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Abstract Lately, the LHCb Collaboration reported the dis-
covery of two new states in the B+ → D+D−K+ decay,
i.e., X0(2866) and X1(2904). In the present work, we study
whether these states can be understood as D̄∗K ∗ molecules
from the perspective of their two-body strong decays into
D−K+ via triangle diagrams and three-body decays into
D̄∗Kπ . The coupling of the two states to D̄∗K ∗ are deter-
mined from the Weinberg compositeness condition, while the
other relevant couplings are well known. The obtained strong
decay width for the X0(2866) state, in marginal agreement
with the experimental value within the uncertainty of the
model, hints at a large D̄∗K ∗ component in its wave function.
On the other hand, the strong decay width for the X1(2904)

state, much smaller than its experimental counterpart, effec-
tively rules out its assignment as a D̄∗K ∗ molecule.

1 Introduction

Ever since the experimental discovery of X (3872) and
D∗
s0(2317), many hadrons that cannot be simply classified

into conventional mesons of qq̄ and baryons of qqq have
been discovered, with the latest addition being the ccc̄c̄ states
discovered by the LHCb Collaboration [1]. See, e.g., Refs.
[2–5] for recent reviews. It should be noted that most of the
so-called exotic hadrons mix with conventional hadrons or
can be understood as hadron–hadron molecules or threshold
effects such that they are not that “exotic”. Curiously, two
of the truly exotic candidates, θ+(1540) [6] and X (5568)

[7] seem to fade away with time. In such a context, the lat-
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est LHCb announcement of two structures observed in the
D−K+ invariant mass of the B+ → D+D−K+ decay points
to the likely existence of genuinely exotic mesonic states with
a minimum quark content of c̄s̄ud [8,9]. Their spin-parities,
masses, and widths (in units of MeV) are, respectively1

X0(2866) : 0+, M = 2866 ± 7 ± 2,

and � = 57 ± 12 ± 4, (1)

X1(2904) : 1−, M = 2904 ± 5 ± 1,

and � = 110 ± 11 ± 4. (2)

The existence of compact tetraquark states in this energy
region has been predicted in either quark models [10–13],
or QCD sum rules [14,15]. However, the lattice QCD study
found no compact tetraquark state of c̄s̄ud with I = 0 and
spin-parity 0+ and 1+ [16]. The X J states might be D̄∗K ∗
hadronic molecules, since their masses are just below (X0)
or close to (X1) the D̄∗K ∗ threshold. Indeed, in one ear-
lier study [17], a molecular X0 state with a narrow width
and a mass around 2848 MeV was predicted in the unitary
coupled channels approach. This state may be related to the
newly observed X0(2866) state. Following the discovery of
the X J=0,1 states, a study within the one-boson-exchange
model [18] found that X0 can be interpreted as a hadronic
molecule composed of D̄∗K ∗. On the other hand, it is shown
that the D∗−K ∗+ rescattering via the χc1D∗−K ∗+ loop or
the D̄0

1K
0 rescattering via the D+

s J D̄
0
1K

0 loop may contribute
to the observed two peaks as discussed in Ref. [19]. So far,
the support for the D̄∗K ∗ bound state nature of the X J states
is getting more consensus, especially for X0(2866). In this

1 We have used the central values of their masses to denote these two
resonances, in addition to their spin.
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Fig. 1 Diagrams representing
the decay of the X J=0,1 states to
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Fig. 2 Diagrams representing
the decay of the X J=0,1 states to
D̄∗Kπ
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context it is worth studying their two-body and three-body
strong decays, based on the molecular picture.

In the present work, we examine the possibility whether
they can be understood as D̄∗K ∗ molecules. For such a pur-
pose, we first assume that they are bound states of D̄∗K ∗,
and then employ the Weinberg compositeness rule to deter-
mine their couplings to D̄∗K ∗. The two-body strong decays
then follow from the exchange of a pseudoscalar meson
between the D̄∗K ∗ pair, which then transforms into D−K+.
Such a process is depicted in Fig. 1. In addition, the D̄∗K ∗
molecules can also decay into a three-body final state D̄∗Kπ ,
as shown in Fig. 2. If within the uncertainties of the model,
the so-obtained strong decay widths are consistent with
data, then it is possible to assign the state under study as
a molecular state, otherwise, the possibility is excluded.
Such an approach has been widely applied to study newly
observed (exotic) hadrons, see, e.g., Refs. [20–27] for a par-
tial list.

