing function of the interaction (12) in the
light-meson sector, we set the scale with the pion and kaon
masses and weak decay constants. As well known, these
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observables are rather insensitive to a range ω ± Δω and
we set an upper and lower limit, 0.45 ≤ ωu,s ≤ 0.55 GeV,
about the central value ωu,s = 0.5 GeV, as depicted by the
uncertainty bands in Fig. 1. Having introduced this uncer-
tainty in the light sector, the repercussions are immediate in
computing the properties of the Du and Bu ; their mass uncer-
tainties are due to the low-energy scale insensitivity of ωu,s .
Likewise, we observe the sensitivity of Du to variations of
10% in ωc and this yields and error estimate for the Ds , ηc
and Bc. Finally, we fix the bottom quark at the ηb mass scale
and check the combined effect of permissible variations of
ωb in the BSE of the Bs , Bc and ηb that ensure the ηb mass
stays within 1% of its central mass value.

We remind that these results are not achieved without the
implementation of the flavor dependence of the interaction
in Eqs. (12) and (25). The flavor dependence is important
to accommodate the fact that heavy quarks probe shorter
distances than the light quarks at the corresponding quark-
gluon vertices, thereby implying a smaller coupling strength
for heavy quarks.

3 Distribution amplitudes

A unique leading-twist LCDA exists for any pseudoscalar
meson M with total momentum P and is defined in QCD via
a meson-to-vacuum matrix element of a nonlocal anti-quark-
quark light-ray operator as,

〈0|q̄ f (y2n)W [y2n, y1n] γ · n γ5 qg(y1n)|M(P)〉

= i fM n · p
∫ 1

0
dx e−in·P(y1x+y2 x̄)φM (x, μ), (40)

where fM is the weak decay constant of the pseudoscalar
meson, n is an auxiliary light-like four-vector with n2 = 0,
x = kz/Pz is the momentum fraction of the quark in the
infinite-momentum frame with x̄ = 1 − x , y1 and y2 are real
numbers, and W [y2n, y1n] is a light-like Wilson line con-
necting the quark fields q f and qg to produce gauge-invariant
quantities for any choice of y2 and y1. The momentum-space
distribution amplitude φM (x, μ) is the Fourier transformed
distribution φ̃M (y, μ) in coordinate space.

In principle,φM (x, μ) is directly accessible from the light-
front wave function [93] by integrating over the meson’s
transverse momentum,

fM φM (x, μ) = 1

(2π)3

∫ μ2

d2k⊥ ψ
↑↓±↓↑
M (x, k⊥) (41)

where ψM (x, k⊥) is the Fourier transform of the positive-
energy projection of the Bethe–Salpeter wave function eval-
uated at equal time, y+ = y3 + y0 = 0, in coordinate space
[5].

In calculating the BSE in momentum space, however, we
work in Euclidean space amenable to numerical calculations.
We therefore do not have direct access to the light-front wave
function ψM (x, k⊥). A method to eschew the calculation of
ψM (x, k⊥) consists of computing instead Mellin moments,

〈xm〉 =
∫ 1

0
dx xmφM (x, μ), (42)

using Eq. (40) and then reconstructing the LCDA from these
moments. In particular, the zeroth moment serves to normal-
ize the distribution amplitude and we choose,

〈x0〉 =
∫ 1

0
dx φM (x, μ) = 1 . (43)

In order to make use of Eq. (40), we need to Fourier
transform the matrix element to momentum space where
after appropriate use of the LSZ reduction formula it can be
expressed as the light-front projection of the Bethe–Salpeter
wave function χM (kη, kη̄),

fMφM (x, μ) = Z2Nc√
2

TrD

∫ Λ d4k

(2π)4 δ(n · kη − xn · P)

× γ5 γ · n χM (kη, kη̄), (44)

with the choice n · P = −mM in the rest-frame of the meson.
With this, one may apply the integral in Eq. (42) to both

sides of Eq. (44) which, employing the property of the Dirac
function

∫ 1
0 dx xmδ(a − xb) = am

bm+1 θ(b − a), leads to the
integral,

〈
xm

〉 = Z2Nc√
2 fM

TrD

∫ Λ d4k

(2π)4

(n · kη)
m

(n · P)m+1

× γ5 γ · n χM (kη, kη̄). (45)

The moments 〈xm〉 and therefore reconstructed distribution
amplitudes are valid at a given scale at which the BSA was
calculated. All our results are given for a fixed scale: μ =
2 GeV.

