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Abstract Recent researches of the novel 4D Einstein–
Gauss–Bonnet (EGB) gravity have attracted great attention.
In this paper, we investigate the validity of the weak cosmic
censorship conjecture for a novel 4D charged EGB black
hole with test charged scalar field and test charged particle
respectively. For the test charged field scattering process, we
find that both extremal and near-extremal black holes cannot
be overcharged. For the test charged particle injection, to first
order, an extremal black hole cannot be overcharged while a
near-extremal 4D charged EGB black hole can be destroyed.
To second order, however, both extremal and near-extremal
4D charged EGB black holes can be overcharged for pos-
itive Gauss–Bonnet coupling constant; for negative Gauss–
Bonnet coupling constant, an extremal black hole cannot be
overcharged and the validity of the weak cosmic censorship
conjecture for a near-extremal black hole depends on the
Gauss–Bonnet coupling constant.

1 Introduction

It is well known that the EGB gravity is one of the most
promising candidates for modified gravity. However, in four-
dimensions, the Gauss–Bonnet term is a topological invari-
ant and has no contribution to the field equation, which
results in trivial black hole solutions in four dimensions.
Recently, by rescaling the Gauss–Bonnet coupling param-
eter α → α/(D − 4) and then taking the limit D → 4,
Glavan and Lin obtained a general covariant EGB modified
theory of gravity in four-dimensions and presented a novel
vacuum black hole solution [1,2]. The novel 4D EGB gravity
bypasses the Lovelock’s theorem and avoids Ostrogradsky
instability. Thus, the Gauss–Bonnet term has nontrivial con-
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tribution to the gravitational field equations. Following the
spirit of Glavan and Lin, Fernandes generalized their black
hole solution to include electric charge and got a 4D charged
spherical solution [3]. Later, applying Newman–Janis algo-
rithm, Wei and Liu et al. obtained a 4D rotating EGB black
hole solution [4,5].

There are a lot of following papers inspired by the research
of Glavan and Lin, such as the shadow and inner most sta-
ble circular orbits of black hole in the EGB gravity [4,6–8],
thin accretion disk around four-dimensional EGB black holes
[9], spinning test particle in four-dimensional EGB black
hole [10], gravitational lensing and bending of light [11–13],
black hole as particle accelerator [14], black hole thermo-
dynamics and phase transition [15–19], quasinormal modes
and strong cosmic censorship [20–22], scalar field in 4D
EGB black holes [23], cosmology in the EGB gravity [24],
compact objects and their properties [25], the eikonal grav-
itational instability of asymptotically flat and (A)dS black
holes [26], greybody factor and power spectra of the Hawk-
ing radiation [27,28], other black hole solutions [29–36], and
related topics about higher-derivative gravity in two dimen-
sions [37,38].

The weak cosmic censorship conjecture states that space-
time singularities arising in gravitational collapse should
always been hidden behind black hole event horizons [39,
40]. Although lacking a general proof, the weak cosmic cen-
sorship conjecture has become one of the cornerstones for
black hole physics. To test the validity of Penrose’ weak
cosmic censorship conjecture, Wald proposed a gedanken
experiment to check the validity of the weak cosmic cen-
sorship conjecture by throwing a particle with large charge
or angular momentum into an extremal Kerr–Newman black
hole [41]. The result demonstrates that particles causing the
destruction of the event horizon would not be captured by the
black hole. Later, Hubeny’s pioneer work shows that the hori-
zon of a near-extremal charged black hole can be destroyed
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by dropping a charged test particle [42], the result is the same
for a near-extremal Kerr black hole [43]. Recently, Sorce and
Wald proposed a new version of the thought experiment to
destroy a nearly extremal Kerr–Newman black hole at the
second-order approximation of the perturbation that comes
from the matter fields [44], the result shows that the event
horizon of the Kerr–Newman black hole cannot be destroyed.
Using the method of Sorce and Wald, the systematic works
of Jiang et al. suggest that a series of black holes cannot be
destroyed [45–53]. Another way of destroying the event hori-
zon of a black hole to test the validity of the weak cosmic
censorship conjecture is the scattering of a test classical field
first proposed by Semiz [54], and further developed by oth-
ers [55–57]. Recently, Gwak divided the scattering process
into a series of infinitesimal time interval and considered an
infinitesimal process only, the result shows that Kerr-(anti)
de Sitter black holes cannot be overspun by a test scalar field
[58], and many works have been done following this line
[59–63]. The dividing of infinitesimal time interval process
may provide clues that time interval for particles crossing
the event horizon may be important for considering the weak
cosmic censorship conjecture [64–66]. For other works to
destroy the horizon of a black hole, see Refs. [67–85]. For
a brief review on weak cosmic censorship conjecture with
some thoughts see Ref. [86].