This work is organized as follows. In Sect. 2, we explain
the theoretical formalism. Results and discussions are pro-
vided in Sect. 3, followed by a short summary in Sect. 4.

2 Theoretical framework

In the following, we explain how the strong decays into D̄K ,
Fig. 1, and D̄∗Kπ , Fig. 2, are computed. We take advantage
of the fact that D̄∗ is very narrow (with a width of less than
100 keV) and therefore can be treated as a stable particle for
our purpose.

We shall construct the amplitudes using the isospin for-
malism, where the D̄∗K ∗ isospin doublet reads

|D̄∗K ∗, I = 0〉 = 1√
2
(D∗−K ∗+ + D̄∗0K ∗0), (3)

|D̄∗K ∗, I = 1〉 = − 1√
2
(D∗−K ∗+ − D̄∗0K ∗0), (4)

with the following isospin assignments for the D̄∗ and K ∗
states:

(
D̄∗0

D∗−
)

∼

( ∣∣ 1
2 , 1

2

〉
−∣∣ 1

2 , − 1
2

〉
)

,

(
K ∗+
K ∗0

)
∼

( ∣∣ 1
2 , 1

2

〉
∣∣ 1

2 ,− 1
2

〉
)

. (5)

Considering quantum numbers and phase space, the two-
body strong decay modes of X J are X J → D−K+ and
X J → D̄0K 0. In this work, we only explicitly compute the
partial decay width of X J → D−K+, and that of X J →
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D̄0K 0 can be obtained by isospin symmetry �X J→D−K+ =
�X J→D̄0K 0 . The sum of the two parts is the total decay width

of the X J → D̄K .
In order to calculate the Feynman diagrams shown in

Fig. 1, we need to determine the relevant vertices. For the
vertex of X J D̄∗K ∗, since the X J states are considered as
bound states of D̄∗K ∗, this coupling can be determined by
the Weinberg compositeness condition. In the present work,
we adopt the method developed in Refs. [20–27]. In this
framework, the relevant Lagrangians for X0(2866) can be
written as [21]

LX0(x) =gX0 D̄∗K ∗ X J (x)
∫

dy�(y2)D̄∗μ(x + ωK ∗ y)

× K ∗
μ(x − ωD̄∗ y) + H.c., (6)

while for X1(2904) the Lagrangian has the form [28]

LX1(x) = gX1 D̄∗K ∗ Xα
J (x)

∫
dy�(y2)D̄∗

μ(x + ωK ∗ y)
←→
∂ α

× K ∗μ(x − ωD̄∗ y), (7)

where ωi = mi/(mi + m j ) is a kinematical parameter with
mi and m j being the masses of the involved mesons. In the
Lagrangians, an effective correlation function �(y2) is intro-
duced to describe the distribution of the two constituents, D̄∗
and K ∗, in the hadronic molecular X J states. The introduced
correlation function also serves the purpose of making the
Feynman diagrams ultraviolate finite. Here we choose the
Fourier transformation of the correlation function to have a
Gaussian form,

�(−p2
E )

.= exp(−p2
E/α2), (8)

with α being the size parameter which characterizes the dis-
tribution of the constituents inside the molecule. The value
of α has to be determined by fitting to data. It is found that
the experimental total decay widths of some states that can
be considered as molecules (see, e.g., Refs. [20–27] and ref-
erences therein) can be well explained with α ≈ 1.0 GeV.
Therefore we take α = 1.0 ± 0.1 GeV in this work to study
whether the X J states can be interpreted as molecules com-
posed of D̄∗K ∗.