To conclude this section, we note again that the def-
inition in Eq. (40) contains a Wilson line between the
points y1 and y2. In light-cone gauge this operator is trivial:
W [y2n, y1n] ≡ 1, though the implementation of this gauge
in numerical approaches to bound-state equations is currently
impracticable. On the other hand, it has been argued within
a nonperturbative instanton vacuum approach [94] that the
contribution of this gauge link to the leading twist-2 quark
operators is suppressed. With this in mind, we omit the con-
tribution of the link W [y2n, y1n] and postpone a nonpertur-
bative approach to the matrix element.
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3.1 Pion distribution amplitude

In order to reconstruct φM (x, μ) from the moments we write
it in terms of Gegenbauer polynomials, Cα

n (2x −1), of order
α which form a complete orthonormal set on x ∈ [0, 1]
with respect to the measure [x(1 − x)]α−1/2. As argued in
Ref. [9], the common projection of φM (x, μ) on a C3/2

n

[n = 0, . . . ,∞] basis comes at the cost of a large num-
ber of terms in the Gegenbauer expansion. It turns out to be
more economic to consider α itself a parameter which allows
to limit the expansion to two terms for the pion,

φrec.
π (x, μ) = N (α) [x x̄]α−1/2 [

1 + a2C
α
2 (2x − 1)

]
, (46)

where x̄ = 1 − x and the normalization is given by,

N (α) = Γ (2α + 1)

[Γ (α + 1/2)]2 , (47)

and proceed as follows: we reconstruct the LCDA by mini-
mizing the function,

ε(α, a2) =
mmax∑
m=1

∣∣∣∣
〈xm〉rec.

〈xm〉π − 1

∣∣∣∣ , (48)

〈xm〉rec. =
∫ 1

0
dx xmφrec.

π (x, μ), (49)

with the moments 〈xm〉 obtained by means of Eq. (45)
and 〈xm〉rec. using the definition (42) and the expansion of
Eq. (46). We remind that in the asymptotic limit the LCDA
tends to [4]:

φπ(x, μ)
μ→∞= 6x x̄ . (50)

3.2 Kaon distribution amplitude

Flavored mesons like the kaon are composed of valence
quarks with different masses and are not eigenstates of charge
conjugation. This quark-mass asymmetry reflects in the dis-
tribution amplitudes: φK (x) �= φK (1 − x). In order to adapt
the method described above to reconstruct the LCDA to
unequal-mass mesons, we define moments in terms of the
difference of the momentum fractions denoted by,

ξ = x − (1 − x) = 2x − 1, (51)

and define the moments,

〈ξm〉K =
∫ 1

0
dx (2x − 1)mφK (x, μ). (52)

We thus reconstruct the kaon’s LCDA with the parity
decomposition,

φrec.
K (x, μ) = φE

K (x, μ) + φO
K (x, μ), (53)

where we employ one and two Gegenbauer polynomials,
respectively, in the even and odd components,

φE
K (x, μ) = N (α) [x x̄]α− 1

2
[
1 + a2C

α
2 (2x − 1)

]
, (54a)

φO
K (x, μ) = N (β) [x x̄]β− 1

2
[
b1C

β
1 (2x − 1)

+b3C
β
3 (2x − 1)

]
, (54b)

and N (α) and N (β) are both as in Eq. (47). The even and
odd components of the distribution amplitudes are then deter-
mined independently by separately minimizing,

εE (α, a2) =
∑

m=2,4,...,2mmax

∣∣∣∣
〈ξm〉Erec.

〈ξm〉K − 1

∣∣∣∣ , (55)

εO(β, b1, b3) =
∑

m=1,3,...,2mmax−1

∣∣∣∣
〈ξm〉Orec.

〈ξm〉K − 1

∣∣∣∣ , (56)

where the reconstructed moments 〈ξm〉E,O
rec. are obtained with

the distribution amplitudes in Eqs. (54a) and (54b).