The weak cosmic censorship conjecture has become one
of the cornerstones of black hole physics, and it has deep con-
nection with the laws of black hole thermodynamics. The
conjecture might be proved to be true, but the gedanken
experiment can help us to understand it better and bring
new insight on the relation between the weak cosmic cen-
sorship conjecture and the laws of black hole thermodynam-
ics. Besides, it is also important to explore what is it that
makes the conjecture to be true. On the other hand, if the final
result proves that the weak cosmic censorship conjecture can
indeed be violated, this might provide us the possibility to
access regions of high curvature and provide us observable
information to build a consistent theory of quantum gravity
[87].

Recent researches of weak cosmic censorship conjecture
in extended phase space have attracted a lot of attention,
but also aroused controversy. The disagreement primarily
focuses on the following point [88]: when a particle with
energy E is dropped into a black hole in AdS space, the
internal energy of the black hole U ≡ M − PV increases by
the particle energy, i.e., after absorption of the particle, the
internal energy of the black hole is U ′ = U + E instead of
enthalpy M ′ = M + E . The crucial flaw of this viewpoint is
that it would lead to the violation of the second law of black
hole thermodynamics. The viewpoint was opposed by Page
et al.. They argued that when a particle is dropped into a black
hole, it is the enthalpy that increases by the particle energy
instead of the internal energy [89]. The argument of Page et

al. preserves the second law of black hole thermodynamics
naturally.

In this paper, we investigate the weak cosmic censorship
conjecture of a novel 4D charged EGB black hole by the
scattering of a massive charged scalar field and a charged test
particle in the normal phase space, respectively. For scatter-
ing of a charged scalar field, our result suggests that both the
extremal and near-extremal charged EGB black holes cannot
be overcharged. For test particle injection, the study suggests
that to first order an extremal 4D charged EGB black hole
cannot be overcharged and a near-extremal black hole can
be destroyed. However, to second order the validity of the
weak cosmic censorship conjecture depends on the value of
the Gauss–Bonnet coupling constant.

The structure of the paper is as follows. In Sect. 2, we
briefly review the 4D charged EGB black hole and its thermo-
dynamics. In Sect. 3, we explore the scattering of a massive
complex scalar field in the 4D charged EGB black hole back-
ground and obtain the energy and charge fluxes of the com-
plex scalar field. In Sect. 4, we check the validity of the weak
cosmic censorship conjecture for extremal and near-extremal
black holes by scattering of the charged scalar field. In Sect. 5,
we check the possibility of overcharging the black hole by
injection of a test charged particle. We compare our research
with other works in Sect. 6. The last section is devoted to
discussions and conclusions.

2 The novel 4D charged EGB black hole and its
thermodynamics

The action of the EGB gravity with electromagnetic field in
a D-dimensional spacetime is

S = 1

16π

∫
dDx

(
R + α

D − 4
LGB − FμνF

μν

)
, (1)

with the Gauss–Bonnet term

LGB = Rμνρσ R
μνρσ − 4RμνR

μν + R2, (2)

where α is the Gauss–Bonnet coupling constant, and Fμν

is the electromagnetic field strength tensor Fμν = ∂μAν −
∂ν Aμ, with Aμ being the electromagnetic vector potential of
the black hole.

In the effective action approach of string theory, the
Gauss–Bonnet term is the leading order quantum correc-
tion to gravity [90]. The Gauss–Bonnet coupling constant is
related to string scale and can be identified with the inverse of
string tension. Besides, the Gauss–Bonnet coupling constant
indicates the leading quantum gravity correction from string
theory [91].