The coupling constant gXJ D̄∗K ∗ is determined by the com-
positeness condition [20–27]. It implies that the renormaliza-
tion constant of the hadron wave function is set to zero, i.e.,

ZXJ = 1 − d
 T
0,1

dk/0
|k/0=mXJ

= 0, (9)

where 
0 is the self-energy operator of X0, and 
T
1 is the

transverse part of the self-energy operator 

μν
1 of X1, related

to 

μν
1 via



μν
1 (k0) =

(
gμν − kμ

0 k
ν
0

k2
0

)

T

1 + · · · . (10)

The concrete form of the mass operator 
0 of X0 correspond-
ing to Fig. 3 is


0(k0) =
g2
X0 D̄

∗K∗
16π2m2

K∗m2
D̄∗

∫ ∞
0

dη

∫ ∞
0

dβ
∑

Y=D̄∗0K∗0,D∗−K∗+
(C I

Y )2

×
{

−
k2

0�Y [(m2
K∗ + m2

D̄∗ )z�Y + 4z2m2
D̄∗ + 6α2(�Y + 2z)]

4z2

+ 2

[
m2
K∗ (2zm2

D̄∗ + α2) + α2(m2
D̄∗ + 3α2)

]
+ k4

0�2
Y (�Y + 2z)2

16z3

}

× 1

z3
exp

{
− 1

α2

[
− 2k2

0ω2
D̄∗ + ηm2

D̄∗ + β(−k2
0 + m2

K∗ ) + �2
Y

4z
k2

0

]}
,

(11)

and that of the transverse part of the self-energy operator of
X1 is


T
1 (k0) =

α2g2
X1 D̄∗K ∗

16π2m2
K ∗m2

D̄∗

∫ ∞

0
dη

∫ ∞

0
dβ

∑
Y=D̄0K 0,D∗−K ∗+

(C I
Y )2

×
{

− k2
0�Y [(m2

K ∗ + m2
D̄∗ )z�Y + 4z2m2

D̄∗ + 8α2(�Y + 2z)]
2z

+ 2[3α2z(m2
K ∗ + m2

D̄∗ ) + 12α4 + 4m2
K ∗m2

D̄∗ z
2] + k4

0�2
Y (�Y + 2z)2

8z2

}

× 1

z5
exp

{
− 1

α2

[
− 2k2

0ω2
D̄∗ + ηm2

D̄∗ + β(−k2
0 + m2

K ∗ ) + �2
Y

4z
k2

0

]}
,

(12)

where z = 2 + η + β, �Y = −4ωD̄∗ − 2β, and k2
0 = m2

X
with k0, mX denoting the four-momenta and mass of X J ,
respectively. Here, we set mXJ = mD̄∗ +mK ∗ − Eb with Eb

the binding energy of X J , k1, and mD̄∗ are the four-momenta
and mass of D̄∗, and mK ∗ is the mass of K ∗, respectively. I
is isospin and isospin symmetry implies that

C I=0
Y =

{
1/

√
2, Y = D̄∗0K ∗0

1/
√

2, Y = D∗−K ∗+ ,

and

C I=1
Y =

{
1/

√
2, Y = D̄∗0K ∗0

−1/
√

2, Y = D∗−K ∗+ .

To evaluate the diagrams of Figs. 1 and 2, in addition
to the Lagrangians in Eqs. (6, 7), the following effective
Lagrangians, responsible for the interaction between a vector
meson and a pseudoscalar meson, are needed as well [29]

LPPV = i

4
gh〈[∂μP, P]Vμ〉, (13)
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Fig. 3 Mass operators of the
X J states
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D̄∗0(k1)

K∗0(k2)

XJ(k0) XJ(k0) XJ(k0)

D∗−(k1)

K∗(k2)

where P is the SU(4) pseudoscalar meson matrix, and Vμ

is the matrix of vector fields. The 〈· · · 〉 denotes trace in the
SU (4) flavor space. The meson matrices are [29]

P = √
2

⎛
⎜⎜⎜⎜⎜⎝

π0√
2

+ η√
6

+ η
′

√
3

π+ K+ D̄0

π− − π0√
2

+ η√
6

+ η
′

√
3

K 0 −D−

K− K̄ 0 −
√

2
3 η + η

′
√

3
D−
s

D0 −D+ D+
s ηc

⎞
⎟⎟⎟⎟⎟⎠

(14)

and

Vμ =

⎛
⎜⎜⎜⎝

1√
2
(ρ0 + ω) ρ+ K ∗+ D̄∗0

ρ− 1√
2
(−ρ0 + ω) K ∗0 −D∗−

K ∗− K̄ ∗0 φ D∗−
s

D∗0 −D∗+ D∗+
s J/ψ

⎞
⎟⎟⎟⎠

μ

. (15)