3.3 Heavy mesons and quarkonia

The D and B mesons and heavy quarkonia are treated sim-
ilarly, yet we employ a different functional form for φrec.

H
given by [42],

φrec.
H (x, μ) = N (α, β) 4x x̄ e4 αx x̄+β(x−x̄), (57)

where the normalization is, using the definition of the error
function Erf(x) = 2√

π

∫ x
0 dt et

2
:

N (α, β) = 16α5/2
[

4
√

α (β sinh(β) + 2a cosh(β))

+ eα+ β2

4α

(
−2α + 4α2 − β2

)

×
{

Erf

(
α − β

2
√

α

)
+ Erf

(
α + β

2
√

α

)}]−1

. (58)

The reason for this choice is that the Gegenbauer proce-
dure sketched above is appropriate for broader and concave
amplitudes, whereas a distribution amplitude with a convex-
concave behavior of functions reminiscent of the δ-function
in the infinite-mass limit is more appropriately described by
Eq. (57). This functional form of the distribution amplitude
for heavy quarkonia is also found in the application of the
maximum entropy method to extract the Nakanishi weight
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function of the quarkonia’s Bethe–Salpeter wave function
[95].

We verify the validity of our reconstruction with the sim-
ple polynomial ansatz, φrec.

H (x, μ) = N (α, β)xα(1 − x)β

and observe that over the entire range, x ∈ [0, 1], the
LCDAs reconstructed either way are but indistinguishable.
The uncertainty in reconstructing the LCDA is therefore
much smaller than that due to the model parameter ω f . On
the other hand, using the separation in even and odd com-
ponents with Eqs. (54a) and (54b) in case of the D and B
mesons requires the computation of a large number of Mellin
moments to fix their coefficients. The larger moments suffer
numerical instabilities for these heavy-light mesons and we
thus prefer the representation in Eq. (57).

We reconstruct the LCDA as in Sect. 3.1 by minimizing,

ε(α, β) =
mmax∑
m=1

∣∣∣∣
〈xm〉rec.

〈xm〉H − 1

∣∣∣∣ , (59)

with 〈xm〉rec. calculated as described before and making use
of Eq. (57).

3.4 Mellin moments

The Mellin moments 〈xm〉 are integrals over a BSA and quark
propagators. We follow Ref. [9] in using Nakanishi-type rep-
resentations of the scalar BSA amplitudes Fi = EM , FM ,
GM , HM , and likewise use the 2ccp propagators (38) which
allows us to represent the moments in Eq. (45) by Feynman
integrals. The amplitudesFi for equal-valence quark mesons
are therefore parametrized by,

Fi (k, P) = F ir
M (k, P) + Fuv

M (k, P), (60)

with the definitions,

F ir
M (k, P) = cir

F
∫ 1

−1
dz ρνir

F
(z)

[
aF Δ̂4

Λir
F

(k2
z )

+ a−
F Δ̂5

Λir
F

(k2
z )

]
, (61)

Euv
M (k, P) = cuv

E

∫ 1

−1
dz ρνuv

E
(z) Δ̂Λuv

E
(k2

z ), (62)

Fuv
M (k, P) = cuv

F

∫ 1

−1
dz ρνuv

F
(z)Λuv

F k2Δ2
Λuv

F
(k2

z ), (63)

Guv
M (k, P) = cuv

G

∫ 1

−1
dz ρνuv

G
(z)Λuv

G Δ2
Λuv

G
(k2

z ), (64)

where Δ̂Λ(s) = Λ2ΔΛ(s), ΔΛ(s) = 1/(k2
z+Λ2), k2

z = k2+
zk ·P , a−

E = 1−aE , a−
F = 1/Λir

F −aF , a−
G = 1/[Λir

G ]3−aG ,
and the spectral density is given by,

ρν = Γ (ν + 3/2)√
πΓ (ν + 1)

(1 − z2)ν. (65)

The scalar amplitude H(k, P) is negligibly small, has little
impact, and is thus neglected. We do not fit the amplitudes
directly but rather the Chebyshev moments Fm

i (k, P) of the
expansion,

Fi (k, P) =
∞∑

m=0

Fm
i (k, P)Um(z p), (66)

where z p = k · P/|k||P| and we typically use m = 4 Cheby-
shev polynomials Um(z p).