The static spherical charged black hole solution was
obtained by solving the field equations in D-dimensional
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spacetime and taking the limit D → 4 in Ref. [3]:

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2(dθ2 + sin2 θdφ2), (3)

f (r) = 1 + r2

2α

⎡
⎣1 −

√
1 + 4α

(
2M

r3 − Q2

r4

)⎤
⎦ , (4)

with the electromagnetic 4-vector potential A = −Q/r dt .
The parameters M and Q are the mass and charge of the
black hole, respectively. Taking the limit α → 0, the metric
reduce to the Reissner–Nordström black hole solution. The
black hole solution has the same form with the one obtained
in a comformal anomaly gravity [92,93]. This spacetime is
singular at r = 0 due to the divergence of curvature scalar.

The metric function can be written as

f (r) = 2(r2 − 2Mr + Q2 + α)

r2 + 2α + √
r4 + 4α(2Mr − Q2)

= 2


r2 + 2α + √
r4 + 4α(2Mr − Q2)

, (5)

where we have defined


 = r2 − 2Mr + Q2 + α. (6)

The event horizon is determined by the equation f (r) = 0,
which is equivalent to the following equation


 = r2 − 2Mr + Q2 + α = 0. (7)

For a non-extremal charged EGB black hole, the above equa-
tion gives the inner and outer horizons

r± = M ±
√
M2 − Q2 − α. (8)

The event horizon is the outer horizon r+. The two horizons
coincide for an extremal black hole, and the degenerate hori-
zon locates at rex = M . For M2 < Q2 + α, the horizon
disappears and there is no black hole. In this case, the metric
describes a charged naked singularity. For convenience, we
denote the event horizon r+ as rh in the following.

The temperature of the black hole can be calculated as

T = r2
h − Q2 − α

8παrh + 4πr3
h

. (9)

The area of the event horizon of the black hole is

A = 4πr2
h , (10)

and the electric potential of the event horizon is

φh = Q

rh
. (11)

The first law of thermodynamics for the black hole is [15]

dM = TdS + φhdQ + Adα, (12)

with the entropy and the conjugate quantityA to the coupling
parameter α

S = πr2
h + 4πα ln

(
rh√|α|

)
, (13)

A =
(

∂M

∂α

)
S,Q

=
α + 2 ln

(
rh√|α|

) (
α − r2

h + Q2
) + 2r2

h − Q2

2
(
2αrh + r3

h

) . (14)

It is worth noting that the entropy of the 4D charged EGB
black hole is different from the usual Bekenstein–Hawking
entropy-area law due to the existence of the Gauss–Bonnet
coupling constant α, and this entropy is consistent with that
obtained from the Iyer–Wald formula [15,29].

3 Charged massive scalar field in charged EGB
space-time

3.1 The scattering for charged massive scalar field

We consider the scattering of charged massive scalar field
in the 4D charged EGB spacetime background. The charged
massive scalar field � with mass μs and charge q minimally
coupled to the gravity is governed by the equation of motion

(∇μ − iq Aμ)(∇μ − iq Aμ)� − μ2
s � = 0, (15)

which can be written as

1√−g
(∂μ − iq Aμ)

[√−ggμν(∂ν − iq Aν)�
] − μ2

s � = 0.

(16)

Since the spacetime is static and spherically symmetric,
the complex scalar field can be decomposed into the follow-
ing form [94,95]

�(t, r, θ, φ) = e−iωt Rlm(r)Ylm(θ, φ), (17)

whereYlm(θ, φ) are spherical harmonic functions and Rlm(r)
are the radial functions. Inserting the above equation into the
equation of motion Eq. (16), we get the equation for the radial
part

1

r2

d

dr

[
r2 f (r)

dRlm

dr

]

+
[

(ω − qQ
r )

f (r)
− l(l + 1)

r2 − μs

]
Rlm = 0, (18)

and angular part
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
Ylm

= −l(l + 1)Ylm, (19)

123



937 Page 4 of 11 Eur. Phys. J. C (2020) 80 :937

where l(l + 1) is the separation constant and l takes positive
integra values. The solutions to the angular part of the equa-
tion are the spherical harmonic functions. Since the angular
solution is well known and it can be normalized to unity, we
are more interested in the radial part.

To solve the radial equation, we introduce the tortoise
coordinate as usual

dr

dr∗
= f (r). (20)

Then, the radial equation has the following form

d2Rlm

dr2∗
+ 2 f (r)

r

dRlm

dr∗

+
[
(ω − qQ

r
)2 − f (r)

(
l(l + 1)

r2 − μ2
s

)]
Rlm = 0.

(21)

when r varies from the horizon rh to infinity, the tortoise
coordinate ranges from −∞ to +∞ , and thus covers the
whole space outside the event horizon.