Then we obtain

LπDD∗ = − igh

2
√

2
(π0∂μD+ − D+∂μπ0)D̄∗−

μ

+ igh
2

(π−∂μD+ − D+∂μπ−)D̄∗0
μ

− igh
2

(π+∂μD0 − D0∂μπ+)D̄∗−
μ

− igh

2
√

2
(π0∂μD0 − D0∂μπ0)D̄∗0

μ

+ igh

2
√

2
(π0∂μ D̄− − D̄−∂μπ0)D∗+

μ

− igh
2

(π+∂μ D̄− − D̄−∂μπ+)D∗0
μ

+ igh
2

(π−∂μ D̄0 − D̄0∂μπ−)D∗+
μ

+ igh

2
√

2
(π0∂μ D̄0 − D̄0∂μπ0)D∗0

μ , (16)

LηDD∗ = + igh

2
√

6
(η∂μD+ − D+∂μη)D̄∗−

μ

− igh

2
√

6
(η∂μD0 − D0∂μη)D̄∗0

μ

− igh

2
√

6
(η∂μ D̄− − D̄−∂μη)D∗+

μ

+ igh

2
√

6
(η∂μ D̄0 − D̄0∂μη)D∗0

μ , (17)

LπKK ∗ = − igh

2
√

2
(π0∂μK+ − K+∂μπ0)K̄ ∗−

μ

− igh
2

(π−∂μK+ − K+∂μπ−)K̄ ∗0
μ

− igh
2

(π+∂μK 0 − K 0∂μπ+)K̄ ∗−
μ

+ igh

2
√

2
(π0∂μK 0 − K 0∂μπ0)K̄ ∗0

μ

+ igh

2
√

2
(π0∂μ K̄− − K̄−∂μπ0)K ∗+

μ

+ igh
2

(π+∂μ K̄− − K̄−∂μπ+)K ∗0
μ

+ igh
2

(π−∂μ K̄ 0 − K̄ 0∂μπ−)K ∗+
μ

− igh

2
√

2
(π0∂μ K̄ 0 − K̄ 0∂μπ0)K ∗0

μ , (18)

LηKK ∗ = −i

√
6gh
4

(η∂μK+ − K+∂μη)K̄ ∗−
μ

− i

√
6gh
4

(η∂μK 0 − K 0∂μη)K̄ ∗0
μ

+ i

√
6gh
4

(η∂μ K̄− − K̄−∂μη)K ∗+
μ

+ i

√
6gh
4

(η∂μ K̄ 0 − K̄ 0∂μη)K ∗0
μ , (19)

LD∗DsK = + igh
2

(K 0∂μD−
s − D−

s ∂μK 0)D∗+
μ

+ igh
2

(K+∂μD−
s − D−

s ∂μK+)D∗0
μ

− igh
2

(K̄ 0∂μD+
s − D+

s ∂μ K̄ 0)D̄∗−
μ

− igh
2

(K−∂μD+
s − D+

s ∂μK−)D̄∗0
μ , (20)

LDDsK ∗ = − igh
2

(D+∂μD−
s − D−

s ∂μD+)K ∗0
μ

− igh
2

(D̄0∂μD+
s − D+

s ∂μ D̄0)K ∗−
μ

+ igh
2

(D0∂μD−
s − D−

s ∂μD0)K ∗+
μ

+ igh
2

(D−∂μD+
s − D+

s ∂μD−)K̄ ∗0
μ . (21)

The coupling gh is fixed from the strong decay width of
K ∗ → Kπ . With the help of Eq. (18), the two-body decay
width �(K ∗+ → K 0π+) is related to gh as
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Table 1 Masses of the particles needed in the present work (in units of
MeV)

D∗0 D∗± η D±
s D0 D±

2006.85 2010.26 547.86 1968.34 1864.83 1869.65

K 0 K ∗0 K ∗± K± π± π0

497.611 898.36 891.66 493.68 139.57 134.98

�(K ∗+ → K 0π+) = g2
h

24πm2
K ∗+

P3
πK ∗ = 2

3
�K ∗+ , (22)

where PπK ∗ is the three-momentum of π in the rest frame
of K ∗. Using the experimental strong decay width (�K ∗+ =
50.3 ± 0.8 MeV) and the masses of the particles listed in
Table 1 [30], we obtain gh = 9.11.