The fit parameters for mesons with equal valence-quark
masses, namely π, ηc and ηb, are tabulated in Table 6 of
Appendix A. We here report the first three Mellin moments
computed with Eq. (45) combining the 2ccp parametriza-
tion for the quark propagators in Table 2 and the Nakanishi
representation of the BSAs introduced above.

〈xm〉M 〈x〉 〈x2〉 〈x3〉
〈xm〉π 0.500 0.318 ± 0.008 0.228 ± 0.006
〈xm〉ηc 0.500 0.273 ± 0.001 0.160 ± 0.001
〈xm〉ηb 0.500 0.262 ± 0.001 0.144 ± 0.001

In the case of flavored mesons with unequal quark masses,
a satisfactory representation of the numerical solutions to the
scalar function of the BSAs is [96],

Fi (k, P) =
2∑

σ=0

∫ 1

−1
dz ρνσ (z)

Uσ Λ
2nσ

Fi

(k2 + z k · P + Λ2
Fi

)nσ
,

(67)

using U0 = U0 −U1 −U2, U1 = U1 and U2 = U2. The sets
of parameters that fit the BSAs of flavored mesons are listed
in Table 7 of Appendix A. We calculated the Mellin moments
of the kaon 〈ξm〉K using Eq. (45), where we remind that the
moments are in terms of ξ = 2x − 1, as we separated the
even and odd moments to reconstruct the LCDA. The first
three moments are:

〈ξm〉 〈ξ〉 〈ξ2〉 〈ξ3〉
〈ξm〉K 0.124 ± 0.013 0.234 ± 0.006 0.068 ± 0.005

On the other hand, we compute the moments 〈xm〉M of
the D and B mesons since we do not separate the even
and odd components of the distribution amplitude by means
of Gegenbauer polynomials. In principle, this can also be
achieved for, yet while we managed to obtain a reasonable
fit for the D and Ds , the solutions for the B mesons are
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numerically unstable. This is not unexpected, as the distribu-
tion amplitudes of the heavy-flavored mesons reveal a pro-
nounced asymmetry with respect to x → (1 − x) not easily
reproduced with just a few Gegenbauer polynomials. The
BSA of the D and B mesons are fitted to the Nakanishi-like
representation in Eq. (67) and also tabulated in Tables 8, 9,
10, 11, 12 in Appendix A.

〈xm〉M 〈x〉 〈x2〉 〈x3〉
〈xm〉Du 0.633 ± 0.007 0.447 ± 0.009 0.334 ± 0.011
〈xm〉Ds 0.578 ± 0.009 0.375 ± 0.011 0.260 ± 0.011
〈xm〉Bu 0.833 ± 0.005 0.707 ± 0.008 0.608 ± 0.009
〈xm〉Bs 0.821 ± 0.003 0.689 ± 0.006 0.584 ± 0.007
〈xm〉Bc 0.732 ± 0.002 0.545 ± 0.003 0.414 ± 0.003

To reconstruct the heavy-meson LCDA only these three
moments are needed.

4 Reconstructed distribution amplitudes

We are now able to present numerical results for the recon-
structed LCDAs of the pseudoscalar mesons discussed in
Sect. 3. The economic form of Eq. (46) limited to two terms
in the Gegenbauer expansion can be fitted with mmax = 50
moments, 〈xm〉π , and yields the parameters:

α a2

π 0.867 ± 0.023 −0.022 ± 0.030

The errors are due to the theoretical uncertainty Δωu =
±0.05 of the interaction model in setting the scale with the
pion and kaon mass.