It is convenient to investigate the radial equation near the
horizon since we are more concerned with waves incident
into the black hole. Near the horizon, Eq. (21) can be approx-
imated as

d2Rlm

dr2∗
+

(
ω − qQ

rh

)2

Rlm = 0. (22)

Using Eq. (11), the above equation can be written as the
following form

d2Rlm

dr2∗
+ (ω − qφh)

2 Rlm = 0. (23)

The solution of the above radial equation is

Rlm(r) ∼ exp[±i(ω − mφh)r∗]. (24)

The positive sign corresponds to outgoing wave modes;
while, the negative sign corresponds to the ingoing wave
modes. We choose the negative sign since the ingoing wave
mode is the physically acceptable solution. Thus, the charged
complex scalar field near the event horizon has the form

� = exp[−i(ω − qφh)r∗]Ylm(θ, φ)e−iωt . (25)

After obtaining the wave function, we can calculate the
parameter changes of the black hole through the energy
momentum and charge flux of the complex scalar field.

3.2 Thermodynamics during scattering of the charged
scalar field

Since the 4D charged EGB black hole is non-rotating, we
shoot a single wave mode (l,m = 0) into the black hole. The
parameter changes of the black hole can be estimated from
the fluxes of the charged scalar field during the scattering.

The energy-momentum tensor of the charged scalar field is
given by

Tμ
ν = 1

2
Dμ�∂ν�

∗ + 1

2
D∗μ�∗∂ν� − δμ

ν

(
1

2
Dα�D∗α�∗

−1

2
μs��∗

)
, (26)

with

D = ∂μ − iq Aμ. (27)

From Eq. (26), it is easy to get the energy flux through the
event horizon

dE

dt
=

∫
H
T r
t
√−g dθdφ = ω(ω − qφh)r

2
h . (28)

The electric current of the charged scalar field is

jμ = −1

2
iq(�∗Dμ� − �D∗μ�∗). (29)

The charge flux through the event horizon is

dQ

dt
= −

∫
H
jr

√−gdθdφ = q(ω − qφh)r
2
h . (30)

Where we have used the normalization condition for the
spherical harmonic functions Ylm(θ, φ) in the integration.
The ratio of the charge flux to the energy flux is q/ω as indi-
cated in Ref. [96].

From the fluxes of the energy and charge, it is clear that the
energy and charge flow into the black hole for wave modes
with ω > qφh; while, the energy and charge fluxes are nega-
tive for wave modes with ω < qφh, which indicates that the
scalar field extract energy and charge from the black hole.
This is called black hole superradiance [97].

Consider an infinitesimal time interval dt , the changes in
the mass and charge of the black hole are

dM = dE = ω(ω − qφh)r
2
h dt, (31)

dQ = q(ω − qφh)r
2
h dt. (32)

If we consider a black hole far from extremal, the final state
is still a black hole after the absorption of the infinitesimal
energy and charge of the complex scalar field. The change
in the black hole configuration can be represented in terms
of the frequency ω and charge q of the complex scalar field.
The change in the location of the horizon drh can be obtained
from the condition


(M + dM, Q + dQ, rh + drh) = ∂


∂M
dM + ∂


∂Q
dQ

+∂


∂rh
drh = 0. (33)

Then, we obtain the change of the horizon for the scattering
process

drh = rhdM − QdQ

rh − M
. (34)
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The change of the black hole area is

d A = 8πr2
h√

M2 − Q2 − α
(ω − qφh)

2 dt, (35)

which is always positive. This indicates that the area of the
event horizon never decreases during the scattering of the
complex scalar field, and it is consistent with Hawking’s area
increasing theorem, which states that the area of a black hole
event horizon never decreases during classical process [98,
99].

4 Overcharging the black hole with the charged massive
scalar field

In this section, we investigate whether extremal and near-
extremal 4D charged EGB black holes can be destroyed by
the charged scalar field during the scattering. We shoot a
monotonic classical test complex scalar field with frequency
ω and azimuthal harmonic index m = 0 into the extremal or
near-extremal charged EGB black holes. To examine whether
we can overcharge the black hole, we only need to check the
existence of event horizon after the scattering.