2.1 Two-body decay width

With the above formalism, the decay amplitudes of the trian-
gle diagrams of Fig. 1, evaluated in the final state center of
mass frame, are

MX J
a = C I

D̄∗0K∗0F X J
a = i3

g2
hgX J D̄∗K∗

4
C I
D̄∗0K∗0

×
∫

d4q

(2π)4 �[(k1ωK∗0 − k2ωD̄∗0 )2]

× (pμ
1 + qμ)(qη − pη

2 ){1, i(kα
2 − kα

1 )εXα }

×
−gμν + kμ

1 kν
1/m2

D̄∗0

k2
1 − m2

D̄∗0

−gνη + kν
2k

η
2/m2

K∗0

k2
2 − m2

K∗0

1

q2 − m2
π−

,

(23)

MX J
b

= C I
D∗−K∗+F X J

b = −i3
g2
hgX J D̄∗K∗

8
C I
D∗−K∗+

×
∫

d4q

(2π)4 �[(k1ωK∗+ − k2ωD∗− )2]

× (pμ
1 + qμ)(qη − pη

2 ){1, i(kα
2 − kα

1 )εXα }

× −gμν + kμ
1 kν

1/m2
D∗−

k2
1 − m2

D∗−

−gνη + kν
2k

η
2 /m2

K∗+
k2

2 − m2
K∗+

1

q2 − m2
π0

,

(24)

MX J
c

= C I
D∗−K∗+F X J

c = i3
g2
hgX J D̄∗K∗

8
C I
D∗−K∗+

×
∫

d4q

(2π)4 �[(k1ωK∗+ − k2ωD∗− )2]

× (pμ
1 + qμ)(qη − pη

2 ){1, i(kα
2 − kα

1 )εXα }

× −gμν + kμ
1 kν

1/m2
D∗−

k2
1 − m2

D∗−

−gνη + kν
2k

η
2 /m2

K∗+
k2

2 − m2
K∗+

1

q2 − m2
η

,

(25)

MX J
d

= C I
D̄∗0K∗0F X J

d = i3
g2
hgX J D̄∗K∗

4
C I
D̄∗0K∗0

×
∫

d4q

(2π)4 �[(k1ωK∗0 − k2ωD̄∗0 )2]

× (pη
2 + qη)(qμ − pμ

1 ){1, i(kα
2 − kα

1 )εXα }

×
−gνη + kν

1k
η
1/m2

D̄∗0

k2
1 − m2

D̄∗0

−gμν + kμ
2 kν

2/m2
K∗0

k2
2 − m2

K∗0

1

q2 − m2
D+
s

,

(26)

where the expressions in the curly brackets, {1, i(kα
2 −kα

1 )εXα },
are for X0 and X1, respectively. The F X J is the residual
part of the amplitude with the isospin factor C I

Y explicitly
separated.

2.2 Three-body decay width

Similarly, the decay amplitudes of Fig. 2, evaluated in the
initial state center of mass frame, are

Ma(X J → D̄∗0K 0π0)

= C I
D̄∗0K∗0F X J

a (X J → D̄∗0K 0π0)

=
ighgX J D̄∗K∗

2
√

2
C I
D̄∗0K∗0�[(p2ωK∗0 − qωD̄∗0 )2]

× (p3 − p1)μ{1, i(q − p2)αεα(p)}

×
−gμν + qμqν/m2

K∗0

q2 − m2
K∗0 + imK∗0�K∗0

ε∗ν(p2), (27)

Ma(X J → D̄∗0K+π−)

= C I
D̄∗0K∗0F X J

a (X J → D̄∗0K+π−)

=
ighgX J D̄∗K∗

2
C I
D̄∗0K∗0�[(p2ωK∗0 − qωD̄∗0 )2]

× (p3 − p1)μ{1, i(q − p2)αεα(p)}

×
−gμν + qμqν/m2

K∗0

q2 − m2
K∗0 + imK∗0�K∗0

ε∗ν(p2), (28)