Likewise we obtain the parameters for the kaon LCDA
with Eqs. (54a), (54b), and mmax = 60 moments 〈xm〉K ,
where 30 moments are even and 30 are odd:

K α a2

Even 0.839 ± 0.049 −0.174 ± 0.036

K β b1 b3

Odd 0.817 ± 0.041 0.277 ± 0.031 0.015 ± 0.009

The heavy quarkonia and heavy-light mesons, for which
we use an exponential parametrization for the distribution

amplitude (57) and mmax = 3 moments, are described with
the following parameter set:

α β

Du 0.038 ± 0.005 1.431 ± 0.085
Ds 0.712 ± 0.157 0.929 ± 0.082
ηc 3.940 ± 0.134 0.0
Bu 0.360 ± 0.017 5.706 ± 0.225
Bs 1.205 ± 0.526 6.109 ± 0.594
Bc 9.063 ± 0.021 10.035 ± 0.076
ηb 8.813 ± 0.209 0.0

The theoretical uncertainties are due to ω f variations as
described in Sect. 2.3.

In the left panel of Fig. 5 we observe that φπ(x, μ), is
concave, symmetric and much broader than the asymptotic
limit ϕasy(x) as a consequence of DCSB. The symmetric
shape of the pion’s LCDA is precisely due to the fact that
this meson is made up of two quarks of the same flavor,
each carrying the same amount of momentum fraction of the
bound state on the light front. On the other hand, φK (x, μ)

turns out to be equally concave, yet its functional form is
characterized by an asymmetric shift toward a peak at x =
0.61. This is a clear sign of dynamical SU(3) flavor-symmetry
breaking, where the heaviest valence quark inside the kaon
carries a greater amount of the meson momentum. In this
case we have ME

u /ME
s = 0.73.

Moving our attention to mesons with larger asymmetries,
the right panel of Fig. 5 shows that the LCDAs of the Du

and Ds are not anymore concave as a function of x , rather
their functional form is convex-concave. The heavier charm
carries most of the fraction of the meson’s momentum. More-
over, φDu (x, μ) is slightly more asymmetric and peaks higher
than φDs (x, μ) which is due to the fact that the mass differ-
ence between the strange and charm quarks is smaller, i.e.:
ME

u /ME
c = 0.30 and ME

s /ME
c = 0.42. This stands in con-

trast to the LCDA of the ηc which is symmetric about the
mid-way point x = 1/2, though much more sharply peaked
than the asymptotic limit. Its behavior as a function of x can
be described by convex-concave-convex.

In Fig. 6 we present a comparison of the LCDAs of the
charmonium, bottonium and the different D and B mesons.
We note that the Bu and Bs distributions are extremely asym-
metric and that the heavy valence quark inside the Bu and
Bs carries almost all of the meson’s momentum. The max-
ima of φBu (x, μ) and φBs (x, μ) are located at x = 0.92
and x = 0.90, respectively, whereas those of φDu (x, μ) and
φDs (x, μ) are at x = 0.76 and x = 0.63. The situation of the
Bc is somewhere in between the lighter Bu and Bs and the
quarkonia, and we observe that its LCDA is less dislocated
from x > 1/2. The maximum of φBc(x, μ) is attained at the
momentum fraction x = 0.74. Moreover, we find the ratios:
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Fig. 5 Distribution amplitudes on the light front at a renormalization
point μ = 2 GeV. Left panel: φπ (x, μ), φK (x, μ) and φasy(x) = 6x x̄
is the asymptotic LCDA. Right panel: Comparison of the light-meson

distribution amplitudes with φDu (x, μ), φDs (x, μ) and φηc (x, μ). The
error bands correspond to uncertainties of ω f ±Δω f in the interaction
model
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Fig. 6 Distribution amplitudes on the light front of D and B mesons
and the ηc and ηb quarkonia at a renormalization point μ = 2 GeV. The
error bands correspond to a variation of ω f ± Δω f in the interaction
model

ME
u /ME

b = 0.10, ME
s /ME

b = 0.12 and ME
c /ME

b = 0.32.
Finally, we note that φηb (x, μ) is, as expected, narrower than
φηc (x, μ).