The metric function 
 determines the black hole event
horizon


 = r2 − 2Mr + Q2 + α. (36)

The metric function 
 takes the minimal value at the point
rmin = M with


min = Q2 + α − M2. (37)

If the minimum of the metric function is negative or zero, the
metric describes a black hole; while, if the minimal value of

 is positive, there is no black hole.

It is convenient for us to consider a small time interval dt .
For the whole scattering process, we can divide it into a series
of small time intervals and consider each intervals separately
by only changing the parameters of the black hole.

In the the small time interval dt , the black hole absorbs
the complex scalar field with energy dE and charge dQ. The
change of the black hole parameters are

M → M ′ = M + dM,

Q → Q′ = Q + dQ,

α → α′ = α. (38)

When the fluxes of the charged scalar field enter into the
black hole, the minimum of the metric function 
min changes
to 
′

min,


′
min = 
′

min(M + dM, Q + dQ, α)

= 
min +
(

∂
min

∂M

)
Q,α

dM +
(

∂
min

∂Q

)
M,α

dQ

= −(M2 − Q2 − α) + 2QdQ − 2MdM. (39)

To check the validity of the weak cosmic censorship con-
jecture, we assume the black hole starts out extremal or very
close to extremal. Now, the question is whether the metric
function 
 = 0 has a positive solution after the black hole
absorbs the test charged scalar field during the scattering,
or equivalently, whether the minimum 
min of the metric
function is positive after the absorption of the charged scalar
field.

For a near-extremal black hole, the event horizon radius rh

is extremely close to the point of minimal value rmin = M , we
define an infinitesimal distance ε between the event horizon
rh and the minimal point rmin:

rh = rmin + ε. (40)

It is clear that ε > 0 describes a near-extremal black hole
and ε = 0 correspond to the extremal black hole. Before the
absorption of the scalar field, we can write the minimum of
the metric function 
 as


min = Q2 + α − M2 = −ε2. (41)

During the infinitesimal time interval dt of the scatter-
ing, the black hole absorbs the charged scalar field and the
minimum of the metric function 
min becomes 
′

min:


′
min = −(M2 − Q2 − α) − 2MdM + 2QdQ. (42)

Plugging Eqs. (31) and (32) into the above equation and to
first order in dt , we have


′
min = −ε2 − 2Mq2

(
ω

q
− φh

) (
ω

q
− Q

M

)
r2

h dt, (43)

where φh is the electric potential of the black hole as defined
in Eq. (11).

To check the validity of the weak cosmic censorship con-
jecture for the 4D charged EGB black hole, we consider
extremal black hole first. For extremal 4D charged EGB
black hole, we have

M2 − Q2 − α = 0, (44)

and the electric potential

φh = Q

M
. (45)

Then, after the absorption of the charged scalar field, the
minimal value of the metric function is


′
min = −2Mq2

(
ω

q
− φh

)2

r2
hdt, (46)

which is always negative. It is clear that the extremal black
hole becomes non-extremal and has two event horizons after
absorption of scalar field with ω 	= qφh. While for charged
scalar field with ω = qφ, the extremal black hole will still
be extremal since the scalar field neither be absorbed nor
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extract energy from the black hole. This suggests that the
extremal black hole cannot be overcharged, and the weak
cosmic censorship conjecture is valid for extremal 4D EGB
black hole.

For a near-extremal 4D EGB black hole, we only need to
check whether the charged scalar field with mode

ω0

q
= 1

2

(
Q

M
+ φh

)

can destroy the event horizon. Since scalar field belongs to
this mode, the metric function 
′

min is the largest. Thus, the
near-extremal black hole can be destroyed unless this mode
of the scalar field can overcharge the black hole.

We shoot a wave with the mode (ω0,m = 0) into the near-
extremal 4D charged EGB black hole. Then, the minimal
value of the metric function is


′
min = −ε2 + q2Q2

2M
ε2dt. (47)

Since the time interval is infinitesimal and dt ∼ ε. Then, we
have


′
min = −ε2 + q2Q2

2M
ε3 < 0. (48)

Which shows that the near-extremal 4D charged EGB black
hole always has two event horizons after the scattering. This
indicates that near-extremal 4D EGB black hole cannot be
overcharged and the weak cosmic censorship conjecture is
valid.