Mb(X J → D̄∗−K+π0)

= C I
D∗−K∗+F X J

b (X J → D̄∗−K+π0)

=
ighgX J D̄∗K∗

2
√

2
C I
D∗−K∗+�[(p2ωK∗+ − qωD̄∗− )2]

× (p3 − p1)μ{1, i(q − p2)αεα(p)}

× −gμν + qμqν/m2
K∗+

q2 − m2
K∗+ + imK∗+�K∗+

ε∗ν(p2), (29)

Mb(X J → D̄∗−K 0π+)

= C I
D∗−K∗+F X J

b (X J → D̄∗−K 0π+)

=
ighgX J D̄∗K∗

2
C I
D∗−K∗+�[(p2ωK∗+ − qωD̄∗− )2]

× (p3 − p1)μ{1, i(q − p2)αεα(p)}

× −gμν + qμqν/m2
K∗+

q2 − m2
K∗+ + imK∗+�K∗+

ε∗ν(p2), (30)
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where the expressions in the curly brackets, {1, i(q −
p2)

αεα(p)}, are for X0 and X1, respectively.
Once the amplitudes are determined, the corresponding

partial decay widths can be easily obtained, which read as,

d�(X J → D̄K ) = 1

2J + 1

1

32π2

| �p1|
m2

X J

¯|M|2d�, (31)

d�(X J → D̄∗Kπ) = 1

2J + 1

1

(2π)5

1

16m2
X J

¯|M|2| �p∗
3 |

× | �p2|dmKπd�∗
p3
d�p2 , (32)

where J is the total angular momentum of X J , | �p1| is the
three-momenta of the decay products in the center of mass
frame, and the overline indicates the sum over the polariza-
tion vectors of the final hadrons. The ( �p∗

3 ,�∗
p3

) is the momen-
tum and angle of the particle K in the rest frame of K and
π , and �p2 is the angle of D̄∗ in the rest frame of the decay-
ing particle. The mKπ is the invariant mass for K and π and
mK +mπ ≤ mKπ ≤ M −mD̄∗ . The total decay width of X J

is the sum of �(X J → D̄K ) and �(X J → D̄∗Kπ). The
amplitude and its modulus squared are then

MX J→D−K+ = C I
D̄∗0K ∗0F X J

a + C I
D∗−K ∗+F X J

b

+ C I
D∗−K ∗+F X J

c + C I
D̄∗0K ∗0F X J

d , (33)

|M|2
X J→D̄∗Kπ

= (C I
D̄∗0K ∗0)

2|F X J
a (X J → D̄∗0K 0π0)|2

+ (C I
D̄∗0K ∗0)

2|F X J
a (X J → D̄∗0K+π−)|2

+ (C I
D∗−K ∗+)2|F X J

b (X J → D̄∗−K+π0)|2
+ (C I

D∗−K ∗+)2|F X J
b (X J → D̄∗−K 0π+)|2.

(34)

It is obvious from Eq. (34) that the width of the three-body
decay for I = 0 and I = 1 only differs by the isospin factor.
However, for the two-body decay, one has

MI=0
X J→D−K+ = 1√

2
(F X J

a + F X J
b + F X J

c + F X J
d ), (35)

MI=1
X J→D−K+ = 1√

2
(−F X J

a + F X J
b + F X J

c − F X J
d ). (36)

Therefore, the decay width of X J → D̄K for I = 0 is
different from that for I = 1.

3 Results and discussions

In order to obtain the allowed two-body decay widths through
the triangle diagrams shown in Fig. 1 and three-body decay
widths in Fig. 2, we first compute the coupling constant
gXJ D̄∗K ∗ (≡ gXJ ). With a value of the cutoff α = 0.9 − 1.1
GeV, these coupling constants are shown in Fig 4. We note

Fig. 4 Dependencies of the coupling constant of vertex X J D̄∗K ∗ on
the parameter α for different spin-parity assignments. The coupling
constant gXJ for the case of J P = 0+ is in units of GeV and for the
case of J P = 1− is dimensionless

that they decrease very slowly with the increase of the cutoff.
The different α dependencies for J P = 0+ and 1− reflect
the different distribution of the two constituents, D̄∗ and K ∗,
in the hadronic molecular X J states.