5 Matching to heavy quark effective theory

The matrix element in Eq. (40) implies quark fields and there-
fore gives rise to distribution amplitudes in QCD which are
not directly related to those in Heavy Quark Effective Field
Theory (HQET), e.g. in QCD factorization applied to weak
decays of B mesons [30–38]. In HQET, the LCDA φB(x, μ)

is defined by [48],

〈0|ū(zn)W [z, 0] γ · n γ5 hv(0)|B̄(v)〉, (68)

wherehv is the heavy-quark field in the effective theory. In the
heavy-quark limit,mQ → ∞, the velocity of the heavy quark
is almost unaffected by the interactions since Δv = Δp/mQ .
The interaction with a light quark alters its on-shell four-
momentum, pμ = mQvμ, to an off-shell momentum pμ =
mQvμ + kμ, where k ∼ ΛQCD is the residual momentum. In
this limit, the heavy-quark propagator reads at leading order,

SQ(p) = γ · p + mQ

p2 − m2
Q

mQ→∞−→ 1 + γ · v

2 v · k + O
(

k

mQ

)
,

(69)

where vμ is a time-like unit vector, v2 = 1, for instance
vμ = (1, 0) in the heavy quark’s rest frame. This propagator
must then be inserted in the bound-state equation (26) and
the resulting BSA is projected on the light front.

We hold off this calculation for the time being and turn our
attention instead to the inverse moment of the heavy-meson
distribution amplitude, λH (μ), defined by,

1

λH (μ)
= 1

mH

∫ 1

0
dx

φH (x, μ)

x
, (70)

which plays an important role in calculations of exclusive B
decays within HQET, for example in the radiative leptonic
decays B → γ �ν� [53].

We can calculate λ
QCD
H using the distribution amplitude

given by Eq. (57) in the full theory. A matching relation
between λ

QCD
H and λ

HQET
H exists [97], which to leading order

in αs(μ) is given by,

λ
HQET
H (μ) =

[
1 + αs(μ)

4π
CF

(
2 ln2

(
μ

mH

)
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Table 5 The inverse moments λQCD(μ) and λHQET(μ) in GeV at the
scale μ = 2 GeV

λQCD(μ) λHQET(μ)

Du 0.391 ± 0.010 0.493 ± 0.013

Ds 0.562 ± 0.026 0.709 ± 0.033

Bu 0.452 ± 0.015 0.501 ± 0.033

Bs 0.520 ± 0.022 0.576 ± 0.025

Bc 1.354 ± 0.014 1.501 ± 0.016

+ 4 ln

(
μ

mH

)
+ 4 + π2

12

)]
λ

QCD
H (μ). (71)

Here, we use for the running coupling at leading order:

αs(μ) = 4π

β0 ln

(
μ2

Λ2
QCD

) , β0 = 11 − 2

3
N f . (72)

In Table 5 we list the inverse moments obtained with our
LCDAs of the D and B mesons and the corresponding values
in HQET at μ = 2 GeV. We remind, however, that the heavy-
quark expansion is not reliable in case of charmed mesons
and the values for λ(μ) are only presented for completeness.

For comparison, QCD sum rules predict λHQET
B (1 GeV) =

0.460 ± 0.110 GeV [49] and λ
QCD
B = 0.460 ± 0.160 GeV

(no scale given) [51], a model LCDA in HQET leads
to λ

HQET
B (2 GeV) = 0.58 ± 0.04 GeV [52], a DSE-BSE

approach finds λ
QCD
B (2 GeV) = 0.54 ± 0.03 GeV [58],

whereas a range of 0.2 GeV ≤ λ
HQET
B (1 GeV) ≤ 0.5 GeV

is considered in an analysis of relevant form factors in the
decay B → γ �ν� [53].

6 Final remarks

Based on earlier insights in a contact-interaction model of
QCD [67], we modify the ladder truncation of the Bethe–
Salpeter kernel to take into account the different impact of
vertex dressing in case of light and heavy quarks. The usual
ladder truncation works very well for heavy quarkonia, yet
earlier calculations [59] demonstrated that treating the charm
and light quark on equal footing leads to issues with the
hermiticity of the interaction kernel for heavy-light mesons.