Thus, both extremal and near-extremal 4D charged EGB
black holes cannot be overcharged by the charged scalar field
during the scattering and the weak cosmic censorship con-
jecture is valid. It is worth noting that for charged scalar field
injection the Gauss–Bonnet coupling constant has no effect
on the validity of the weak cosmic censorship conjecture.
The weak cosmic censorship conjecture is still valid for both
positive and negative coupling constant, and for vanishing
Gauss–Bonnet coupling constant, the result recovers to that
of Reissner–Nordström black hole.

5 Overcharging the black hole with test particle

Now we attempt to destroy the event horizon of the 4D
charged EGB black hole with a test charged particle. The
gedanken experiment to destroy the event horizon of an
extremal black hole with large charge or large angular
momentum was first designed by Wald [41]. The research
demonstrates that the repulsion force is just great enough to
prevent particles causing the destruction of event horizon to
be captured by extremal Kerr–Newman black hole. Further
research of Hubeny suggests that a near-extremal charged
black hole can be overcharged [42]. The work of Jacobson

and Sotiriou for Kerr black hole further supports that near-
extremal black hole can violate the weak cosmic censorship
conjecture [43]. In this section, we use this method to check
the validity of the weak cosmic censorship conjecture for
4D charged EGB black hole and consider the effect of the
Guass–Bonnet coupling constant on the validity of weak cos-
mic censorship conjecture.

We shoot a test particle with rest mass m and charge δQ
into the black hole on the radial direction. Due to the presence
of electric repulsion force, the trajectory for the test charged
particle in the 4D charged EGB spacetime is not geodesic.
The equation of motion for the charged particle can be derived
from the Lagrangian

L = 1

2
mgμν

dxμ

dτ

dxν

dτ
+ δQAμ

dxμ

dτ
. (49)

From the Eular–Lagrangian equation, we can get the equation
of motion, which is

d2xμ

dτ 2 + �
μ
αβ

dxα

dτ

dxβ

dτ
= δQ

m
Fμ

ν

dxν

dτ
. (50)

Where Fμν is the electromagnetic field tensor of the 4D
charged EGB spacetime,

F = dA = Q

r2 dr ∧ dt. (51)

Since we shoot the charged test particle into the black
hole along the radial direction, the angular momentum of the
particle is zero. The energy δE of the particle is

δE = −Pt = −∂L

∂ ṫ
= −mg00

dt

dτ
− δQAt , (52)

and the angular momentum of the particle

Pθ = ∂L

∂θ̇
= mg22

dθ

dτ
= 0, (53)

Pφ = ∂L

∂φ̇
= mg33

dφ

dτ
= 0. (54)

To check the validity of the weak cosmic censorship con-
jecture for the 4D charged EGB black hole, we first find the
condition for particles to enter into the black hole, and then
check whether the particle can destroy the event horizon of
the black hole.

The four velocity of a massive particle is time-like and an
unit vector, then, we have

UμUμ = gαβ

dxα

dτ

dxβ

dτ

= 1

m2 g
αβ(Pα − δQAα)(Pβ − δQAβ) = −1. (55)

Substituting the energy δE and angular momentum Pθ and
Pφ into the above equation, we have

g00δE2 + 2g00AtδQδE + g00A2
t δQ

2 + g11P2
r + m2 = 0.

(56)
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The above equation is a quadratic equation for δE . Solving
the equation, we can get the energy of the charged particle,

δE = −AtδQ − 1

g00

[
−g00(g11P2

r + m2)
] 1

2
. (57)

Where we have chosen the future directed solution
dt/dτ > 0. Since the trajectory of a massive particle out-
side the event horizon of the 4D charged EGB black hole
should be time-like and future directed. The future directed
condition dt/dτ > 0 is equivalent to the following condition

δE > −AtδQ. (58)

A particle falling into a black hole must cross the event hori-
zon. Hence, the future directed condition for the charged
particle at the event horizon implies

δE >
Q

rh
δQ = φhδQ. (59)

Thus, the condition for the particle to enter into the black
hole is

δE > δEmin ≡ φhδQ. (60)

This constraint guarantees that the test charged particle shoot-
ing into the black hole can fall into the event horizon. The
constraint can also be derived from the null energy condition
as in Ref. [43].

On the other hand, to overcharge the black hole, the energy
of the particle should not be too large. Thus, there should be
an upper bound on the energy of the particle. To first order,
the condition to overcharge the black hole is


′
min = −(M + δE)2 + (Q + δQ)2 + α

= −M2 + Q2 + α − 2MδE + 2QδQ > 0, (61)

which can be written as

δE < δEmax = Q

M
δQ − M2 − Q2 − α

2M
. (62)

As long as the energy and charge of the test particle satisfy
the two conditions Eqs. (60) and (62), the horizon of the
4D charged EGB black hole can be destroyed and the weak
cosmic censorship conjecture can be violated.