We show the dependence of the total decay width on the
cutoff α in Fig. 5. In the present study, we vary α from 0.9
to 1.1 GeV. In this α range, the total decay width increases
for the case of J P = 0+, while it decreases for the J P = 1−
case. The three-body decay widths for both J P = 0+, 1−
and I = 0, 1 are in the range of 2 to 3 MeV, while the two-
body decay width for J P = 0+ is at the order of a few tens of
MeV, but that for the J P = 1− is less than 1 MeV (see also
Table 2). Because of the p-wave coupling of the X1(2904)

state to the D̄∗K ∗ channel, the numerical results for its decay
are always much smaller than the ones for the X0(2866) state,
which is in s-wave.

From Fig. 5, we find that the calculated total decay width
for the case of I (J P ) = 1(0+) is comparable with that of
the experimental total width in the range of α = 1.04 −
1.1 GeV, while an even larger α is needed for I (J P ) =
0(0+). Although a value of α = 1.0 GeV is preferred based
on previous studies [20–27], considering the fact that our
results should be considered as the lower limits because it is
possible that other decay modes exist, our study does indicate
a sizeable D̄∗K ∗ component in the X0 wave function. The
corresponding partial decay widths of X J → D̄K , D̄∗K ∗,
and the total decay widths for different spin-parity and isospin
assignments of X J are listed in Table 2. For comparison, we
show the results from the LHCb Collaboration as well [8].
The results show that X0(2866) might have a sizeable D̄∗K ∗
component while X1(2904) cannot be explained as a D̄∗K ∗
molecule. We note that in Ref. [31], X0(2866) is found to be
compatible with a compact tetraquark state.
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Fig. 5 Partial decay widths of
X J → D̄K (red dashed lines),
X J → D̄∗Kπ (blue dash dotted
lines), and the total decay width
(black solid lines) with different
spin-parity and isospin
assignments for X J as a
function of the parameter α. The
cyan error bands correspond to
the experimental total decay
width [8]

Table 2 Partial decay widths of X J → D̄K , D̄∗Kπ , and the total
decay widths for different spin-parity and isospin assignments of X J ,
in comparison with the LHCb results [8]. Results for the preferred value

of α = 1 GeV are given as central values and the uncertainties orig-
inated from the variation of α from 0.9 to 1.1 GeV. All widths are in
units of MeV

Decay models X0 X1

I = 0 I = 1 I = 0 I = 1

D̄K 25.42−7.71
+10.73 33.95−10.25

+14.21 3.10−0.81
+0.79(×10−3) 0.81−0.22

+0.27(×10−3)

D̄∗Kπ 2.48−0.08
+0.07 2.48−0.08

+0.07 3.16−0.47
+0.56 3.16−0.47

+0.56

Total 27.90−7.79
+10.8 36.43−10.33

+14.28 3.16−0.47
+0.56 3.16−0.47

+0.56

Exp. [8] 57 ± 12 ± 4 110 ± 11 ± 4

4 Summary

We studied the two-body and three-body strong decays of
the two X0(2866) and X1(2904) states assuming that they
are bound states of D̄∗K ∗. The couplings of these states to
their components are fixed by the Weinberg compositeness
condition. The two-body decays are via triangle diagrams
with exchanges of a pseudoscalar meson π , η, or Ds , where
the three-body decays happen at tree level. With all the other
couplings fixed from relevant experimental data, the only
remaining parameter is the cutoff α. We showed that with
the well accepted range of 0.9 ∼ 1.1 GeV, the so-obtained
decay width for X0(2866) is in marginal agreement with the
LHCb measurement but that for X1(2904) is much smaller.
As a result, we conclude that X0(2866) may have a large
D̄∗K ∗ component (also a non-negligible compact tetraquark
component) but X1(2904) cannot be of molecular nature.

Such a conclusion is consistent with the OBE model of
Ref. [18]. We note that a recent study by Karliner and Ros-
ner favors the explanation of X0 as a compact tetraquark

state [31], while the lattice QCD study of Ref. [16] found
no tetraquark candidate in this channel. As a result, more
works are urgently needed to clarify the nature of these latest
additions to the family of exotic mesons.
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