In essence, we keep the light-meson ladder kernel which
preserves the axialvector WTI unchanged, but modify the
dressing function of the charm and bottom quark with the
ansatz in Eq. (23). This prescription comes at the cost of
introducing new interaction parameters, ωc, κc, ωb and κb.
Nonetheless, it is a justified price to pay not only for its phe-
nomenological success of yielding masses and weak decay
constant in very good agreement with experiment, but also

due to theoretical considerations. Indeed, in highly asym-
metric Q̄q bound states dynamical effects cannot cancel
each other to produce a symmetric dressing of both quark-
gluon vertices in the BSE, and the interaction strength in
the infrared region is strongly suppressed for the charm and
bottom quarks. For self-consistency, we verify the values of
weak decay constants of the D and B mesons with the GMOR
relation, which is an expression of the WTI.

With these results, we project the Bethe–Salpeter ampli-
tudes of the pseudoscalar mesons on the light front and com-
pute moments of the corresponding LCDA. The pion and
kaon are reconstructed from these moments with a Gegen-
bauer expansion, whereas we employ an exponential form of
the LCDA for the heavy quarkonia and heavy-light mesons.
The latter assumption can be related to the Nakanishi weight
function of the Bethe–Salpeter wave function by means of
the maximum entropy method, though the almost identical
LCDA can be reconstructed from a simple polynomial ansatz.

We stress that our results cannot be obtained without the
modified flavor dependence in the heavy-quark sector, in par-
ticular numerical calculations of the quark dressing function
on the complex plane become feasible as singularities are
avoided and our results are valid without any extrapolations.
The distribution amplitudes we compute follow the expected
pattern, i.e. the pion distribution amplitude is a concave func-
tion, much broader than the asymptotic one. The same is
observed for the kaon which in addition is not symmetric
about the midpoint x = 1/2, a visual expression of SU(3)
flavor breaking due to DCSB, and this asymmetry is growing
with increasing mass of the heavier quark. The distribution
amplitudes of D and B mesons describe a convex-concave
function, whereas for the ηc and ηb the symmetric distri-
bution amplitude is of convex-concave-convex form which
tends to a Dirac δ function in the infinite-mass limit.

Eventually, for applications in heavy-meson decays, their
distribution amplitudes must be obtained from Bethe–
Salpeter amplitudes in a heavy-quark expansion of the
charm- or bottom-quark propagator including a careful non-
perturbative treatment of the appropriate Wilson line. We
have postponed this task for now, but calculated the inverse
moments of the heavy-meson distribution which can be
related to those in HQET. Of course, the computation of
the LCDA suitable to an effective theory, in particular for
B mesons, will be of great interest in reassessing branching
fractions of semi-leptonic and non-leptonic decays in factor-
ization approaches.
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Appendix: Bethe–Salpeter amplitude parameters

We here collect all the parameters relative to the BSAs of
the pion, ηc and ηb, and separately the parameters of all fla-
vored mesons, namely the Du , Ds , Bu , Bs and Bc. The corre-
sponding parametrizations are found in Sect. 3.4. Note that
these parametrizations correspond to fits to the unnormal-
ized BSAs, Γ̃ f g

M (k, P), and we relate them to the normalized
BSA (27) by the normalization,

Γ
f g
M (k, P) = NM Γ̃

f g
M (k, P), (73)

whereNM is obtained with Eq. (30) or Eq. (31). Equivalently,
we may calculate the Mellin moments with the unnormal-
ized scalar amplitudesFi (k, P) and apply the condition (43):
〈x0〉 ≡ 1.

Table 6 Parameters of the BSA
representation, Eqs. (60)–(65),
for the π , ηc and ηb