If the 4D charged EGB black hole starts out extremal, then
we have M2 − Q2 − α = 0 and φh = Q/M . Therefore, we
have

δEmax = Q

M
δQ = δEmin. (63)

So δEmin never less than δEmax. This indicates that particles
causing the destruction of the event horizon just not be cap-
tured by the extremal 4D charged EGB black hole. This was
claimed long ago by Wald for Kerr–Newman black hole [41].

However, if the black hole starts out very close to extremal,
the event horizon of the black hole satisfys the inequality
rh = M + √

M2 − Q2 − α > M . This inequality implies

φh = Q/rh < Q/M . To first order, it is clear that there
exist values of δE satisfying both inequalities Eqs. (60) and
(62). So a near-extremal 4D charged EGB black hole can
be overcharged and the weak cosmic censorship conjecture
can be violated. Note that to first order, the Gauss–Bonnet
coupling constant has no significant effect on the validity of
the weak cosmic censorship conjecture.

Next, we consider the second order. To second order, the
condition for overcharging the 4D charged EGB black hole
is


′
min = −(M + δE)2 + (Q + δQ)2 + α > 0. (64)

The condition to overcharge the 4D charged EGB black hole
becomes that of Reissner–Nordström black hole for vanish-
ing Gauss–Bonnet coupling constant. As previous research of
Hubeny [42] shows that extremal Reissner–Nordström black
hole cannot be overcharged while near-extremal one can vio-
late the weak cosmic censorship conjecture.

For positive coupling constant α, the condition to destroy
the event horizon of the black hole is

(δE + M)2

α
− (δQ + Q)2

α
< 1. (65)

The above inequality describes a region below the upper
branch of a hyperbola. It is clear from Fig. 1 that there exist
particles with values of δE and δQ such that the two condi-
tions (60) and (65) can be satisfied simultaneously both for
extremal and near-extremal 4D charged EGB black holes.
Hence, to second order, both extremal and near-extremal 4D
charged EGB black holes can be destroyed for positive cou-
pling constant.

We emphasize here, that due to the existence of the positive
coupling constant, extremal charged EGB black hole can be
overcharged, which is contrary to previous research that other
extremal black holes cannot be overcharged or overspun by
a test particle [41,43].

For negative coupling constant α, the condition to over-
charge the black hole is

(δQ + Q)2

|α| − (δE + M)2

|α| > 1. (66)

This gives the upper bound of energy for the particle

δE < δEmax =
√

(δQ + Q)2 − |α| − M. (67)

Some algebra reveals that δEmin never less than δEmax for
extremal 4D charged EGB black hole. So the event horizon
of extremal 4D charged EGB black hole cannot be destroyed.

For near-extremal 4D charged EGB black hole, the valid-
ity of the weak cosmic censorship conjecture depends on
the value of the Gauss–Bonnet coupling constant α. If 0 <

−α << M , the charge of the near-extremal black hole Q ∼
M . The horizon of the black hole can be destroyed as that
of Reissner–Nordström black hole. While for −α >> M ,
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Fig. 1 Energy bounds for the charged particle δEmax (black solid lines)
and δEmin (red dashed lines) vs. charge of the particle δQ for extremal
and near-extremal 4D charged EGB black hole for positive coupling
constant. Where we have choose the mass M = 2 for the black hole, the

Gauss–Bonnet coupling constant α = 3, and a charge of the extremal
black hole Q = 1, b charge of the near-extremal black hole Q = 0.9.
The grey region is for δEmax > δEmin

the charge of the near-extremal black hole Q >> M . In this
case, there is not any value of δE satisfying both inequal-
ity (60) and (67), which shows that near-extremal black hole
cannot be overcharged. Physically, this is because the electric
repulsion force is too large for the charged particle to enter
into the black hole.

Hence, to first order, extremal 4D charged EGB black
hole cannot be overcharged; while the event horizon of near-
extremal black hole can be destroyed. To second order, how-
ever, both extremal and near-extremal 4D charged EGB
black hole can be destroyed for positive Gauss–Bonnet cou-
pling constant; for negative Gauss–Bonnet coupling con-
stant, extremal black hole cannot be overcharged and the
validity of the weak cosmic censorship conjecture for near-
extremal black hole depends on the value of the Gauss–
Bonnet coupling constant.