cir
F cuv

F νir
F νuv

F aF Λir
F Λuv

F

Eπ 1.00 0.03 −0.73 1.00 2.40 1.30 1.00

Fπ 0.56 0.0041 1.67 0 2.09 1.09 1.00

Gπ 0.29 0.0067 1.27 0 6.60 0.87 1.00

Eηc 1.00 0.42 2.81 1.00 0.53 2.34 0.77

Fηc 0.25 0.03 8.93 1.00 1.03 1.82 0.73

Gηc 0.23 cF 4.56 1.00 1.25 1.42 0.92

Eηb 1.00 0.74 17.41 1.00 −0.65 4.00 1.00

Fηb 0.13 0.04 21.34 1.00 1.00 2.55 0.82

Table 7 Parameters of the BSA
representation in Eq. (67) for the
kaon

K Λ ν0 ν1 ν2 U0 U1 103U2 n0 n1 n2

E0 1.80 −0.71 – 1.00 1.00 – 6.83 5 – 1

E1 1.95 0.24 – 0 0.74 – 0.36 8 – 2

F0 1.55 1.24 – 0 0.42 – 0.90 5 – 1

F1 1.71 4.79 – 0 0.20 – 0.01 8 – 2

G0 2.08 1.00 − 0.53 0 0.01 0.30 − 0.01 10 12 2

G1 1.44 − 0.16 – 0 0.33 – 0.70 6 – 2

Table 8 Parameters of the BSA
representation in Eq. (67) for the
Du

Du Λ ν0 ν1 ν2 U0 U1 103U2 n0 n1 n2

E0 2.64 2.24 3.00 6.00 1.00 − 0.27 60 8 4 2

E1 2.43 6.51 2.11 8.00 0 − 0.36 −0.80 10 8 2

F0 1.90 5.24 – 3.00 0.22 – 5.00 6 – 1

F1 2.37 3.75 – 5.00 − 0.04 – 0.01 8 – 2

G0 2.27 1.00 1.74 0 0 0.68 − 0.01 10 12 2

G1 2.50 4.07 – 0 0.18 – 0.40 10 – 2
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Table 9 Parameters of the BSA
representation in Eq. (67) for the
Ds

Ds Λ ν0 ν1 ν2 U0 U1 103U2 n0 n1 n2

E0 2.76 1.99 1.90 0 1.00 − 0.24 80 8 4 1

E1 1.79 5.28 0.14 3.00 − 0.07 − 0.09 0.20 10 8 2

F0 2.07 4.62 – 3.00 0.20 – − 10 6 – 1

F1 2.49 5.00 – 5.00 − 0.03 – 0.01 8 – 2

G0 2.98 1.00 − 0.80 1.00 − 0.08 − 0.02 − 1.00 10 12 2

G1 2.80 3.15 – 3.00 0.09 – 0.10 10 – 2

Table 10 Parameters of the
BSA representation in Eq. (67)
for the Bu

Bu Λ ν0 ν1 ν2 U0 U1 103U2 n0 n1 n2

E0 2.91 50.29 8.00 0 1.00 0.38 10 12 8 2

E1 2.45 32.60 17.86 3.00 0.002 − 0.33 0.70 8 10 2

F0 1.89 7.70 12.36 0 0.09 0.13 0.05 8 6 1

F1 2.65 14.32 – 0 − 0.01 – 0.05 8 – 2

G0 2.51 13.00 16.82 – − 0.06 0.90 – 10 12 –

G1 2.85 23.10 – 3.00 0.06 – 0.1 10 – 2

Table 11 Parameters of the
BSA representation in Eq. (67)
for the Bs

Bs Λ ν0 ν1 ν2 U0 U1 103U2 n0 n1 n2

E0 2.14 15.43 11.00 0 1.00 1.36 9.00 10 6 1

E1 2.55 29.34 16.34 3.00 − 0.16 − 0.40 0.70 10 8 2

F0 1.87 11.00 10.42 0 0.09 0.17 0.05 10 6 1

F1 2.50 16.46 – 0 − 0.02 – 0.05 8 – 2

G0 2.64 10.00 18.25 0 -0.15 0.50 − 1.00 10 12 2

G1 − 3.20 10.13 – 3.00 0.06 – 0.01 10 – 2

Table 12 Parameters of the
BSA representation in Eq. (67)
for the Bc

Bc Λ ν0 ν1 ν2 U0 U1 103U2 n0 n1 n2

E0 2.66 7.14 12.00 0 1.00 0.56 5.00 6 4 1

E1 3.05 35.47 17.33 4.00 − 0.06 − 0.14 0.9 10 8 2

F0 2.83 13.53 – 4.00 0.08 – 7.00 6 – 1

F1 − 3.23 14.52 – 5.00 − 0.01 – 0.03 8 – 2

G0 3.26 8.14 14.06 – − 0.04 0.20 – 10 12 –

G1 − 3.56 13.39 – 5.00 0.03 – 0.2 10 – 2
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