6 Comparing with other works

After our article appeared in arXiv a day later, Ying also
posted a paper about weak cosmic censorship conjecture for
the novel 4D charged EGB black hole on arXiv [100]. There
are some similarities and differences between our work and
Ying’s research.

In our work, both charged scalar field scattering gedanken
experiment and charged particle absorption experiment in
the normal phase space were investigated. We considered
the minimal value of the event horizon function 
′

min to first
order for scalar field scattering; and both first and second
order for the minimal value of the event horizon function

′

min for charged particle absorption.
Ying considered particle absorption gedanken experiment

both in the normal phase space and in the extended phase
space, but the calculation of the minimal value of the event

horizon function f (rmin) (in Ying’s symbol) only to first
order after the absorption of a charged particle.

In our work, we set the cosmological constant � = 0,
which makes it easier to calculate the minimal of the event
horizon function 
′

min to second order for particle injec-
tion. This leads to many interesting results, which cannot be
derived from first order approximation, such as an extremal
black hole can be overcharged for positive Gauss–Bonnet
coupling constant. This is the main reason we only consid-
ered weak cosmic censorship conjecture in the normal phase
space.

To first order of the minimal of the event horizon function,
Ying’s work should be the same with our research for parti-
cle absorption in the normal phase space, but Ying made a
mistake in the estimation of the minimal of the event horizon
function. After correcting the mistake, to first order, Ying’s
work is the same with our research.

In Ying’s work, after the near-extremal black hole absorb-
ing a charged particle with energy E = q� + |Pr (r+)| and
charge q, the minimal of the event horizon function is

f (rmin + drmin) = δ − 2|Pr (r+)|
rmin + 2α

rmin
(1 − δ)

+ 2Qqε′

r2+(1 − ε′2) + α(1 − δ)
, (68)

where

δ ≡ f (rmin) ≤ 0 (69)

and

rmin = r+(1 − ε′). (70)

Ying then claimed that the third term of Eq. (68) can be
neglected in the near-extremal black hole case since 0 <
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ε′ << 1, then Ying got the following result

f (rmin + drmin) = δ − 2|Pr (r+)|
rmin + 2α

rmin
(1 − δ)

< 0, (71)

and claimed that the weak cosmic censorship conjecture is
valid for the near-extremal black hole. However, for vanish-
ing Gauss–Bonnet coupling constant α → 0, Ying’s con-
clusion contradicts with Hubeny’s seminal work that a near-
extremal Reissner–Nordström black hole can be overcharged
in test particle approximation [42]. The reason for the con-
tradiction is that Ying neglected the third term in Eq. (68).

The minimal of the event horizon function δ ≡ f (rmin)

for near-extremal black hole is of order ε′, and we can choose
injected particles with large chargeq but small radial momen-
tum 0 < |Pr (r+)| < ε′  1. The particle can cross the event
horizon, since the energy of the particle E = q�+|Pr (r+)|
is large, too. In this case, after the absorption of the charged
particle, the minimal of the event horizon function (68) can
be positive. This leads to the result that weak cosmic cen-
sorship conjecture can be violated for a near-extremal black
hole, and the result can be recovered to that of Reissner–
Nordström black hole for vanishing Gauss–Bonnet coupling
constant.

7 Discussion and conclusions

In this paper, we have explored the scenario of destroy-
ing the event horizon of the novel 4D charged EGB black
hole with test field and test particle respectively. For the test
charged field thought experiment, the result suggests that
both extremal and near-extremal black hole cannot violate
the weak cosmic censorship conjecture, and the result is inde-
pendent of the Gauss–Bonnet coupling constant. For the test
charged particle gedanken experiment, to first order, extremal
4D charged EGB black hole cannot be overcharged and
near-extremal black hole can be destroyed; to second order,
however, both extremal and near-extremal 4D charged EGB
black hole can be overcharged for positive Gauss–Bonnet
coupling constant; for negative Gauss–Bonnet coupling con-
stant, extremal black hole cannot be overcharged and the
validity of the weak cosmic censorship conjecture for near-
extremal black hole depends on the Gauss–Bonnet coupling
constant.
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